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Prokaryotes have adaptive defence mechanisms that protect them from mobile genetic
elements and viral infection. One defence mechanism is called CRISPR–Cas (clustered
regularly interspaced short palindromic repeats and CRISPR-associated proteins). There
are six different types of CRISPR–Cas systems and multiple subtypes that vary in com-
position and mode of action. Type I and III CRISPR–Cas systems utilise multi-protein
complexes, which differ in structure, nucleic acid binding and cleaving preference. The
type I-D system is a chimera of type I and III systems. Recently, there has been a burst of
research on the type I-D CRISPR–Cas system. Here, we review the mechanism, evolution
and biotechnological applications of the type I-D CRISPR–Cas system.

Introduction
Prokaryotes are under constant predation by their viruses and mobile genetic elements (MGEs), such
as plasmids [1]. To counteract infection, prokaryotes have evolved an arsenal of diverse defence
mechanisms [2]. CRISPR–Cas (clustered regularly interspaced short palindromic repeats and
CRISPR-associated proteins) systems are heritable, adaptive immune systems that are present in ∼80%
and ∼40% of all sequenced archaeal and bacterial genomes, respectively [2–5]. The loci of CRISPR–
Cas systems consist of CRISPR arrays, which store foreign nucleic acid sequences from previous infec-
tions, and cas genes that encode the structural and catalytic proteins of the system. When re-exposed
to an MGE, the invading nucleic acids are sequence-specifically targeted and degraded by CRISPR–
Cas complexes to eliminate the threat.
There are three stages of CRISPR–Cas immunity: adaptation, expression and processing, and inter-

ference (Figure 1) [6]. The core adaptation machinery, Cas1 and Cas2, are conserved throughout
almost all CRISPR–Cas systems [7]. During adaptation, Cas1 and Cas2 associate to form an adapta-
tion complex that captures a foreign nucleic acid fragment, a prespacer, and incorporates it into the
CRISPR array [8–10]. During expression and processing, the cas genes are transcribed and translated,
while the CRISPR array is transcribed into one long RNA known as precursor-CRISPR RNA
(pre-crRNA). The pre-crRNA is processed by an endoribonuclease, which generates a shorter crRNA
[11–13]. During interference, the Cas protein(s) and the crRNA form an interference complex [14].
This interference complex uses the crRNA as a guide to bind the complementary invading nucleic
acid target known as a ‘protospacer’. Once the complex has bound the target, Cas protein(s) degrade
the invading nucleic acid(s), protecting the host cell [15].
CRISPR–Cas systems have a wide diversity of structural and mechanistic attributes and are classified

into two classes, six types, and over 30 subtypes [16]. Class 1 CRISPR–Cas systems are characterised
by their multi-protein interference complexes and account for ∼90% of all sequenced and classified
CRISPR–Cas systems, while class 2 systems are defined by having a single interference protein [4].
Class 1 systems can be further divided into types I, III, and IV based on their ‘signature’ genes.
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This review focuses on the type I-D CRISPR–Cas system, which is a hybrid of type I and III systems
(Figure 2A) [7]. Early bioinformatic evidence indicated the type I-D system was likely an evolutionary ancestor
of class 1 systems, linking a type III-like ancestor to the typical type I system [7]. Recently, the mechanism of
type I-D immunity has begun to be discovered, revealing structural and mechanistic features of both type I and
type III systems [7,17–19]. After the burst of research into class 2 complexes as genetic editing tools, the spot-
light has started to fall on class 1 systems to expand the CRISPR toolbox [20]. Indeed, type I-D Cascade shows
potential for novel biotechnological applications [21–23].

Class 1 systems
The class 1 type I and III systems have a common evolutionary lineage and share a similar interference
complex architecture [4,24]. The interference complexes typically have a major filament comprised of multiple
Cas7 (Csm3/Cmr4 in type III) subunits that bind along the length of the crRNA in a helical fashion
(Figure 2B). The 30 end of the crRNA can be capped with Cas6 in type I systems or with a non-catalytic Cas7
(Csm5/Cmr6) in type III systems. The 50 end of the crRNA is capped with Cas5 and the large subunit, which
is Cas8 or Cas10 in type I and III systems, respectively [25–29]. Typically, the C-terminus of the large subunit
and multiple copies of Cas11, also known as the small subunit, runs along the belly of the complex as the
minor filament [25,30].

Type I system classification and mechanism
Type I systems, subtypes I-A through I-G, are characterised by the presence of the signature gene cas3
(Figure 2A) [7]. Type I systems use an interference complex, termed Cascade (CRISPR-associated complex for
antiviral defence), that recognises a protospacer adjacent motif (PAM) and targets dsDNA [31–33]. The PAM
is a two to five base pair motif present on the invading dsDNA, but not in the CRISPR array, that allows
Cascade to discriminate between ‘self’ and ‘non-self’ sequences [34,35]. The PAM is identified by the PAM rec-
ognition pocket in the large subunit, Cas8, which makes a combination of sequence- and structure-based

Figure 1. CRISPR–Cas stages of defence.

Adaptation occurs when the adaptation complex (blue) captures DNA, which it then incorporates into the CRISPR array as a

spacer (grey line). The expression stage occurs when the cas genes (yellow) are expressed, and the CRISPR array is

transcribed into pre-crRNA, which is subsequently processed by a Cas protein into crRNA. Interference occurs when the Cas

proteins and crRNA assemble into the interference complex and then binds to complementary DNA and degrades it. Stages of

defence based on type I CRISPR–Cas systems.
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interactions. Following PAM detection, the crRNA binds to the complementary target sequence and forms an
R-loop in the dsDNA target [36,37]. For Cascade to fully bind the target, the first 8–10 nt (except position 6),
which define the seed sequence of the crRNA, must have complete complementarity to the protospacer [36,38].
The R-loop displaces the non-target strand of foreign dsDNA and permits the crRNA to fully hybridise with
the target strand [39,40]. The binding of the protospacer to the entire length of the crRNA induces conform-
ational changes in the complex that lead to the recruitment of Cas3 [39,41]. Cas3 typically contains a metal-
dependent histidine-aspartate (HD) nuclease domain (Cas300) and a helicase domain (Cas30) [42]. Cas3 nicks
the non-target strand and generates a free end of ssDNA, which is then threaded through the helicase domain
and is processively unwound via 30–50 helicase activity and degraded [37,39,42,43]. Targeting and degradation
of invading DNA protects the host cell from viruses that may result in cell lysis and plasmids that contain
potentially detrimental genes [44].

Type III system classification and mechanism
Type III systems share a common interference complex architecture to type I systems; however, the targeted
nucleic acids and mechanism of interference differ [14,45–48]. All type III CRISPR–Cas systems have multi-
protein interference complexes that are evolutionarily related to type I Cascade and feature Cas protein homo-
logues (Csm in types III-A/D/E/F and Cmr in types III-B/C), except the recently discovered type III-E system
(also known as gRAMP and Cas7–11) that involves a single protein with multiple domains [16]. Type III
CRISPR–Cas systems are defined by the signature gene cas10 (Figure 2A). The Cas10 large subunit features an
N-terminal HD nuclease domain and two polymerase-like cyclic (palm) domains, although only one site
appears active [4]. Type III interference complexes bind to target RNAs that are complementary to their
crRNA and have a unique mechanism to distinguish self from non-self targets. These type III interference com-
plexes detect non-self-transcripts by recognising mismatches between the repeat-derived 50 handle of the
crRNA and the 30 protospacer flanking sequence (PFS) of the target RNA. If complementarity between these
sequences is detected — such as when antisense transcripts derived from CRISPR arrays are produced —
Cas10 HD nuclease and cyclase activity is inactivated to prevent autoimmunity [47,49,50]. The detection of

Figure 2. Classification Type I and type III CRISPR–Cas systems.

(A) Comparison of type I and III CRISPR–Cas systems, with their ‘signature’ genes in bold. Genes are organised by role;

adaptation (yellow), processing (olive green), interference (purple), and ancillary (grey). Genes absent from some subtypes are

indicated with white diagonal lines. Diagram adapted from Makarova et al. [16]. (B) Schematic of type I and type III interference

complexes with proteins annotated.
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non-complementarity between the crRNA 50 handle and the 30 PFS of the target RNA license a conformational
change and activation of Cas10 [49]. The Cas10 HD domain non-specifically degrades ssDNA, and the active
palm domain catalyses the conversion of ATP to a range of cyclic oligonucleotides (cOAs) [47,48,50,51]. Cyclic
oligoadenylates act as secondary messengers that allosterically activate ancillary nucleases that non-specifically
degrade foreign and host-derived DNA/RNA and can induce host cell dormancy or death [47,48,52–55]. In
addition, catalytically active RNA Recognition Motif (RRM) domains within the Cas7 backbone cleave the
mRNA target at six nucleotide intervals [28,56,57]. The cleavage and release of the RNA fragments return the
Cas10 HD and cyclase domains to their inactive state [58]. Targeting RNA by type III systems allows specific
targeting of transcriptionally active plasmids and viral genomes [46,59].

The type I-D CRISPR-Cas system
Classification of the type I-D system
The type I-D CRISPR–Cas system is abundant in archaea and cyanobacteria [4,24,60,61]. Type I-D is a hybrid
system that contains signature genes of both type I and type III systems, cas3 and cas10, respectively (Figure 3)
[7]. However, cas3 is split into its helicase (cas30) and nuclease (cas300) domains, with the nuclease domain
fused to cas10 containing an inactivated palm domain, forming the large subunit cas10d (also known as csc3)
[24]. Although the domain organisation of Cas10d resembles Cas10 with an HD nuclease domain at the
N-terminus, this domain in Cas10d lacks the circular permutation of the histidine residues that is the hallmark
of the type III Cas10 HD domain, and instead is reminiscent of the HD domain from other type I Cas3 pro-
teins [4,17,24]. While the type I-D locus can vary between strains, it typically also contains type I-D orthologs
of cas1, cas2, cas4, cas5 (cas5d; csc1), cas6, (cas6d) cas7 (cas7d; csc2), and frequently a transcriptional regulator
and CRISPR array(s) [7,19]. Additionally, within cas10d is an internal sequence (designated cas11d; Figure 3)
that encodes the small subunit Cas11d [7,19]. Current studies have primarily used type I-D systems derived
from several archaea and bacteria, notably the cyanobacterial strain Synechocystis sp. PCC6803 (Hereafter
Synechocystis) (Figure 3). Some investigated systems appear to lack genes, such as cas2 in Sulfolobus islandicus,
and cas4 and cas6 in Thermofilum pendens (Figure 3). The lack of some genes may indicate these systems are
inactive or may expropriate proteins or crRNA from other CRISPR–Cas systems in the host [4,60]. One
example of cross-talk between CRISPR–Cas systems is the co-option of type I-F crRNAs by the type III-B
system in Marinomonas mediterranea [62].

Type I-D naïve adaptation
There are two types of adaptation in CRISPR–Cas systems, naïve and priming [8,63–65]. Naïve adaptation
occurs when the adaptation complex establishes immunity against nucleic acids which have not been previously
encountered [63]. Primed adaptation can occur when the interference complex associates with escape mutants
or even during the normal processes of interference [65–67]. During primed adaptation, the interference
complex interacts with the adaptation complex and allows the rapid acquisition of new spacers to bolster or
restore immunity. Since there is currently no data on priming by type I-D systems, we will limit our discussion
to naïve adaptation.
The mechanism of type I-D adaptation has been determined predominantly through experiments using the

Synechocystis type I-D adaptation genes in the heterologous host Escherichia coli [68–70]. The nucleic acid
source of the type I-D adaptation complex are fragments of dsDNA produced by DNA repair enzymes, and
there is no orientation bias to a particular strand [68,71]. Adaptation by type I-D involves three proteins; Cas1,
Cas2, and Cas4 (Figure 4A). Cas1 has nuclease and integrase domains [72], while Cas2 generally plays a struc-
tural role [72], and Cas4 has a PD-(D/E)XK RecB endonuclease domain [73,74]. During type I-D adaptation,
two asymmetrical complexes exist within the cell to process the prespacer, Cas12:Cas41 and Cas12:Cas22 [70].
These asymmetrical complexes differ from other type I systems which typically form a single heterohexameric
Cas14:Cas22 complex and can contain one to two Cas4 subunits [9,75]. The type I-D Cas12:Cas41 complex
identifies and binds the PAM-containing 30 overhang regions of DNA fragments, while the Cas12:Cas22
complex binds the opposite non-PAM containing 30 overhang end [70,76]. While Cas1 and Cas2 are sufficient
to capture and integrate spacers, Cas4 allows for the enrichment of spacers containing PAMs that support
interference [68]. When the complexes have captured the dsDNA, Cas4 endonuclease activity is required to
remove the PAM, leaving an overhang that is typically 6 nt in length [70]. Single nucleotide slipping can occur
during PAM cleavage, which may play a role in primed adaptation [70,77]. It is unknown if the PAM
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recognition domain is present in Cas1 or Cas4, but the PAM sensing C-terminal tail in type I-E Cas1 is not
conserved in type I-D Cas1 [70,78]. The non-PAM containing 30 overhang is processed by an unknown
endogenous nuclease [68,70].
The leader region of the CRISPR array is an A-T-rich region important for adaptation and contains the pro-

moter for array expression [79]. The type I-D leader sequence in cyanobacteria is 202–220 bp, which is longer
than other systems, such as type I-E, which is typically less than 100 bp (Figure 4B) [69]. Within the type I-D
leader sequence, three conserved motifs enhance spacer uptake: motifs I, II, and III [69]. While the exact func-
tion of each motif is yet to be identified, Kieper et al. [69] noted that motif III resembled the integrase anchor-
ing site in type I-E system, a sequence that interacts with the adaptation machinery upon DNA bending by
Integration Host Factor (IHF). However, as there is no homologue of IHF in Synechocystis, the authors specu-
lated that another DNA-binding host factor may bind at motif II and facilitate DNA bending to position motif
III in proximity of the adaptation complex [69,80]. Kieper et al. [70] proposed a model (Figure 4A) in which
the type I-D adaptation complex sequence-specifically identifies the leader region and positions the Cas12:
Cas22 complex to catalyse half-site integration of the non-PAM end into the leader proximal end of the repeat.
The Cas12:Cas41 complex is predicted to pause to allow the correct orientation of the spacer within the
CRISPR array. The Cas12:Cas41 complex next catalyses the integration of the end that previously contained the
PAM into the downstream repeat-spacer junction. Endogenous DNA repair systems then repair the repeat
regions, resulting in the new spacer being fully integrated between two repeats into the leader-proximal region
of the CRISPR array [70,81]. Spacers integrated into the type I-D system CRISPR array were most frequently
35 nt in length; however, the size varied by 5 to 6 nt, which is common in other systems containing Cas4
[68,82]. When Cas4 was removed from the system, the spacer size increased by 1 nt to 36 nt, indicating that
Cas4 plays a role in correct spacer processing [68].

Type I-D expression and processing
Before type I-D Cascade can form, cas genes and crRNA are expressed. The type I-D interference genes cas30,
cas5d, cas6d, cas7d, and cas10d are transcribed and then translated (Figure 5) [83]. The small subunit of the
type I-D system, Cas11d, is expressed from an in-frame alternative translational start site within the 30 end of
cas10d [19]. This phenomenon is conserved across type I-D, I-B, and I-C systems [17,19,23].
The expression and processing of type I-D crRNAs have primarily been studied in Synechocystis [19,83]. Like

other type I systems, the CRISPR array is expressed as a pre-crRNA, and the palindromic repeats present in

Figure 3. Schematic of representative type I-D cas genes and CRISPR arrays.

CRISPR repeats are indicated by green diamonds, and spacers are indicated by green boxes. CRISPR arrays represent the position in locus, and

the length is not correlated to the actual size of the CRISPR array.
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each repeat form stem–loop secondary structures (Figure 5) [83–85]. Cas6d binds the pre-crRNA in a
sequence- and secondary structure-dependent manner and cleaves the repeat sequence after the stem–loop to
create an ∼72 nt crRNA with an 8 nt 50 and a 29 nt 30 repeat-derived handles [83,86]. This 72 nt crRNA was
the predominant crRNA species present within type I-D Cascade when recombinantly expressed and purified
from E. coli [19]. However, in the natural host Synechocystis, there appears further maturation to 45 and 39 nt
[83]. Similar maturation of the S. islandicus type I-D crRNA was observed when extracted from type I-D
Cascade expressed in S. islandicus, revealing cRNAs of 49 ± 1 nt [18]. In Synechocystis, the 6 nt difference in

Figure 4. Predicted model of naïve type I-D adaptation.

(A) The adaptation Cas proteins form asymmetrical complexes Cas12:Cas22 and Cas12:Cas41, which capture a prespacer. The

PAM end is removed by Cas4, and opposite 30 overhang is trimmed by a host nuclease (1). Half-site integration occurs via

nucleophilic attack of the prespacer into the leader-repeat junction (2). Full-site integration occurs via nucleophilic attack of the

second strand of the prespacer into the repeat-spacer junction (3). DNA repair completes integration to form a

repeat-spacer-repeat at the leader proximal end of the array (4). Adapted from the model proposed by Kieper et al. [70]. (B)

Schematic of the Synechocystis leader sequence and associated motifs.
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mature crRNA lengths indicates step-wise processing by a host nuclease(s), similar to type III systems and sug-
gests complexes lacking Cas6 and a Cas7 subunit(s) [83,87]. The type I-D crRNA may have undergone matur-
ation with unidentified endoribonucleases present within its native host, Synechocystis, but not in an E. coli
heterologous host.
Type I-D systems frequently co-occur with a DNA binding regulator that likely responds to signal(s) to

elicit changes in CRISPR–Cas activity (Figure 3) [4,60]. In Synechocystis, this regulator is called Sll7009 and

Figure 5. Predicted model of type I-D expression and processing.

The cas (purple and brown) and regulator (pink) genes are transcribed and translated while the CRISPR array is transcribed, forming the pre-crRNA.

Sll7009 may regulate type I-D interference via any of the promoters. Cas6 associates with the stem–loops of the pre-crRNA and cleaves at the base

of the stem, forming type I-like crRNA (green background), as observed by McBride et al. [19]. Shorter type I-D crRNA also occurs (Scholz et al.

[83]), resembling type III-like mature crRNA (yellow background).
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contains a WYL (tryptophan, tyrosine, leucine) motif that is predicted to bind small negatively charged
ligands and a winged helix-turn-helix domain that binds DNA [88–90]. Regulators are associated with other
type I-D systems, including the WYL-containing protein from M. aeruginosa and Csa3 from S. islandicus,
which contains a CRISPR-associated Rossman fold (CARF) domain. The Synechocystis type I-D system
includes three promoters, one that controls the cas genes, a second that controls the CRISPR array, and a
third that controls the Sll7009 regulator (Figure 5) [91]. Hein and colleagues identified Sll7009 as a negative
regulator of the type I-D system by knocking out sll7009 and observing an increase in mature crRNA [90].
Sll7009 likely regulates the type I-D system by coupling cell signals with the repression of at least one of the
type I-D promoters.

Type I-D interference
The type I-D system has been demonstrated to be an active and functional system within Synechocystis [68].
The Synechocystis type I-D system uses a 50-GTN-30 interference PAM in vivo and in vitro, where ‘N’ stands for
any nucleotide [18,19,68]. The M. aeruginosa interference PAM differs slightly, with a 50-GTH-30 PAM, where
‘H’ can be A, C, or T [21]. Insight into the interference mechanism has been gained by high-resolution struc-
tures of the Synechocystis type I-D Cascade and the Cas10d subunit bound to an anti-CRISPR protein from S.
islandicus [17,92]. Type I-D Cascade has a helical major filament composed of multiple Cas7d subunits
(Figure 6A). Cas6d likely binds the stem region at the 30 end of the crRNA; however, despite Cas6d being
co-purified with the complex, it was not resolved in the structure [17]. The 50 end of the crRNA is capped with
Cas5d and Cas10d. The C-terminus of Cas10d and the alternatively translated Cas11d subunits run along the
belly of the complex, forming the minor filament [17,19]. The overall architecture of type I-D Cascade better
resembles type III complexes rather than type I Cascades, particularly as the angular trajectory of the crRNA is
consistent with type III crRNA [17,19].
Type I-D Cascade is capable of binding dsDNA [19], ssDNA [17,18], and ssRNA [17] with high affinity.

During dsDNA interference, Cascade randomly samples dsDNA to identify a PAM (Figure 6B–D)
[18,32,68,93]. The most well-studied type I system is type I-E, which uses three elements within the PAM
binding pocket in the large subunit to detect the PAM: a glycine-rich loop, a lysine finger, and a glutamine
wedge [94]. The glycine-rich loop is inserted into the minor groove of the DNA and results in DNA bending;
both the glycine-rich loop and the lysine finger directly interact with the nucleotides to determine their specifi-
city. The glutamine wedge is inserted after the PAM and causes bifurcation of the dsDNA [94,95]. PAM detec-
tion by type I-D Cascade was elucidated with the structure of the Synechocystis type I-D Cascade bound to a
50-GTT-30 PAM-protospacer [17]. The PAM is identified by the PAM recognition domain within Cas10d. A
glycine-rich loop from the PAM recognition domain is inserted into the minor groove of the dsDNA, where a
glycine (G433) interacts with the guanine nucleotide on the non-target strand in the −3 PAM position
(GNTS-3) (Figure 6B,C). The lysine finger (K326) in the PAM recognition domain interacts with nucleotides
CTS-3, TNTS-2, and GNTS-3. These specific interactions of Cas10d with the −2 and −3 positions of the PAM are
consistent with the third nucleotide being flexible as ‘N’ in GTN. The dsDNA is split directly after the PAM by
a cleft composed of the bottom of Cas7d and Cas10d. Type I-D Cascade does not possess a conventional glu-
tamine wedge from the large subunit; however, a Cas5 glutamine residue (Q110) inserts between the dsDNA
where the strands separate, which may constitute the type I-D glutamine wedge (Figure 6B).
The bifurcation of the dsDNA allows the target strand to hybridise with the complementary crRNA in

Cascade and displaces the non-target strand to form an asymmetrical R-loop [17]. When the crRNA binds the
protospacer, every sixth base, starting at position one, is flipped out by the thumb domain of the Cas7 subunits,
allowing for mismatches at these sites [17,22,96]. The recognition of the PAM and the protospacer causes a
conformational shift of the Cas300 and Cas11d domains of Cas10d and the Cas11d subunits [17]. This conform-
ational change may support the stabilisation of the R-loop through interactions of the non-target strand with
positively charged residues in the C-terminus of Cas10d and Cas11d subunits [17,19] and direct the non-target
strand towards the Cas10d active site. The Cas300 domain of Cas10d has a type I-like HD active site responsible
for target cleavage [17,18,22,97]. Cas30 has been shown to interact with Cas10d [22], and this HD domain is
likely where the Cas30 helicase docks [17]. Upon the recruitment of Cas30, Cas300 nicks the non-target strand
and, in an ATP-dependent manner, nicks further sequences upstream of the protospacer on the non-target
strand and both sides of the protospacer on the target strand [18]. The observed bidirectional cleavage
upstream of the protospacer is consistent with the helicase-nuclease activity of Cas30–Cas10d on each strand
after the initial cleavage at the protospacer region. While most type I systems display unidirectional cleavage
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[23,98,99], the type I-A Cascade from Pyrococcus furiosus was also recently shown to cleave in a bidirectional
manner [100]. Interestingly, types I-A and I-D both have split cas3 helicase and nuclease genes [24], suggesting
a separately encoded helicase might be important for bidirectional cleavage. A similar model of two helicases

Figure 6. Model of type I-D interference for dsDNA and single-stranded nucleic acids (ssNA).

(A) Structure of Synechocystis type I-D Cascade (Protein Data Bank ID, 7SBA). Subunits displayed: Cas10d (green); Cas5d (pink); Cas11d (orange);

Cas7d (grey and blue); crRNA (purple); target strand (TS; red); non-target strand (NTS; cyan). Structure (B) and schematic (C) of the PAM binding

pocket, including the glycine loop and lysine finger from Cas10d (top) and the glutamine wedge from Cas5d positioned where dsDNA bifurcation

occurs (bottom). R-loop formation is likely stabilised by a positive patch within Cas10d and Cas11d. (C) adapted from Hayes et al. [94]. (D) The

predicted mechanism of type I-D interference of dsDNA. Type I-D Cascade samples dsDNA looking for a GTN PAM (1), the PAM is identified with

the PAM binding pocket in Cas10d (2), and an R-loop is formed (3), Cas30 is recruited to Cascade (4), bidirectional degradation of both strands

occurs (5). (E) The predicted mechanism of type I-D interference of single-stranded nucleic acids (ssNA). Type I-D Cascade binds the ssNA (1),

followed by the cleavage of the ssNA by Cas7d (2).
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operating on different DNA strands was recently proposed for type IV-A interference, where helicase CasDinG
facilitated bidirectional DNA depletion [101]. The precise molecular details of how bidirectional cleavage
occurs are still emerging and further characterisation is required.
Type I-D Cascade can also bind single-stranded DNA and RNA in vitro [17,18]. Type I-D Cascade bound

ssDNA and RNA with a 50-AAC-30 PFS, complementary to a 50-GTT-30 PAM, and a scrambled PFS
(50-ACG-30) [17], indicating single-stranded binding by type I-D Cascade appears to have a broader range of
PFS requirements and different from those required for dsDNA binding [17,19,68]. Furthermore, when type
I-D Cascade is bound to ssRNA, the PAM recognition domain becomes flexible, in contrast with the rigid
form bound to dsDNA [17]. When type III systems bind target RNA, the palm domain of Cas10 converts ATP
to cOA signalling molecules, and the Cas7 subunits cleave the target [28,47,48]. Type I-D is not expected to
produce cOA molecules as the palm domain is predicted to be inactive in Cas10d [7]. Unexpectedly, the
Cas10d subunit from Microcystis aeruginosa PCC9808 was recently shown to have ATPase activity; however,
the role of this function is unknown [22]. The Cas7 subunits in Cascade have both sequence and structural
homology to their active type III counterpart [24,96]. When type I-D Cascade is bound to ssDNA, the active
Cas7 subunit cleaves the ssDNA at 6 nt intervals (Figure 6E) [18], similar to the cleavage of RNA in type III
systems [28,56]. However, the exact mechanism of ssDNA cleavage and which residues are involved is
unknown [18].
Type I-D Cascade can bind dsDNA [18,19], ssDNA [17,18], and ssRNA [17] in a sequence-specific manner,

which may indicate that the type I-D system is a broad defence mechanism. However, in vivo interference has only
been tested and demonstrated against dsDNA targets [21–23,68]. Interestingly, type I-D Cascade appears to have a
binding preference for single-stranded nucleic acids over double-stranded ones, based on the binding affinity in
vitro [17,19]. This preference may reflect the type of bacteriophage (phage) or stage of phage replication that type
I-D Cascade targets. For example, if type I-D Cascade does target ssRNA in vivo, it may target single-stranded
RNA phages or phage mRNAs produced during transcription. Alternatively, if type I-D does target ssDNA in vivo,
it may be an ssDNA phage or ssDNA exposed during replication or transcription of the phage genome.

Viral evasion mechanisms of the type I-D system
Viruses have evolved mechanisms to counteract prokaryotic immune mechanisms, allowing for phage propagation
[2,5]. To evade CRISPR–Cas immunity, phages can acquire mutations that escape detection, use anti-CRISPR
proteins or protect their DNA within a nucleus-like structure [102–104]. Anti-CRISPR proteins inactivate
CRISPR–Cas immunity via diverse mechanisms [44]. The only known anti-CRISPR for the type I-D system is
AcrID1 (Anti-CRISPR against type I-D) from the virus SIRV3 that infects S. islandicus [92,97]. AcrID1 is a
13 kDa protein that forms a homodimer with a net negative charge [97]. This dimer interacts directly with
Cas10d, contacting all domains within Cas10d [92,97]. Addition of AcrID1 inhibited type I-D Cascade from
degrading dsDNA [97]. Manav and colleagues suggested that two AcrID1 dimers sequester two Cas10d subunits
forming an AcrID14:Cas10d2 complex, which would prevent Cas10d from complexing with the other Cas pro-
teins to form a functional Cascade. Another potential inhibition method by AcrID1 was proposed by Schwartz
and colleagues, who modelled AcrID1 bound to the positively charged belly of Cas10d in Cascade [17]. In this
model, AcrID1 was hypothesised to obstruct the path of the non-target strand toward the Cas10d HD domain;
therefore, preventing R-loop formation, subsequent Cas30 recruitment and target degradation.

Type I-D system as an evolutionary intermediate
Type I-D CRISPR–Cas systems are frequently found in archaea and cyanobacteria [24,60,105]. Phylogenetic
analysis of the Cas10d subunit indicated four lineages represented by two cyanobacterial groups, one with pre-
dominantly other bacteria, and one with mostly archaea [7,19]. Across all groups, the internal expression of
Cas11d appeared widely conserved. The features of type I-D systems that are reminiscent of type I and III
systems have led to it being a predicted evolutionary intermediate [7,17–19]. Combined with a CRISPR–Cas
origin model proposed by Koonin and Makarova [106], these observations allow for the proposal of a model
for the evolution of type I-D systems (Figure 7).
The type I-D system was likely formed from a type III-like ancestor through the inactivation of the cyclase

palm domain within cas10, the loss of associated ancillary nucleases and a cas7 gene (Figure 7) [7,24]. The
ancestral system then acquired the helicase, cas30. The circular permutation of histidines within the cas10 HD
domain was lost, forming a type I-like HD domain, cas300 [106]. The type I-D Cas7d subunit has nuclease
activity, comparable to the type III Cas7 but in contrast with other type I Cas7 subunits [7,16,18,96]. From the
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type III-like ancestor to type I-D, the cas11d gene appears to fuse onto the end of cas10, retaining its transla-
tional start site [19]. Comparison of type I-D systems from different genomes revealed that the genes from the
effector module were shuffled and the adaptation module genes, and/or cas6, remained conserved [106,107].
We compared diverse type I-D systems in genomes from cyanobacteria, other bacteria and archaea phyla
groups [19] and found the gene order of the effector module differed between these groups, with notable differ-
ences with the associated regulator and the positions of cas30 and cas6 (Supplementary Figure S1).
A model for the evolution of type I systems from type I-D begins with the HD domain, cas300, being trans-

ferred onto the helicase cas30, resulting in the evolution of a smaller, enzymatically inactive large subunit (cas8)
[106]. The alternative translational start site for cas11 was retained in some systems and may have been dupli-
cated to become a separate gene in others. However, the evolutionary lineage of Cas11 in type I systems is
unknown, and further analysis is required [19]. The Cas7d nuclease activity was lost, which resulted in inactive
Cas7 subunits within other type I systems [17,106]. Further sequence and structural analysis of type I and III
systems may provide further insight into the evolutionary steps that formed class 1 systems.

Biotechnological applications of type I-D systems
Over the past decade, many CRISPR–Cas systems have been co-opted as sequence-specific genome engineering
technologies, which have sparked significant advances in fundamental science, precision medicine, and biotech-
nology [20]. Initial CRISPR–Cas technologies were developed using class 2 CRISPR–Cas systems, such as Cas9
and Cas12, which have single multi-domain effector proteins that can be programmed to generate double-

Figure 7. Predicted model of the type I-D system as an evolutionary intermediate between type III and type I systems.

Type I-D likely evolved from a type III-like ancestor system through the acquisition of a helicase domain, the loss of the circular

permutation in the cas10d HD, cas11 becoming alternatively expressed from the large subunit, and the loss of one cas7 and

the auxiliary genes. Type I systems may have evolved from type I-D via the transfer of the HD domain, cas300, onto the helicase

domain, cas30, to form the typical cas3 nuclease-helicase. In some type I systems, duplication of cas11 occurs, forming a

separate gene. A black line indicates key domains, and inactive domains are indicated by a cross.
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stranded breaks within/adjacent to the target site [108,109]. The class 2 systems are easily engineered, smaller
than class 1 systems, and amenable for use across heterologous host species [109–112]. In contrast, the more
abundant type I CRISPR–Cas systems are underutilised as biotechnological tools yet possess unique attributes
that are attractive for exploitation [113]. Cas3-mediated processive degradation introduces long-range deletions
into the target genome – a distinct function that has been harnessed to develop a new suite of CRISPR–Cas
tools [113]. For example, the type I-E system was used to make large deletions at endogenous targeted loci in
human cells [98]. Furthermore, given the natural abundance of type I systems in clinically and industrially rele-
vant bacteria, these endogenous systems can be harnessed for applications such as precision antimicrobials and
strain engineering [99,114–117]. Another advantage of harnessing type I systems is their diverse PAM require-
ments that differ from those required by Cas9 and Cas12-based tools, which expands the range of available
target sites [32]. The newly characterised type I-D system is among the most recent additions to the type I
CRISPR–Cas toolbox and, thus far, has been developed as a gene editing platform [21]. As a hybrid between a
type I and III system, the type I-D system has distinct structural and functional attributes that display potential
for further exploitation in developing programmable molecular tools [17–19].
The type I-D system is among several type I CRISPR–Cas effectors that have been converted into sequence-

specific genome editing technologies [21–23,98,100,118–120]. The exploitation of type I CRISPR–Cas systems
to generate deletions was originally performed by Vercoe et al., who used an endogenous type I-F system to
isolate mutants with 30–100 kb deletions in the core and accessory genome of Pectobacterium atrosepticum [99].
In addition, several type I-E systems have been shown to induce similar long-range chromosomal (30–100 kb)
deletions in human cells [98,99,118,119]. In all type I-E editors studied, the Cas3-generated deletions were
limited to regions upstream of the PAM and target site. Subsequent studies of other type I editors showed the
type I-B and I-C systems also generated long-range unidirectional deletions upstream of the PAM when applied
in human cells [23].
Recently, the type I-D system from M. aeruginosa was adapted for gene editing of human and plant

genomes [21,22]. The type I-D system generated a spectrum of bidirectional long-range chromosomal deletions
from 2.5 to 19 kb with ≤57% editing efficiency in both eukaryotic cell types — a pattern consistent with type
I-D in vitro cleavage pattern [18]. The type I-D complex also introduced double-stranded breaks and small
deletions (1–12 bp) within the target site at up to 19% editing efficiency [22]. Interestingly, the type I-A system
also produced bidirectional deletions in human cells that spanned up to 2.2 kb [100]. Notably, unidirectional
Cas3-induced deletions in other systems (types I-B, -C and -E) appear longer (≤100 kb) than their bidirectional
counterparts (≤19 kb) [21–23,98,100,118,119]. The disparity in length between the two types of deletion may
be due to the unidirectional deletions preserving the PAM and protospacer and allowing multiple rounds of
editing [118]. In contrast, the bidirectional deletions induced by types I-A and I-D destroyed the PAM and
target site, preventing multiple rounds of editing [21,22,100]. Further characterisation of Cas3-driven interfer-
ence mechanisms will provide insight into how CRISPR–Cas type I systems can be further exploited for gene
editing technologies.
As previously discussed, diverse type I CRISPR–Cas complexes require the independent translation of the

small subunit Cas11 from an alternative start site located within the large subunit, including Cas11d from
within cas10d of the type I-D system [19]. The internal translation of Cas11 is a critical consideration when
implementing these specific type I systems for biotechnological applications in eukaryotes due to translational
machinery differing from their natural prokaryotic hosts. As predicted by McBride et al. [19] the reconstitution
of specific type I-B, I-C, and I-D systems in eukaryotic cells may require cas11 encoded from a separate gene.
Tan and colleagues recently confirmed these predictions with gene editing studies using examples of type I-B,
I-C, and I-D systems, including the Synechocystis type I-D system. In all cases, gene editing improved when
Cas11 was separately expressed, including in Synechocystis type I-D, which achieved 5% editing efficiency with
Cas11 but had 0% efficiency without [23]. Combined with the role of Cas11 in dsDNA binding, the decreased
editing efficiency is predicted to be caused by a dramatic decrease in dsDNA binding capability [19,23].
Interestingly, Osakabe and colleagues reported that the type I-D system from M. aeruginosa could introduce
gene edits in human cells without the need for separately encoded Cas11d. However, it was unclear from these
studies whether Cas11 was expressed at sufficient levels to maximise editing efficiency [21].
Until recently, type I-D systems were largely uncharacterised; therefore, the full spectrum of biotechnological

applications for these systems is still emerging. Like other type I systems, the type I-D system could be utilised
for endogenous chromosomal targeting applications such as selective killing and strain engineering [99,120–
122]. The type I-D complex could also be engineered for programmable gene regulation, as has previously been
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achieved with catalytically inactivated type I-E and I-F systems [20,123–126]. Recent studies of type I-D
systems from S. islandicus and Synechocystis have shown that the hybrid features of type I-D complexes allow
the binding of dsDNA, ssDNA and ssRNA [17–19]. Further studies into how these nucleic-acid targeting activ-
ities are co-ordinated during type I-D interference may reveal a suite of complementary biotechnological appli-
cations that will further expand the CRISPR–Cas toolkit.

Concluding remarks
The type I-D CRISPR–Cas system displays genetic, structural, and mechanistic aspects of both type I and type
III CRISPR–Cas systems and are often referred to as chimeric [7,17–19]. The type I-D system is likely an evolu-
tionary intermediate of class 1 CRISPR–Cas systems, where it evolved from a type III-like ancestor and later
evolved into the ‘typical’ type I system [7,106]. The chimeric nature of the type I-D system led to research into
its mechanisms of adaptation, expression and processing, and interference, and has further confirmed that the
type I-D system displays features of both type I and III systems [7,17–19,68–70,83]. For example, the structure
of the type I-D Cascade interference complex better resembles a type III complex, and it binds and cleaves sub-
strates in a type I- and type III-like manner [7,17–19]. The unusual features of the type I-D CRISPR–Cas
system also lends itself to exploitation as novel biotechnological tools, such as for gene editing [21–
23,98,100,118–120]. Despite these recent advances, there are still many key questions (see Key considerations
box) into the mechanism of type I-D systems. As new details emerge into how type I-D functions, new oppor-
tunities for biotechnological exploitation may arise.

KEY CONSIDERATIONS
• Does the type I-D system elicit primed adaptation, and if so, does it occur in a bidirectional

manner?
• Is Cas6d part of the final Cascade complex in vivo, or is it removed during crRNA processing?
• How does the regulator associated with the type I-D system control expression and what

signals does it respond to?
• What is the mechanism for bidirectional deletions by the type I-D system?
• Does the single-stranded nucleic acid targeting of the type I-D system have a physiological

role?
• Does Cas11d provide new insight into the evolutionary lineage of class 1 CRISPR–Cas

systems?
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52 Smalakyte, D., Kazlauskiene, M., Havelund, J.F., Rukšeṅaite,̇ A., Rimaite, A., Tamulaitiene, G. et al. (2020) Type III-A CRISPR-associated protein Csm6
degrades cyclic hexa-adenylate activator using both CARF and HEPN domains. Nucleic Acids Res. 48, 9204–9217 https://doi.org/10.1093/nar/gkaa634

53 Rostøl, J.T., Xie, W., Kuryavyi, V., Maguin, P., Kao, K., Froom, R. et al. (2021) The Card1 nuclease provides defence during type III CRISPR immunity.
Nature 590, 624–629 https://doi.org/10.1038/s41586-021-03206-x

54 Zhu, W., McQuarrie, S., Grüschow, S., McMahon, S.A., Graham, S., Gloster, T.M. et al. (2021) The CRISPR ancillary effector Can2 is a dual-specificity
nuclease potentiating type III CRISPR defence. Nucleic Acids Res. 49, 2777–2789 https://doi.org/10.1093/nar/gkab073

55 Mayo-Muñoz, D., Smith, L.M., Garcia-Doval, C., Malone, L.M., Harding, K.R., Jackson, S.A. et al. (2022) Type III CRISPR-Cas provides resistance
against nucleus-forming jumbo phages via abortive infection. Mol. Cell 82, 4471–4486.e4479 https://doi.org/10.1016/j.molcel.2022.10.028

56 Staals, R.H., Zhu, Y., Taylor, D.W., Kornfeld, J.E., Sharma, K., Barendregt, A. et al. (2014) RNA targeting by the type III-A CRISPR-Cas Csm complex of
Thermus thermophilus. Mol. Cell 56, 518–530 https://doi.org/10.1016/j.molcel.2014.10.005
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