The regulation of the synthesis of the endothelial-derived vasoconstrictor ET-1 (endothelin-1) is a complex process that occurs mainly at the mRNA level. Transcription of the gene accounts for an important part of the regulation of expression, as already described for different modulators such as the cytokine TGF-β (transforming growth factor-β). However, very little is known about mechanisms governing ET-1 expression at the post-transcriptional level. The aim of the present study was to investigate the regulation of the ET-1 expression at this level. Since the 3′-UTR (3′-untranslated region) of mRNAs commonly contains genetic determinants for the post-transcriptional control of gene expression, we focused on the potential role of the 3′-UTR of ET-1 mRNA. Experiments performed with luciferase reporter constructs containing the 3′-UTR showed that this region exerts a potent destabilizing effect. Deletional analyses allowed us to locate this activity within a region at positions 924–1127. Some (but not all) of the AREs (AU-rich elements) present in this region were found to be essential for this mRNA-destabilizing activity. We also present evidence that cytosolic proteins from endothelial cells interact specifically with these RNA elements, and that a close correlation exists between the ability of the AREs to destabilize ET-1 mRNA and the binding of proteins to these elements. Our results are compatible with the existence of a strong repressional control of ET-1 expression mediated by destabilization of the mRNA exerted through the interaction of specific cytosolic proteins with AREs present in the 3′-UTR of the gene.

You do not currently have access to this content.