A dependence on proteoglycans for cationic lipid-mediated gene transfer has been suggested in previous studies [Mislick and Baldeschwieler (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 12349-12354; Mounkes, Zhong, Cipres-Palacin, Heath and Debs (1998) J. Biol. Chem. 273, 26164-26170]. We have evaluated the mechanism of proteoglycan involvement in cationic lipid-mediated gene transfer. DNA plasmid uptake and gene expression were studied in wild-type Chinese hamster ovary (CHO) cells (CHO-K1), heparan sulphate-deficient CHO cells (pgsD-677) and proteoglycan-deficient CHO cells (pgsB-618). At an optimal ratio of cationic lipid to DNA, a substantial decrease in reporter gene expression was observed in proteoglycan-deficient cells compared with that in heparan sulphate-deficient and wild-type cells. However, there were no differences in reporter gene expression between the cell lines when transfected by electroporation. Moreover, all cell lines exhibited equal cationic-lipid-DNA complex uptake activities, as assessed by the measurement of intracellular 32P-labelled and rhodamine-labelled DNA plasmid. An analysis of reflected-light images of wild-type and proteoglycan-deficient cells suggested that cationic lipids were preferentially toxic to proteoglycan-deficient cells. Cell-growth assays confirmed this, showing that cationic lipids exhibited a greater anti-proliferative activity in proteoglycan-deficient cells and in chlorate-treated wild-type cells than in the other cell lines. The growth-inhibitory effect of cationic lipids was abrogated by the addition of exogenous sulphated glycosaminoglycans. We conclude that the glycosaminoglycan part of proteoglycans serves a protective role against cationic lipid cytotoxicity, allowing optimal transfection efficiency in vitro.

This content is only available as a PDF.
You do not currently have access to this content.