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The obligate intracellular lifestyle of Plasmodium falciparum and the difficulties in obtain-
ing sufficient amounts of biological material have hampered the study of specific
metabolic pathways in the malaria parasite. Thus, for example, the pools of sugar
nucleotides required to fuel glycosylation reactions have never been studied in-depth in
well-synchronized asexual parasites or in other stages of its life cycle. These metabolites
are of critical importance, especially considering the renewed interest in the presence of
N-, O-, and other glycans in key parasite proteins. In this work, we adapted a liquid
chromatography tandem mass spectrometry (LC-MS/MS) method based on the use of
porous graphitic carbon (PGC) columns and MS-friendly solvents to quantify sugar nucleo-
tides in the malaria parasite. We report the thorough quantification of the pools of these
metabolites throughout the intraerythrocytic cycle of P. falciparum. The sensitivity of the
method enabled, for the first time, the targeted analysis of these glycosylation precursors
in gametocytes, the parasite sexual stages that are transmissible to the mosquito vector.

Introduction
Plasmodium falciparum is the causative agent of the deadliest form of human malaria and it is respon-
sible for the majority of malaria-related deaths [1]. With approximately half of the world living at risk
of malaria, the emergence of parasite resistance to the current last-line of antimalarials poses a serious
threat to malaria control and elimination efforts [2]. The development of novel drugs is still limited
by our incomplete understanding of the biology of the parasite [3]. The characterization of parasite
metabolic pathways, new protein functions, post-translational modifications, and the identification of
cognate receptors on human and vector host cells can ultimately guide the design of selective inhibitors
to prevent disease and parasite transmission through the vector.
The frequency of glycosylation modifications of P. falciparum is generally assumed to be low in the

blood stages of the parasite [4,5] except for the well-described glycosylphosphatidylinositol (GPI)
anchors [6]. GPI anchors attach essential proteins, such as merozoite surface proteins 1 and 2 (MSP-1
and MSP-2) [7], to the parasite plasma membrane. Following parasite egress from the red blood cell, GPI
anchors are also thought to induce proinflammatory cytokine responses, which are a major contribut-
ing factor to malaria pathogenesis [8]. Previous advances in the identification of new glycosylated
structures both in the human [9] and mosquito stages [10], and the quantification of sugar nucleotides in
the blood stages of parasite development [11] have renewed interest in the glycobiology of P. falciparum.
Sugar nucleotides are high energy donors that feed the biosynthesis of glycoconjugates [12]. For
instance, GDP-mannose (GDP-Man) and UDP-N-acetylglucosamine (UDP-GlcNAc) are required for
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the synthesis of GPI anchors in eukaryotes [13,14]. Similarly, UDP-GlcNAc is also involved in the synthesis of
N-glycans, which in P. falciparum consist of one or two residues of N-acetyl-glucosamine (GlcNAc) [9,15]. As
obligate glycosylation precursors, the quantification of sugar nucleotide pools provides strong evidence of the
presence of cellular glycosylation reactions [11,16]. Furthermore, the ability to identify and quantify these
metabolites remains an invaluable tool for functional analyses aimed at elucidating the mechanisms of sugar
nucleotide biosynthesis [17–19]. However, a robust analytical method must take into consideration their highly
polar nature, low in vivo concentration, and rapid turnover. Moreover, structurally analogous sugar nucleotides,
such as UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal), display similar chromatographic profiles,
hindering an adequate resolution.
Sugar nucleotide pools of P. falciparum and other protozoan parasites have been previously quantified by

ion-pair reversed-phase (RP) liquid chromatography-tandem mass spectrometry (LC-MS/MS) [11,16]. In this
approach, the weak retention displayed by polar compounds under RP conditions is solved with the addition of
ion-pairing solvents. Still, this strategy should be avoided when the instrumentation is intended to be employed
in different applications, since trace amounts of ion-pair reagents cannot be fully removed [20]. Moreover,
these reagents reduce sensitivity by partially suppressing electrospray ionization (ESI) [21,22]. In contrast with
conventional columns used for RP chromatography, porous graphitic carbon (PGC) not only retains non-polar
compounds but also exhibits a strong affinity towards polar analytes. Thus, PGC is an excellent choice for
multipurpose MS instrumentation (such as those housed in a shared facility) since it does not require the
addition of ion-pair reagents to achieve an efficient retention of sugar nucleotides [20,23]. Additionally, the
complex retention mechanism displayed by PGC results in an increased selectivity with respect to other
approaches; allowing the separation of structurally similar analytes [24].
In this work we used a PGC-based LC-MS/MS technique [20] to identify and quantify the sugar nucleotide

pools in tightly synchronized P. falciparum parasites. Different stages of intraerythrocytic development were
analyzed, resulting in greater precision in the estimates of availability or abundance of these obligate donors for
glycosylation reactions. The sensitivity of the analytical method allowed us to compare the sugar nucleotide
content of gametocytes, which are intraerythrocytic, non-proliferative single parasite forms, with the multi-
nucleated erythrocytic schizonts containing between 12–18 merozoites. The P. falciparum gametocyte makes up
less than 1% of the entire parasite biomass in an infected individual, retains a unique, falciform shape,
sequesters in the hematopoietic system of human bone marrow, and does not egress from its red blood cell
home until it is inside the mosquito midgut [25,26]. Given this known biology, previous work suggested that
gametocytes entered a quiescent phase associated with low metabolic activity [27]. Thus, it was thought that
sugar nucleotide biosynthesis in gametocytes would be lower (or even absent) in comparison with the more
dynamic asexual blood stages. Nevertheless, our results seem to show that in fact the converse is true, in
agreement with a previous study that indicates significant metabolic activity in P. falciparum gametocytes [28].

Experimental
Chemicals
All reagents, standards, and solvents used for chromatography (HPLC grade) were purchased from
Sigma-Aldrich (St. Louis, MO, U.S.A), unless otherwise specified. Ammonia and absolute ethanol were
purchased from Merck (Darmstadt, Germany). High purity water was prepared with a Millipore Milli-Q Plus
system (Millipore, Bedford, MA, U.S.A.). Standard stock solutions of sugar nucleotides were prepared in water
at 2 mM and stored at −80°C prior to use. Further dilutions were prepared in 25% acetonitrile + formate buffer
(0.1% formic acid adjusted to pH 9 with ammonia).

P. falciparum culture and synchronization
P. falciparum asexual stages were cultured in an atmosphere of 92% N2, 3% O2, and 5% CO2 with B+ human
erythrocytes at 2–4% hematocrit in RPMI medium supplemented with 0.5% Albumax II. Human erythrocytes
were purchased from the Banc de Sang i Teixits (Catalonia, Spain), after approval from the Comitè Ètic
Investigació Clínica Hospital Clínic de Barcelona. For the analysis of asexual blood stages, P. falciparum strain
3D7 (BEI Resources/MR4/American Type Culture Collection, Manassas, VA, U.S.A.) was tightly synchronized
to a 5-hour window by combining Percoll purification of schizonts [29], followed by sorbitol lysis 5 h later
[30]. To reduce biological variation, a single culture was split and parasites were harvested at 18, 25, 32, 35, and
37 ± 2.5 h post-invasion.
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Gametocytogenesis
The previously described 3D7-B subclone E5 [31] was cultured in RPMI medium supplemented with 10%
human serum for gametocyte production. Sorbitol synchronized rings (day 0) were treated with 50 mM
N-acetyl glucosamine (GlcNAc) [32] that was maintained for the remainder of the experiment. On day 10,
asexual late stages were removed by sorbitol lysis and gametocytes (mostly stage IV) were enriched from
uninfected red blood cells (uRBCs) and residual ring stages by magnetic cell sorting using MACS columns
(Miltenyi Biotech, Germany).

Metabolite extraction and pre-analytical purification
Harvested parasites were released by osmotic lysis in 60 volumes of cold erythrocyte lysis buffer (from a 10×
stock solution consisting of 0.15 M NH4Cl, 0.1 M KHCO3, 0.01 M EDTA) and incubated in ice for 10 min
[33]. As a control, 4 × 109 uRBCs were subjected to the same treatment. Host red blood cell material was
washed three times with ice-cold phosphate-buffered saline and released parasites were lysed with 500 mls of
−20°C 70% ethanol and spiked with 20 pmols of internal standard GDP-glucose (GDP-Glc). Cell debris was
removed by centrifugation (20 000 × g for 10 min at 4°C) and supernatants were dried under nitrogen or in a
Savant™ SPD 1010 SpeedVac™ concentrator (Thermo Scientific) at room temperature. For comparison
purposes, some samples were further processed to reduce complexity. Briefly, lipids were extracted by
n-butanol:water partition, and sugar nucleotides enriched by solid phase enrichment (SPE) with Supelclean™
Envi™-Carb columns (Supelco), as described previously [16,34]. Extracted metabolites were finally resuspended
in 80–100 mls of 25% acetonitrile + 0.1% formic acid adjusted to pH 9 with ammonia. 10 mls were injected for
LC-MS/MS analysis.

Liquid chromatography-electrospray ionization-tandem mass spectrometry
(LC-ESI-MS/MS)
The LC-MS/MS method was carried out on an Agilent 1290 Infinity LC System equipped with a Hypercarb
PGC column (5 mm, 2.1 × 100 mm; ThermoFisher Scientific) coupled by ESI to a QTRAP 6500 (AB Sciex).
The column was maintained at 60°C and samples (10 ml volume) were injected at a constant flow rate of
150 ml/min. The binary mobile phase was composed of 0.1% formic acid adjusted to pH 9 with ammonia (A)
and acetonitrile (B). The LC run started with a 30 min gradient from 2% acetonitrile to 15%, ramping linearly
to 50% at 42 minutes and followed by a 1 min gradient to 100%, which was maintained for 2 min. Before
running the next sample, the column was re-equilibrated by returning to the initial conditions of 2%
acetonitrile for 35 minutes (Supplementary Figure S1). The mass spectrometer was operated in the negative ion
mode with the following settings: ion spray voltage: −4200 V, declustering potential: −80 V, entrance potential:
−10 V, source temperature: 600°C. Parent and fragment ions were detected in multiple reaction monitoring
(MRM) mode for mass transitions described in Table 1. Peak identities were verified by the analysis of

Table 1. Retention times, limits of detection, and quantification and linearity of standard calibration curves

Analyte MRM transition (m/z)1 tR (min) tR intra-day SD (min)2 tR inter-day SD (min)3 LoD (nM)4 LoQ (nM)5 R2 6

UDP-Gal 565→ 323 20.38 1.57 2.21 0.30 1.02 0.9968

UDP-Glc 565→ 323 21.68 1.51 3.44 0.44 1.48 0.9987

UDP-GlcNAc 606→ 385 22.40 1.54 3.11 0.77 2.56 0.9973

GDP-Man 604→ 424 31.18 1.94 2.95 0.77 2.56 0.9966

GDP-Glc 604→ 362 33.57 1.22 2.57 0.20 0.68 1.0000

GDP-Fuc 588→ 442 34.21 1.04 2.90 0.25 0.84 0.9985

1The major product ion for every sugar nucleotide corresponds to its nucleotidic moiety, since ion fragmentation takes place around the unstable bond between the sugar
and the nucleotide (i.e. at the sugar-1-phosphate or pyrophosphate linkages) [16].
2Intra-day standard deviation of retention times (n = 12 measurements).
3Inter-day standard deviation of retention times (n = 3 measurements).
4Limit of detection (LoD) was calculated at a signal-to-noise ratio (S/N) of 3.
5Limit of quantification (LoQ) was calculated at a signal-to-noise ratio (S/N) of 10.
6Correlation coefficients of the known amount of commercial sugar nucleotides in the calibration curve and the analyte MS signal relative to the GDP-glucose internal standard.
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commercial sugar nucleotide standards and selected areas were integrated with the Analyst® 1.6.2 software.
Sugar nucleotides were quantified by correlating the known amount of commercial sugar nucleotides in the
calibration curve and the ratio between metabolite and internal standard MS signals.

Results
Validation of a PGC chromatography LC-MS/MS method for the quantification
of sugar nucleotides in asexual P. falciparum blood stages
Commercial sugar nucleotide standards were subjected to chromatographic separation on a PGC column and
identified by their characteristic elution times when MRM failed to select between analyzed compounds as in
the case of stereoisomers, such as UDP-Glc and UDP-Gal or GDP-Man and GDP-Glc (Figure 1A). All of the
standards could be well resolved to baseline. Linearity, limits of detection, and quantification and intra-day and
inter-day variability of retention times are included in Table 1. Previously described methods involved a pre-
analytical purification step consisting of butan-1-ol [16] delipidation and SPE [16,20,34] to reduce sample com-
plexity. To assess whether the use of this sample preparation step could be circumvented in intraerythrocytic
stages, 7.3 × 107 P. falciparum 3D7 trophozoites (30 ± 2.5 hpi) were analyzed with or without delipidation and
SPE. Sugar nucleotide levels displayed no significant difference between both sample treatments (Figure 1B),
allowing a faster and less laborious method. Furthermore, the background signal for each MRM transition
remained unaltered and thus the low limits of quantification observed using standards were maintained
(Supplementary Table S1). Remarkably, under these conditions we did not observe any decrease in the chroma-
tographic performance of the column (i.e. peak resolution of the analytes) in more than five different runs with
several samples over a period of more than a year.

Quantifying sugar nucleotide levels at different stages of P. falciparum asexual
intraerythrocytic development
In its human host, P. falciparum goes through a cycle of repeated invasion of erythrocytes, exhibiting a syn-
chrony duration of approximately 48 h. In culture, P. falciparum grown in culture loses synchronicity quickly,
making it more difficult to analyze and compare sugar nucleotide levels across specific intraerythrocytic devel-
opmental stages. Different synchronization methods, based on selective lysis [30] or physical separation of spe-
cific stages [29] generate synchronization windows as wide as the duration of that stage, which is not optimal
to thoroughly describe the regulation of specific metabolites throughout the parasite intraerythrocytic life cycle.
Higher degrees of synchrony can be achieved by successive combination of different methods, such as Percoll

Figure 1. Development of the PGC LC-MS/MS quantification method for sugar nucleotides analysis.

(A) Representative extracted ion chromatograms (XIC) of targeted sugar nucleotides from an extract of P. falciparum 3D7

trophozoites (30 ± 2.5 hpi). (B) Sugar nucleotide pools of 7.3 × 107 P. falciparum 3D7 trophozoites (30 ± 2.5 hpi) analyzed by PGC

LC-MS/MS before (white bars) or after (grey bars) a pre-analytical purification consisting of butan-1-ol delipidation and solid

phase enrichment. Values of each sugar nucleotide indicate the average of three different extractions. Error bars display S.D.

GDP-Fuc, GDP-fucose; GDP-Glc, GDP-glucose; GDP-Man, GDP-mannose; UDP-Gal, UDP-galactose; UDP-Glc, UDP-glucose;

UDP-GlcNAc, UDP-N-acetylglucosamine.
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purification followed by sorbitol lysis [35]. However, these procedures require significant amounts of culture
reagents or a reduction in the quantity of parasites in culture, making the analysis of low-abundant metabolites
more difficult. The low quantification limits (0.8–2.6 nM; Table 1) achieved by this LC-MS/MS method
prompted us to analyze tightly synchronized parasite cultures (0–5-h window) with ∼1–4 × 108 parasites cells.
These analyses resulted in a comprehensive quantification of the sugar nucleotide levels along the in vitro
asexual intraerythrocytic development of P. falciparum (Figure 2B).
One of the main issues when analyzing the intraerythrocytic stages of malaria and other intracellular para-

sites is the extent of host-cell contamination. Human red blood cells (RBCs) contain pools of sugar nucleotides
(Supplementary Figure S2A) and the LC-MS/MS method could detect significant amounts of these metabolites
carried over from the parasite host cells. To assess the degree of this contamination, we analyzed the sugar
nucleotides detected in lysed uRBCs and established a contamination threshold that may be carried over from
the host cell (see dashed lines in Figure 2B). Only GDP-Fuc, UDP-Glc, and UDP-GlcNAc were detected above
the limit of quantification when high numbers of uRBCs (∼4 × 109) were lysed (Supplementary Figure S2B).
Nevertheless, even in that case, the background levels were negligible when compared with sugar nucleotides
detected in parasites in the trophozoite stages and later (from 32 ± 2.5 hpi, see Figure 2B).

Sugar nucleotide levels in sexual gametocytes of P. falciparum
After establishing infection, less than 1% of intraerythrocytic P. falciparum differentiate to gametocytes [36].
Gametocytogenesis is an essential process for parasite transmission, since gametocytes are the only stages that
can fertilize and establish the sporogonic cycle in the anopheline mosquito vector. A metabolomic study
revealed that despite entering a non-proliferative state, gametocytes exhibit increased levels of glucose utilization
and high energy requirements [28], indicating significant metabolic activity in these life stages. The gametocytes
are known to harbor many transcripts that while in the human host are rapidly translated into proteins follow-
ing gametogenesis in the mosquito, which occurs within a 10–15 min time period, followed by macrogamete
fertilization to form the mosquito-infective ookinete stage. Fertilized zygotes and motile ookinetes express two
major GPI-anchored proteins, P25 and P28 [37]. We hypothesize that sugar nucleotide pools are ramped-up
and stored in preparation for gametogenesis inside the mosquito vector. To date, the pools of sugar nucleotides
in gametocytes have not been analyzed. The sensitivity of the HPLC-MS/MS method designed enabled the
robust analysis of samples containing less than 1 × 108 P. falciparum gametocytes (see Supplementary
Table S2). We observed that some of the sugar nucleotides detected in this life stage were present at much
higher levels than in the asexual blood stages (Figure 3B).

Figure 2. Sugar nucleotide pools of P. falciparum asexual blood stages.

(A) Schematic representation of the synchronization strategy and sampling time-points (hpi, hours post-invasion).

(B) Quantification of sugar nucleotides from extracts of P. falciparum 3D7 tightly synchronized asexual blood stages. Values are

the average of three extractions at different time-points. Error bars display S.D. Uninfected red blood cells were lysed as a

negative control and were used to estimate the maximum contamination threshold expected from host red blood cells (dashed

line) according to the amount of red blood cells in each sample (except for non-quantifiable analytes with a signal-to-noise

ratio <10, i.e. UDP-Gal and GDP-Man).
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Discussion
In this work we used an LC-ESI-MS/MS-based methodology for the quantification of sugar nucleotides in the
intraerythrocytic stages of P. falciparum using an ion trap instrument (QTRAP 6500 AB Sciex), a PGC column,
and an MS-compatible solvent system [20]. The low limit of detection for the targeted analytes, between
0.3–0.8 nM, allows a reduction in the number of parasites required for analysis (see Supplementary Table S2).
This is critical when working with organisms such as P. falciparum, which pose significant problems in obtain-
ing sufficient amounts of parasites that are tightly synchronized or from specific life stages (i.e. gametocytes or
ookinetes). The analysis showed (1) a dramatic increase in the pools of different sugar nucleotides in the
mature stages of the intraerythrocytic asexual development of the parasite, and (2) remarkably higher levels of
these metabolites in stage IV gametocytes. We anticipate leveraging the sensitivity of this method to analyze
sugar nucleotides in other important parasite life stages, such as the intrahepatic stages of P. falciparum, which
are less amenable for large-scale purification.
As previously observed [11], the availability of sugar nucleotides in the ring stages seems to be scarce

(Figure 2B), suggesting that glycosylation reactions might occur later in the parasite cycle. However, it could
also be argued that the high demand of these metabolites during the initial stages keeps the pools at a lower
level. Throughout asexual development, there is a significant increase in parasite size within the red blood cell
[38]. Its rate of multiplication, with 10 to 20 merozoites produced every 48 h, involves high metabolic and bio-
synthetic activity. The parasite assembles a variety of glycoconjugates, mostly free GPIs or glycoinositol phos-
pholipids (GIPLs), and GPI-anchored proteins, several of which are essential for invasion [6,7,39]. Regardless
of the presence of N-glycans [9] and other uncharacterized glycosylations [19], GPI biosynthesis requires
UDP-GlcNAc and GDP-Man donors [40]. Accordingly, the pools of these metabolites (Figure 2B), but also
other sugar nucleotides, expand exponentially along the asexual life cycle of the parasite, either reflecting an
increased biosynthesis to fuel the demand of UDP-GlcNAc and GDP-Man during the mature stages of the
asexual life cycle; or indicating a decrease in the need of these metabolites, due to a decline of glycoconjugate
synthesis at the final stages. Data on gene expression of UDP-N-acetylglucosamine pyrophosphorylase and
mannose-1-phosphate guanyltransferase might elucidate this matter, but their RNA transcripts are decreased
and increased, respectively, towards the end of the life cycle [41].
The levels of GDP-fucose (GDP-Fuc) are steady between 32 ± 2.5 and 35 ± 2.5 h post-invasion suggesting the

possible extra consumption of this metabolite by the parasite glycosylation machinery during this time period
(Figure 2B). Interestingly, P. falciparum is known to express a Protein O-fucosyltransferase 2 (PoFUT2)
homolog, a GDP-Fuc-dependent O-fucosyltransferase that fucosylates thrombospondin type 1 repeat (TSR)
domains in other organisms [42]. Accordingly, the transcription of PfPoFUT2 and potential O-fucose accep-
tors, the TSR-containing proteins MTRAP and TRAMP, increase during that same period [41].

Figure 3. Sugar nucleotide pools of P. falciparum gametocytes.

(A) Schematic representation of gametocyte induction and sampling time-point. (B) Quantification of sugar nucleotides from an

extract of P. falciparum 3D7B E5 subclone. Values are the average of three technical replicates. Error bars display S.D.

GlcNAc, N-acetyl glucosamine; LC-MS/MS, liquid chromatography tandem mass spectrometry; MACS, Magnetic-Activated

Cell Sorting.

902 © 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND).

Biochemical Journal (2017) 474 897–905
DOI: 10.1042/BCJ20161030

D
ow

nloaded from
 http://portlandpress.com

/biochem
j/article-pdf/474/6/897/689210/bcj-2016-1030.pdf by guest on 23 April 2024

https://creativecommons.org/licenses/by-nc-nd/4.0


Finally, gametocytes present significantly higher levels of sugar nucleotides than the asexual blood stages
(Figure 3B). The literature suggests that the cell volume of gametocytes and asexual schizonts is similar [38].
Therefore, the observed levels of UDP-GlcNAc, UDP-Glc, and GDP-Man above one order of magnitude in
comparison with asexual parasites shows a much higher concentration and availability of these metabolites in
gametocytes (i.e. 65.7, 98.8, and 7.8 pmols/107 parasite cells for UDP-Glc, UDP-GlcNAc and GDP-Man).
Indeed, the levels of UDP-GlcNAc, UDP-Glc, and GDP-Man in gametocytes are comparable to the extracellu-
lar forms of other parasites, such as Trypanosoma brucei, Trypanosoma cruzi, or Leishmania major [16] that
present more varied and profuse glycosylation patterns [43]. This could reflect a distinct glycosylation status in
P. falciparum gametocytes in contrast with asexual blood stages and supports the contention that the gameto-
cytes are preparing for an extracellular existence in the mosquito. Gametocytes egress from the red blood cell
and become extracellular gametes in the mosquito midgut, where they could make use of the pools accumu-
lated in the gametocyte stage. Thus, glycosylation could be more relevant in these extracellular forms and pos-
sibly also in other mosquito stages (such as oocysts and sporozoites). Further studies on the glycosylations
present on the surface of P. falciparum extracellular stages will help to cast light on this issue.

Abbreviations
ESI, electrospray ionization; GDP, Guanosine diphosphate; GDP-Fuc, GDP-fucose; GDP-Glc, GDP-glucose;
GDP-Man, GDP-mannose; GIPL, glycoinositol phospholipid; GPI, glycosylphosphatidylinositol; hpi, hours
post invasion; LC-MS/MS, liquid chromatography tandem mass spectrometry; MACS, Magnetic-Activated Cell
Sorting; MRM, multiple reaction monitoring; MSP-1, merozoite surface protein 1; MSP-2, merozoite surface
protein 2; PGC, porous graphitic carbon; RP, reversed phase; RPMI, Roswell Park Memorial Institute; SPE,
solid phase enrichment; TSR, thrombospondin type 1 repeat; UDP, Uridine diphosphate; UDP-Gal,
UDP-galactose; UDP-Glc, UDP-glucose; UDP-GlcNAc, UDP-N-acetylglucosamine; uRBC, uninfected red
blood cell.

Author contribution
B.L.-G. collected samples and carried out sugar nucleotide analysis. B.L.-G. and L.I. conceived the work,
designed the method, and performed data analysis. B.L.-G., L.I., and R.R.D. outlined the document and
contributed to the writing and review of this manuscript.

Funding
LI thanks funding from the Spanish Ministry of Economy (grant [SAF2013-43656-R] supporting BL-G). LI and
RRD are grateful for National Institutes of Health grant [1R21AI115063-01]. LI is a member of the GlycoPar-EU
FP7 funded Marie Curie Initial Training Network [GA 608295]. ISGlobal is supported by the CERCA Programme
(Generalitat de Catalunya).

Acknowledgements
The authors thank Hernando A. del Portillo and Alfred Cortés for support and helpful discussions throughout this
project. We thank Alfred Cortés and colleagues for the generous gift of P. falciparum strain 3D7-B subclone E5
used in gametocyte studies. We are also grateful to M. Ramírez, M. Cova, S. Sanz, and CCiTUB (Scientific and
Technological Centers Universitat de Barcelona) for technical support, advice, assistance, and useful
suggestions.

Competing Interests
The Authors declare that there are no competing interests associated with the manuscript.

References
1 WHO. (2016) WHO | World Malaria Report 2015. WHO, World Health Organization
2 Fairhurst, R.M. and Dondorp, A.M. (2016) Artemisinin-Resistant Plasmodium falciparum malaria. Microbiol. Spectr. 4, doi:10.1128/microbiolspec.

EI10-0013-2016
3 The malERA Consultative Group on Basic Science and Enabling Technologies. (2011) A research agenda for malaria eradication: basic science and

enabling technologies. PLoS Med. 8, e1000399
4 Cova, M., Rodrigues, J.A., Smith, T.K. and Izquierdo, L. (2015) Sugar activation and glycosylation in Plasmodium. Malar. J. 14, 427
5 Von Itzstein, M., Plebanski, M., Cooke, B.M. and Coppel, R.L. (2008) Hot, sweet and sticky: the glycobiology of Plasmodium falciparum. Trends

Parasitol. 24, 210–218

© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND). 903

Biochemical Journal (2017) 474 897–905
DOI: 10.1042/BCJ20161030

D
ow

nloaded from
 http://portlandpress.com

/biochem
j/article-pdf/474/6/897/689210/bcj-2016-1030.pdf by guest on 23 April 2024

http://dx.doi.org/doi:10.1128/microbiolspec.EI10-0013-2016
http://dx.doi.org/doi:10.1128/microbiolspec.EI10-0013-2016
http://dx.doi.org/doi:10.1128/microbiolspec.EI10-0013-2016
http://dx.doi.org/doi:10.1128/microbiolspec.EI10-0013-2016
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0


6 Naik, R.S., Branch, O.H., Woods, A.S., Vijaykumar, M., Perkins, D.J., Nahlen, B.L. et al. (2000) Glycosylphosphatidylinositol anchors of Plasmodium
falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. J. Exp. Med. 192,
1563–1576

7 Sanders, P.R., Kats, L.M., Drew, D.R., O’Donnell, R.A., O’Neill, M., Maier, A.G. et al. (2006) A set of glycosylphosphatidyl inositol-anchored membrane
proteins of Plasmodium falciparum is refractory to genetic deletion. Infect. Immun. 74, 4330–4338

8 Schofield, L. and Hackett, F. (1993) Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J. Exp. Med. 177,
145–153

9 Bushkin, G.G., Ratner, D.M., Cui, J., Banerjee, S., Duraisingh, M.T., Jennings, C.V. et al. (2010) Suggestive evidence for Darwinian selection against
asparagine-linked glycans of Plasmodium falciparum and Toxoplasma gondii. Eukaryot. Cell 9, 228–241

10 Swearingen, K.E., Lindner, S.E., Shi, L., Shears, M.J., Harupa, A., Hopp, C.S. et al. (2016) Interrogating the Plasmodium sporozoite surface:
identification of surface-exposed proteins and demonstration of glycosylation on CSP and TRAP by mass spectrometry-based proteomics. PLoS Pathog.
12, e1005606

11 Sanz, S., Bandini, G., Ospina, D., Bernabeu, M., Marino, K., Fernandez-Becerra, C. et al. (2013) Biosynthesis of GDP-fucose and other sugar
nucleotides in the blood stages of Plasmodium falciparum. J. Biol. Chem. 288, 16506–16517

12 Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R. et al. (2009) Essentials of Glycobiology, Cold Spring Harbor Laboratory
Press

13 Takeda, J. and Kinoshita, T. (1995) GPI-anchor biosynthesis. Trends Biochem. Sci. 20, 367–371
14 Ferguson, M.A. (1999) The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research.

J. Cell Sci. 112, 2799–2809
15 Samuelson, J., Banerjee, S., Magnelli, P., Cui, J., Kelleher, D.J., Gilmore, R. et al. (2005) The diversity of dolichol-linked precursors to Asn-linked

glycans likely results from secondary loss of sets of glycosyltransferases. Proc. Natl Acad. Sci. U.S.A. 102, 1548–1553
16 Turnock, D.C. and Ferguson, M.A.J. (2007) Sugar nucleotide pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Eukaryot. Cell 6,

1450–1463
17 Turnock, D.C., Izquierdo, L. and Ferguson, M.A.J. (2007) The de novo synthesis of GDP-fucose is essential for flagellar adhesion and cell growth in

Trypanosoma brucei. J. Biol. Chem. 282, 28853–28863
18 Marino, K., Guther, M.L.S., Wernimont, A.K., Qiu, W., Hui, R. and Ferguson, M.A.J. (2011) Characterization, localization, essentiality, and high-resolution

crystal structure of glucosamine 6-phosphate N-acetyltransferase from Trypanosoma brucei. Eukaryot. Cell 10, 985–997
19 Sanz, S., López-Gutiérrez, B., Bandini, G., Damerow, S., Absalon, S., Dinglasan, R.R. et al. (2016) The disruption of GDP-fucose de novo biosynthesis

suggests the presence of a novel fucose-containing glycoconjugate in Plasmodium asexual blood stages. Sci. Rep. 6, 37230
20 Pabst, M., Grass, J., Fischl, R., Léonard, R., Jin, C., Hinterkörner, G. et al. (2010) Nucleotide and nucleotide sugar analysis by liquid

chromatography-electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon. Anal. Chem. 82, 9782–9788
21 Antignac, J.-P., de Wasch, K., Monteau, F., De Brabander, H., Andre, F. and Le Bizec, B. (2005) The ion suppression phenomenon in liquid

chromatography–mass spectrometry and its consequences in the field of residue analysis. Anal. Chim. Acta 529, 129–136
22 Jessome, L. and Volmer, D.A. (2006) Ion suppression: a major concern in mass spectrometry. LC-GC North Am. 24, 498–510
23 Antonio, C., Larson, T., Gilday, A., Graham, I., Bergström, E. and Thomas-Oates, J. (2007) Quantification of sugars and sugar phosphates in Arabidopsis

thaliana tissues using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A 1172, 170–178
24 West, C., Elfakir, C. and Lafosse, M. (2010) Porous graphitic carbon: a versatile stationary phase for liquid chromatography. J. Chromatogr. A 1217,

3201–3216
25 Joice, R., Nilsson, S.K., Montgomery, J., Dankwa, S., Egan, E., Morahan, B. et al. (2014) Plasmodium falciparum transmission stages accumulate in the

human bone marrow. Sci. Transl. Med. 6, 244re5
26 Alano, P. (2007) Plasmodium falciparum gametocytes: still many secrets of a hidden life. Mol. Microbiol. 66, 291–302
27 Adjalley, S.H., Johnston, G.L., Li, T., Eastman, R.T., Ekland, E.H., Eappen, A.G. et al. (2011) Quantitative assessment of Plasmodium falciparum sexual

development reveals potent transmission-blocking activity by methylene blue. Proc. Natl Acad. Sci. U.S.A. 108, E1214–E1223
28 MacRae, J.I., Dixon, M.W., Dearnley, M.K., Chua, H.H., Chambers, J.M., Kenny, S. et al. (2013) Mitochondrial metabolism of sexual and asexual blood

stages of the malaria parasite Plasmodium falciparum. BMC Biol. 11, 67
29 Rivadeneira, E.M., Wasserman, M. and Espinal, C.T. (1983) Separation and concentration of schizonts of Plasmodium falciparum by Percoll gradients.

J. Protozool. 30, 367–370
30 Lambros, C. and Vanderberg, J.P. (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J. Parasitol. 65, 418–420
31 Kafsack, B.F.C., Rovira-Graells, N., Clark, T.G., Bancells, C., Crowley, V.M., Campino, S.G. et al. (2014) A transcriptional switch underlies commitment to

sexual development in malaria parasites. Nature 507, 248–252
32 Ribaut, C., Berry, A., Chevalley, S., Reybier, K., Morlais, I., Parzy, D. et al. (2008) Concentration and purification by magnetic separation of the

erythrocytic stages of all human Plasmodium species. Malar. J. 7, 45
33 Di Girolamo, F., Raggi, C., Birago, C., Pizzi, E., Lalle, M., Picci, L. et al. (2008) Plasmodium lipid rafts contain proteins implicated in vesicular trafficking

and signalling as well as members of the PIR superfamily, potentially implicated in host immune system interactions. Proteomics 8, 2500–2513
34 Räbinä, J., Mäki, M., Savilahti, E.M., Järvinen, N., Penttilä, L. and Renkonen, R. (2001) Analysis of nucleotide sugars from cell lysates by ion-pair

solid-phase extraction and reversed-phase high-performance liquid chromatography. Glycoconj. J. 18, 799–805
35 Radfar, A., Méndez, D., Moneriz, C., Linares, M., Marín-García, P., Puyet, A. et al. (2009) Synchronous culture of Plasmodium falciparum at high

parasitemia levels. Nat. Protoc. 4, 1828–1844
36 Sinden, R.E. (1983) Sexual development of malarial parasites. Adv. Parasitol. 22, 153–216
37 Martinez, A.P., Margos, G., Barker, G. and Sinden, R.E. (2000) The roles of the glycosylphosphatidylinositol anchor on the production and

immunogenicity of recombinant ookinete surface antigen Pbs21 of Plasmodium berghei when prepared in a baculovirus expression system. Parasite
Immunol. 22, 493–500

38 Hanssen, E., Knoechel, C., Dearnley, M., Dixon, M.W.A.A., Le Gros, M., Larabell, C. et al. (2012) Soft X-ray microscopy analysis of cell volume and
hemoglobin content in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum. J. Struct. Biol. 177, 224–232

904 © 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND).

Biochemical Journal (2017) 474 897–905
DOI: 10.1042/BCJ20161030

D
ow

nloaded from
 http://portlandpress.com

/biochem
j/article-pdf/474/6/897/689210/bcj-2016-1030.pdf by guest on 23 April 2024

https://creativecommons.org/licenses/by-nc-nd/4.0


39 Gilson, P.R., Nebl, T., Vukcevic, D., Moritz, R.L., Sargeant, T., Speed, T.P. et al. (2006) Identification and stoichiometry of
glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol. Cell. Proteomics 5, 1286–1299

40 McConville, M.J. and Ferguson, M.A. (1993) The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and
higher eukaryotes. Biochem. J. 294, 305–324

41 Rovira-Graells, N., Gupta, A.P., Planet, E., Crowley, V.M., Mok, S., Ribas de Pouplana, L. et al. (2012) Transcriptional variation in the malaria parasite
Plasmodium falciparum. Genome Res. 22, 925–938

42 Luo, Y., Koles, K., Vorndam, W., Haltiwanger, R.S. and Panin, V.M. (2006) Protein O-fucosyltransferase 2 adds O-fucose to thrombospondin type 1
repeats. J. Biol. Chem. 281, 9393–9399

43 Rodrigues, J.A., Acosta-Serrano, A., Aebi, M., Ferguson, M.A.J., Routier, F.H., Schiller, I. et al. (2015) Parasite glycobiology: a bittersweet symphony.
PLOS Pathog. 11, e1005169

© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND). 905

Biochemical Journal (2017) 474 897–905
DOI: 10.1042/BCJ20161030

D
ow

nloaded from
 http://portlandpress.com

/biochem
j/article-pdf/474/6/897/689210/bcj-2016-1030.pdf by guest on 23 April 2024

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0

	Sugar nucleotide quantification by liquid chromatography tandem mass spectrometry reveals a distinct profile in Plasmodium falciparum sexual stage parasites
	Abstract
	Introduction
	Experimental
	Chemicals
	P. falciparum culture and synchronization
	Gametocytogenesis
	Metabolite extraction and pre-analytical purification
	Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS)

	Results
	Validation of a PGC chromatography LC-MS/MS method for the quantification of sugar nucleotides in asexual P. falciparum blood stages
	Quantifying sugar nucleotide levels at different stages of P. falciparum asexual intraerythrocytic development
	Sugar nucleotide levels in sexual gametocytes of P. falciparum

	Discussion
	Abbreviations 
	Author contribution
	Funding
	Competing Interests
	References


