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Phosphorylation constitutes the most common and best-studied regulatory post-transla-
tional modification in biological systems and archetypal signalling pathways driven by
protein and lipid kinases are disrupted in essentially all cancer types. Thus, the study of
the phosphoproteome stands to provide unique biological information on signalling
pathway activity and on kinase network circuitry that is not captured by genetic or tran-
scriptomic technologies. Here, we discuss the methods and tools used in phosphopro-
teomics and highlight how this technique has been used, and can be used in the future,
for cancer research. Challenges still exist in mass spectrometry phosphoproteomics and
in the software required to provide biological information from these datasets.
Nevertheless, improvements in mass spectrometers with enhanced scan rates, separation
capabilities and sensitivity, in biochemical methods for sample preparation and in com-
putational pipelines are enabling an increasingly deep analysis of the phosphoproteome,
where previous bottlenecks in data acquisition, processing and interpretation are being
relieved. These powerful hardware and algorithmic innovations are not only providing
exciting new mechanistic insights into tumour biology, from where new drug targets may
be derived, but are also leading to the discovery of phosphoproteins as mediators of
drug sensitivity and resistance and as classifiers of disease subtypes. These studies are,
therefore, uncovering phosphoproteins as a new generation of disruptive biomarkers to
improve personalised anti-cancer therapies.

Introduction
Cancer is caused by mutations in genes that, in normal cells, regulate fundamental cell biological pro-
cesses such as bioenergetic metabolism, apoptosis and lineage identity [1]. However, genetic muta-
tions, copy number alterations and transcriptional over/under-expression, while important, are not the
only mechanisms by which the biological activities of oncogenes and tumour suppressor genes are
dysregulated in cancer cells [2]. Virtually all druggable oncogenic processes are controlled by signalling
networks regulated by post-translational protein modifications (PTMs), the most common and best
studied of which is the addition of a phosphate group to serine, threonine or tyrosine residues,
although other amino acids can also be phosphorylated [3]. Protein phosphorylation, which is cata-
lysed by protein kinases and opposed by protein phosphatases, cooperates with other regulatory
mechanisms (e.g. second messengers and protein–protein interactions (PPIs)) and enzymes (e.g.
GTPases, phosphatases and lipid kinases), which together regulate intracellular signalling fluxes and
virtually all cell biological functions. In normal cells, these kinase-driven signalling pathways are acti-
vated by extracellular signals provided by environmental cues (e.g. growth factors and hormones),
direct cell–cell interactions and by mechanical and other stresses. In cancer, these pathways may be
aberrantly activated as a result of genetic and epigenetic alterations. In addition, the microenviron-
ment is often corrupted with the infiltration of immune and aberrant mesenchymal cells [4,5]. This
tumour-associated stroma activates kinase signalling pathways in neighbouring cancer cells [6,7] and
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further influences their malignant phenotype which becomes imprinted through epigenetic mechanisms [8,9].
Thus heterotypic communication between cancer and stromal cells, which together make up a tumour, can
lead to the constitutive activation of oncogenic signalling pathways in the absence of genetic alterations [6,7].
In immunologically ‘cold’ tumours such as prostate cancer, dysregulated kinase signalling can occur due to
genetic and/or epigenetic alterations that activate oncogenic drivers, thus representing tangible therapeutic
targets with potential for precision medicine approaches [10].
The range and heterogeneity of molecular mechanisms that can lead to oncogenic pathway activation make

the study of the phosphoproteome critical for a comprehensive understanding of cancer biology. Indeed, since
each phosphorylation is, by definition, the product of kinase activity, the phosphoproteome provides readouts
of all kinase-driven pathway activities in a given tumour. Thus, phosphoproteomic data capture oncogenic
pathway activation irrespective of the mechanism by which such activation occurred — genetic, epigenetic or
micro-environmental [11].
By providing a more direct measurement of cell processes, phosphoproteomic characterisation is enabling

the identification of new pharmacological anti-cancer targets. In addition, quantification of phosphosites is
being used to identify disease subgroups not captured by genetic assays [12–14], and to investigate the mechan-
isms of intrinsic [15–17] and acquired [18–20] resistance to targeted drugs, thus potentially leading to more
effective personalised anti-cancer therapies [14,20–28].
The importance that the phosphoproteome has to illuminate oncogenic signalling has spurred intense

research into technological development for its characterisation. To highlight the magnitude of the challenge, it
has been estimated that the human phosphoproteome contains 13 000 phosphoproteins and 230 000 phosphor-
ylation sites [29], most of which are present at substoichiometric amounts and are thus undetectable by stand-
ard mass spectrometry proteomics methods (i.e. without phosphoenrichment). Another issue is that most of
these sites are not annotated with functional information or with the kinase(s) that catalyse their incorporation
on proteins. The study of the phosphoproteome is also obscured by prolific kinase interactivity and rapid sig-
nalling dynamics. To untangle this, improvements in scan rates in modern mass spectrometers and refined
sample preparation techniques have increased the depth, throughput and profiling capabilities of mass spec-
trometry proteomics/phosphoproteomics [30]. This, together with the development of computational concepts
for the analysis and biological interpretation of phosphoproteomics data, is currently leading to a boom in the
use of this technique for cancer kinome profiling.
Here, we review the current state of phosphoproteomics in cancer research with a focus on mass

spectrometry-based approaches, and on introducing core concepts to new users, including methodologies and
challenges that the field still faces. Finally, we review phosphoproteomic studies that illustrate how this tech-
nique is contributing, and can contribute in the future, to our understanding of cancer cell signalling and
biology.

Methods for phosphoproteomic interrogation of cancer
Mass spectrometry interrogation of the proteome/phosphoproteome
Whilst immunoassays, such as reverse phase protein arrays (RPPA), allow the detection of 100s of analytes, it
is easy to recognise the exciting potential of untargeted mass spectrometry-based methods which allow the
quantification of 10 000s of phosphorylation sites in an untargeted manner. Indeed, it is using these technolo-
gies we now appreciate the complexity and heterogeneity of proteomic/phosphoproteomic profiles and signal-
ling circuitries, with specific variations noted between patients and even cells [31–33].
At the simplest level, mass spectrometry is the measurement of the mass-to-charge ratio (m/z) of ions in the

gas phase. The acquired m/z spectra are used to infer the analyte constitution. For the study of the phosphopro-
teome/proteome ‘shotgun’ or ‘bottom-up’ proteomics is most conventionally used and currently provides the
most comprehensive profiling approach. In brief, proteins/phosphoproteins are digested into peptides (some of
which will be post-translationally modified), separated using chromatography and sampled into the mass spec-
trometer (Figure 1). Whilst mass spectrometry analysis of whole proteins is possible, a method named
top-down proteomics, approaches for the analysis of undigested proteins are immature compared with
bottom-up methods as these suffer from complications that arise from chromatography of native proteins,
decreased sensitivity and less developed bioinformatics approaches [34].
Bottom-up phosphoproteomics requires the use of high resolution and high mass accuracy mass spectrom-

etry provided by time of flight (TOF) or Orbitrap instruments. TOF mass analysers use the ion’s deflection
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time as the informant of it mass. On the other hand, the Orbitrap mass analyser obtains ion m/z by tracking
ion orbit frequency around the central electrode [35]. In proteomics/phosphoproteomics, these instruments are
conventionally used with other ion optics that select and fragment peptide ions for tandem mass spectrometry
(MS/MS or MS2) analysis. In this, a MS1 scan is used to obtain the mass of unfragmented peptides and for
their quantification (in the case of conventional label-free analysis). Ions are then selected for subsequent frag-
mentation generating MS2 data used to infer the primary structure of peptides (Figure 1, lower panel). Peptide
precursor ion m/z ratio in MS1 and MS2 fragment spectra allows for accurate identification of
phosphopeptides.
Many fragmentation methods exist for MS2 spectra generation and the development of such tools still is an

active area of research [36]. Collision-induced dissociation (CID), which applies gas-phase collision with
neutral gas molecules to fragment gas-phase peptide ions, is the standard fragmentation method present in
essentially all commercial tandem mass spectrometers. Therefore, CID has been widely adopted for phospho-
proteomics research. Whilst in general efficient, ‘neutral loss’ (i.e. loss of phosphate in the phosphorylated
peptide fragment ions during CID) can obscure precise identification of the phosphorylated site in cases where
more than one phosphorylatable amino acid residue is present in the peptide’s sequence [37]. To address this,
inspirited by electron-capture dissociation (ECD) which preserve the site of modification [38], electron transfer
dissociation (ETD) was developed and incorporated into tandem mass spectrometers based on ion traps. These

Figure 1. Liquid chromatography-tandem mass spectrometry (LC–MS/MS) workflow for data-dependent analysis (DDA)

phosphoproteomics.

Upper panel, phosphoproteomic sample preparation. Proteins are extracted from samples through cell lysis and digested using

proteases, commonly trypsin. Peptide fraction is subsequently enriched for phosphopeptides, conventionally using TiO2, and

separated using reversed-phase liquid chromatography before MS/MS analysis. Lower panel, MS/MS data acquisition and

analysis. Following liquid chromatography, eluting peptides are ionised by electrospray and sampled by Orbitrap or TOF to

generate MS1 spectra. Precursor ions are then selected and then fragmented. MS2 spectra are then generated from the

second round of mass analysis. MS1 peaks can be isolated (extracted ion chromatogram) and used for quantification, whilst

MS2 spectra enables peptide identification.
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softer fragmentation methods are based on the transfer of electrons from radical anions to the polypeptide
chain which as a consequence dissociate at the C–N bond [39,40]. ETD is also particularly useful for top- and
middle-down proteomics used to characterise large proteins without or with just partial digestion [41,42] and
the technique is particularly useful for the analysis of the histone PTMs [43]. ETD has been combined with
higher-energy collision dissociation (HCD), a technique known as EThcD, by applying HCD following an elec-
tron transfer reaction [44], and this technique is particularly useful for the analysis of large proteins including
membrane proteins [45].
Quantification from mass spectrometry data may be achieved using label-based or label-free approaches.

Tandem mass tag (TMT) labelling uses isobaric labels consisting of heavy stable isotopes, and enables sample
multiplexing which can expedite mass spectrometry analysis by quantifying reported ions in MS2 data [46].
Another labelling strategy consists of stable isotope labelling by/with amino acids in cell culture (SILAC)
involving the culture of cells in media containing labelled amino acids [47]. A limitation of label-based
approaches is that there is a limit to the number of samples and replicates that can be analysed in an experi-
ment and that quantification is always relative to analytes present in other samples, thus limiting their utility
for translational research and ultimately clinical implementation. Thus, label-free quantification has proven
popular in phosphoproteomics, after showing that these approaches are effective for quantitative analysis of
phosphopeptides [48–50], although a limitation has been the requirement of specialised data acquisition strat-
egies and software.

Sample preparation strategies for label-free phosphoproteomics
Phosphoproteomic experiments require phosphopeptide enrichment methods to reduce complexity and maxi-
mise deconvolution whilst retaining the biological information held within the sample [51]. Thus, much effort
in the field has strived towards optimised sample processing procedures which do not influence the phospho-
proteome before analysis or compromise profiling depth [52].
As mentioned, shotgun proteomics requires proteins extracted from samples to undergo digestion into pep-

tides using peptidases such as trypsin, but others are available and can yield different peptide pools. Logically,
the choice of digestive enzyme will influence the resulting peptide pool due to its cleavage site specificity [30].
However, phosphorylated residues can impact possible cleavage sites and thus impact digestion and detectabil-
ity due to peptide length and ionisation efficiency [53]. Online tools which predict protein cleavage are able to
assist in the making this decision, such as PeptideCutter [54].
Following digestion, phosphopeptide enrichment steps are used to increase the proportion of phosphopep-

tides identified in an experiment. The most popular phosphopeptide isolation methods take advantage of the
negative ionic charge of the phosphate group. Immobilised metal affinity chromatography (IMAC) uses an
affinity-based phenomenon, where the negative charge of phosphate groups is exposed to metal cations in the
form of chelators. With potentially decreased specificity in comparison to other affinity methods, its applicabil-
ity can be broad [55]. Drawbacks of this method include the risk of phosphopeptide leaching and binding of
acidic amino acids such as glutamic and aspartic acid [55].
Metal oxide affinity chromatography (MOAC) applies the same affinity-based property as IMAC. Here, phos-

phopeptides are extracted by ionic binding between metal oxides and the negatively charged phosphate groups.
Most commonly, titanium dioxide (TiO2) is the agent used for this approach, although, a range of metal oxides
are available, Aryal and Ross demonstrated that between ZrO2 and TiO2, TiO2 displayed better selectivity for
the isolation of peptides with multiple phosphorylation sites [56] whereas ZrO2 has been reported to perform
better for single site phosphorylated peptides [57].
Whilst working through similar mechanisms, MOAC is now more commonly used. Furthermore, the use of

MOAC columns has been demonstrated to be more stable [58] and more selective [59] than IMAC. Both tech-
niques enrich for Serine, Threonine and Tyrosine phosphorylation sites at the ratios that they are present in
cells (70 : 30 : 2, respectively). When the aim is to specifically analyse the phospho-tyrosine phosphoproteome,
immunoprecipitation of peptides using anti-pTyr antibodies has been demonstrated to provide greater coverage
of this particular sub-phosphoproteome [60].
For many phosphoproteomic workflows, the sample preparation procedure is more laborious than the assay

setting the biological context of the experiment. Phosphoenrichment is a particularly laborious task if done
manually. However, the development of robotic liquid handlers for this purpose essentially solves this issue and
also help with the reproducibility and throughput of the technique [61,62].
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Label-free Tandem mass spectrometry data acquisition
Peptide identification and quantification from MS data require the use of computationally demanding analytical
pipelines. Traditionally, proteomic approaches involve acquiring MS2 spectra using data-dependent acquisition
(DDA) methodologies which select the most abundant m/z peaks in MS1 spectra for fragmentation at a given
time in the LC separation. The selection for MS2 is based on precursor ions’ abundance ranking in MS1
spectra. Investigators will set the number of peptides which will be selected by DDA based on experimental
considerations and the scan rates of the instrument that is being used — modern mass spectrometers have scan
rates that range from 10 to 100 Hertz. These selected ions are then fragmented and the resulting MS2 spectra
are used to identify the analyte with a database search that aims to match fragment spectra to the theoretical
fragmentation of all proteins in databases or to spectral libraries [63–67]. This approach allows sensitive real-
time detection of peptides/phosphopeptides. The MS1 scan dependency enables the acquisition of spectra of
sufficient quality and quantity for deep phosphoproteome coverage [30,32,68,69].
Whilst a proven useful approach, a limitation of DDA includes a bias towards more abundant peptides due

to preferential selection of intense ions for MS2 analysis, and variability between the peptides that are selected
for fragmentation in runs which can arise from minute scan time variations and other stochastic processes
(Figure 2). These issues with undersampling lead to missing peptide identifications, a problem that increases
with sample complexity [70]. To solve this problem, peptides and phosphopeptides identified in at least one
LC–MS/MS run can be searched in other runs at the MS1 level. This approach consists of assembling a data-
base (or library) of peptides identified in a given experiment; the elution profiles (extracted ion chromatograms)
are then obtained for each of these peptides across all LC–MS/MS runs that are compared in the experiment,
thus significantly alleviating the problem of undersampling in DDA [48,71–73].
Another way of reducing the impact that undersampling in DDA has on proteomic and phosphoproteomics

data reproducibility involves the use of data independent acquisition (DIA) analysis [74–76]. Advances in com-
putational processing tools and processing power have overcome the challenges which hampered the wide-
spread application of this technique. DIA has the potential to enhance MS data pipelines and broaden reliable
analyte quantification, particularly when used in combination with cutting-edge mass spectrometers with
increased duty cycles aided by ion mobility ion optics [77,78]. During DIA acquisition, ions are not fragmented
in an intensity-selective manner, rather all precursor ions within a selected m/z range are fragmented thus
removing bias towards more abundant ions and reducing the stochasticity of MS2 ion generation (Figure 2).
This approach has been demonstrated to decrease missing data points in proteomics datasets, although this
comes at the cost of reduced MS2 spectral interpretability [79,80] requiring more complex computational ana-
lysis to deconvolute MS2 spectra into peptide identities.
Initially, DIA was not widely adopted in phosphoproteomic studies due to the requirements of mass spectro-

meters with fast scan rates, which are now becoming available, and the computational strain that accompanied

Figure 2. Overview of DIA and DDA approaches in proteomics.

Peptide abundance varies throughout the LC gradient and, as peptides elute from the column at specific time points, these are

sampled by MS (represented as windows 1, 2 and 3 in the cartoon) and subsequently by MS/MS analysis. In data dependent

acquisition (DDA) only the top N peptides (depending on instrument scan rates) are selected by abundance. This means that

some peptides (e.g. the red ion in the cartoon) may be omitted from all windows and are not identified in DDA. This is contrary

to data-independent analysis (DIA), where all peptide ions are fragmented and thus present in MS2 scans.
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the disentanglement of more complex fractionation spectra due to the fact that there is no direct link between
single MS1 peaks and MS2 spectra. Recent developments in software for DIA data analysis [81,82] are enabling
widespread use of the technique in proteome research, but the use of DIA in phosphoproteomics is less well
documented, although we expect the technique to become widespread for this purpose now that robust soft-
ware has become available. However, since most phosphoproteomics experiments have been performed using
DDA, we focus on studies that used this approach henceforth. We refer the reader to the work of Zhang et al.
[83] for further discussion on DIA.

Assigning peptides to m/z spectra
Following data acquisition, the complex ion spectra must be resolved into peptide/phosphopeptide identities in
order to identify proteins/phosphoproteins and phosphorylation sites. In database search methods, protein
sequences in an appropriate database (e.g. Uniprot restricted to the organism analysed in the experiment)
undergo in silico digestion and fragmentation to produce a reference of artificial peptide spectra, to which the
experimental spectra is matched by a searching engine that also scores and ranks the identifications.
A widespread method for this is scoring against theoretical spectra using ‘shared peak count’. Pioneering

algorithms using such a strategy include SEQUEST [67] which is based on an XCorr score that serves as a
measure of similarity between acquired and theoretical peptide spectra. A limitation of the method was the
speed at which XCorr is calculated which became a bottleneck for MS pipelines. Subsequent efforts to increase
processing speed have included dot product computation of XCorr [84]. Further efforts have been built on to
the SEQUEST algorithm, such as TIDE, which takes advantage software engineering approaches to further
boost speed [85].
Other algorithms for database search in proteomics include the open source X!Tanden and Protein

Prospector. The latter was developed in 1995 at the University of California, San Francisco to exploit the add-
itional specificity of identification that can be obtained by reducing the mass error windows used to match
experimental with theoretical peptides [65]. It has since then undergone many iterations with additional fea-
tures added to the software suite [86] and continues to be commonly used today [87]. A further more recent
development is a database search method known as MSFragger which was designed with the aim of increasing
processing speed. Similar to SEQUEST (resulting in the tool Crux) [88] the developers of MSFragger added a
peptide database index to increase pipeline speed, however, in contrast to Crux which solely sorted peptides by
mass, MSFragger additionally computes a theoretical fragment ion index, leading to improved efficiency com-
pared with other tools [89].
In contrast to the algorithms described above, which use heuristic approaches, probabilistic algorithms, such

as Mascot — widely considered the industry gold standard [66,90] — and Andromeda (search engine in
MaxQuant) assign scores to peptides as the probability that the match between the experiment peptide spectra
and theoretical spectra has occurred by chance. Mascot uses the MOWSE algorithm [91], whilst MaxQuant
[92] offers flexibility allowing the researcher to tailor their analytical pipeline.
For phosphopeptides, there is the additional challenge of identifying the phosphosite location. These issues

have been reviewed recently and therefore they will not be discussed here in depth [36]. Briefly, in cases where
a peptide contains more than one serine, threonine or tyrosine residue in its sequence, confident phosphosite
allocation requires ‘site-determining ions’ to be generated from fragmentation spectra [93], which may not be
present as a result of neutral loss during CID MS/MS. Different phosphorylated residues can also have different
fragmentation behaviours depending on peptide residues which different scoring algorithms can be biased to
[94]. To address this, scoring methods were developed, and these include the mascot delta score [94] and
Ascore [93], though a wide range of tools exist [36,95]. More recently, MS/MS spectra prediction and DIA
have been proposed as means to increase the accuracy of site localisation in phosphoproteomics experiments
[96,97].

Peptide verification
Proteomic identification results are adjusted for the probability of false discovery using a target-decoy method
where results from searching artificial peptide sequences not found in a biological context (e.g. in a reversed
protein database) are compared with those of the experimental (forward) search results. Characteristics of the
ideal decoy sequence have been described by Gygi’s group [98]. In brief, this relates to sharing characteristics
with target sequences (residue distribution, similar length and numbers at both peptide and protein level, and
importantly no shared peptide sequences). Many approaches exist for generating the decoy database, such as
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peptide reversal and random sequence generation. Caveats to these include the non-randomness of sequence
reversal, and in contrast, random sequence generation will unlikely maintain relevant peptide characteristics
such as the presence of repeated residues [99].
It has been demonstrated that simple target-decoy strategies lead to reduction in sensitivity due to asym-

metry in protein matches relating to false artificial proteins and false target protein hits, resulting from the fact
that incorrect target peptide matches could occur from both target proteins and decoy proteins, in contrast to
decoy peptides [100,101]. To address this, Savitski et al. [102] developed the picked-target decoy strategy
(picked TDS). This approach simply compares the scores of both the target peptide match and the decoy
peptide match and picks the highest-scoring match for that target peptide. Using this simple strategy, the over-
estimation of false positives was reduced in the aforementioned study. Other efforts to address this issue
include that of The et al. [101], who developed an approach known as the Picked Protein GroupFDR approach
for protein group level FDR correction, resulting in 4% more protein identifications than the default approach
in the MaxQuant pipeline [101].
A specific issue for phosphoproteomics is the estimation of false phosphorylation site localisation and the

increase in search space that comes with including all the possible modifications on a given peptide in the
search [95]. Efforts to address this include modified decoy search strategy, such as LuciPHOr, which uses each
residue in the peptide as a phosphorylation site decoy, thus pitting candidate and non-candidate residues
against one another [103]. Further work by Ramsbottom et al. [104] demonstrated that Alanine or Leucine
residues make sensible decoy candidates.

Bioinformatic tools and resources for phosphoproteomic
data interpretation
Phosphoproteomic analysis tools
A challenge in omics analysis is biological interpretation but the issue in phosphoproteomics is particularly
intricate because of the impact that phosphorylation has on biology is often ambiguous — some sites increase
the activity of the protein that is modified, but many are inhibitory while for most of them there is no func-
tional information. To address this, two main computational approaches to derive biological insights from
phosphoproteomics data are employed, which we term substrate-centric and kinase-centric. The substrate-
centric approach involves considering the effects that changes in individual phosphorylation sites may have on
the protein that receives the phosphorylation, whereas the kinase-centric method consists of deriving readouts
of kinase activity by matching kinases to their substrates or downstream targets. Both methods may be com-
bined to analyse a given dataset.
The substrate-centric approach needs information on the effect that a given phosphorylation site may have

on the activity of the protein receiving these modifications. This is a challenge because, as discussed above,
while some phosphorylation sites are well characterised, in most cases the biological function of phosphoryl-
ation is ambiguous. The low conservation of phosphorylation across species suggests that most sites are non-
functional [105,106], but this view has been challenged [107]. Recently, machine learning was used to infer the
phosphorylation sites likely to be functional [108], and progress is also being made in predicting the sign of
regulation (i.e. whether the phosphorylation is activatory or inhibitory) [109].
As for the kinase-centric approach, kinase-substrate enrichment analysis (KSEA) and similar methods infer

differences in kinase activities across samples by matching kinases to their substrates and quantifying their level
of enrichment relative to background phosphorylation (by for example, z-score calculation and/or
Kolmogorov–Smirnov testing) [17]. In the original study, KSEA-derived kinase activities showed high concord-
ance to western blot data [17] and changed in cells treated with signalling perturbagens as expected. KSEA is
based on the analysis of validated kinase-substrate relationships and thus provides a more reliable method of
characterising kinase activity than investigating individual kinase phosphorylation sites [16–18,110] or
approaches such as NetworKIN [111] which computationally predicts kinase substrates based on linear phos-
phorylation motifs.
Since the publication of KSEA other methods that use phosphoproteomics data to infer kinase activity have

been published. These have been recently reviewed and will not be discussed here in detail [112]. All these
methods require a knowledge of phosphorylation sites that are signatures of kinase activities. Therefore, the
challenge that all these tools face is that the knowledge of kinase-phosphosite relationships is limited to the
best-studied kinases, and for many of them there is a lack of knowledge of their downstream targets, thus
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precluding their analysis by this method. To solve this problem, Hijazi et al. used the known promiscuity of
kinase inhibitors to map kinase downstream targets of less well-studied kinases. Kinase inhibitors developed to
inhibit a given kinase also inhibit unintended enzymes, some of which are poorly studied. This was exploited
to identify the combination of compounds that represent specific inhibitor fingerprints for given kinases.
Phosphoproteomics of cells treated with the set of inhibitors in the fingerprint then revealed phosphorylation
sites downstream of kinases [24]. The study added 6 000 new kinase-phosphosite relationships that may be
used as the source of KSEA or similar methods to infer kinase activities from phosphoproteomics data. A
version of KSEA that incorporates this and other databases as the source of kinase-phosphosite relationships
can be accessed from github.com/CutillasLab/KSEA_plus [21].
Contrary to KSEA, which compares kinase activities across samples, other methods focus on ranking kinase

activities within a sample. This information may be used for selecting the best kinase inhibitor to treat a given
patient. Two of these methods have been developed: Kinase activity ranking using phosphoproteomics data
(KARP) [113] and the inferred kinase activity (INKA) algorithm developed by the Jimenez laboratory [114].
INKA estimates kinase activity as a function of total kinase phosphorylation, phosphorylation of the kinase’s
activation loop and substrate phosphorylation, thus combining kinase and substrate-centric approaches. Using
INKA, Cordeo et al. [25] selected kinase inhibitors for the treatment of acute myeloid leukaemia (AML) cell
lines, highlighting its potential to inform treatment combinations.

Empirical kinase network inference
Phosphoproteomic data have been used to reconstruct kinase networks. Methods for this purpose include the
use of statistical frameworks combined with known substrate-kinase relationship data. An example is provided
by work by the Saez-Rodriguez laboratory [115], who developed a method called Phonemes based on logic
modelling of kinase inhibitor perturbation data through Gaussian mixture models for each phosphorylation
site. This involved training models with a background network (built from known/predicted kinase-substrate
relationships). Application of Phonemes identified CDK regulation by MTOR, which was verified experimen-
tally. Using a complementary approach, Clarke et al. [116] developed a network-based tool to link expression
signature to upstream kinase networks. Another strategy developed by Yilmaz et al. [117] uses a heterogeneous
network model, which uses circuit-based propagation in an attempt to bridge missing network connections
that can arise due to under sampling of the phosphoproteome, an inevitable issue due the large number of yet
unknown kinase-phosphosite interactions [118] and under sampling of phosphorylation sites that can occur in
MS experiments. Thus, this approach takes advantage of current network knowledge to fill in potential gaps in
the kinome network under the assumption that biological events stemming from network action will originate
from associated sites. However, this may introduce some bias into new explorations due to reliance on well-
characterised signalling nodes. Other groups have focussed on using KSEA to provide a global analysis of
kinase signalling. Ochoa et al. [119] compiled 41 studies including drug perturbation data for 399 kinases to
track kinase–kinase relationships through monitoring the activity of a broad range of kinases in response to
inhibitor treatment.

Current challenges of kinase-phosphosite mapping
Overcoming bias towards the known phosphoproteome
A major hurdle in phosphoproteomics is the low of coverage of known kinase-phosphosite interactions.
Indeed, it is estimated that 87% of listed kinase substrates are phosphorylated by 20% of known kinases, a dis-
tribution that seems unlikely due to large number of shared substrates between kinases [118]. This bias is pro-
pagated by the fact that targeted functional assays are lengthy and time consuming, along with the problem of
confirmation bias that can exist within scientific research which is present in phosphosite databases. To address
this, Hijazi et al. [24] used a chemical phosphoproteomics approach to identify direct and indirect kinase-
phosphosite relationships. More recently. Johnson et al. used positional scanning peptide array analysis (PSPA),
consisting of in vitro assays with peptide pools and individual kinases and ATP, to determine motifs determi-
nants of kinase-substrate specificity, primarily via the negative selection on the substrate’s side. Furthermore,
the authors found a third of the sites tested lacked such residues, and were therefore shared with a large
number of kinases. This highlights substrate availability and other kinase regulatory mechanisms’ importance
in coordinating specific signalling responses [120].
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To document kinase-substrate relationships, there are many dedicated databases for recording such informa-
tion. One of the largest databases is PhosphositePlus [121], which consists of curated information on protein
PTMs for human, mouse and rat phosphoproteomes. Another database known as Signor, is also generated
from curated literature of phosphorylation site information, but is stored in a directed graph format, the goal
being to associate PTM to effect/function [122]. Another recent and useful metadatabase for the analysis of
phosphoproteomics data is Omnipath [123]. Kinase-phosphosite relationships identified by chemical phospho-
proteomics are provided in the ChemPhoPro database [24]. These are invaluable resources for the community,
and the incorporation of curated experimental data from the literature, as these become available in the future,
will result in more accurate signalling network construction approaches based on phosphoproteomics data.
Studies that used perturbation data can be a good source of new kinase-phosphosite relationships and also

reveal kinase-kinase connexions. Perturbagens may be siRNA [124] or kinase inhibitors [24]. Bodenmiller et al.
performed a kinome/phosphatase-wide genetic screen in yeast, where they individually perturbed kinase/phos-
phatases in yeast prior to MS analysis. They demonstrated that the number of indirect phosphosites far out-
number the predicted direct phosphosites and the interconnectivity of signalling architectures. On the other
hand, as discussed above, the kinase inhibitor screen by Hijazi et al. relied on the promiscuity of kinase inhibi-
tors to identify downstream targets of poorly studied kinases. The advantage of siRNA is its specificity, but it
has the drawback that it requires long treatments times, and therefore changes in gene expression also contrib-
ute to the observed changes in phosphorylation. This does not occur in cells treated with kinase inhibitors for
short times, but these approaches need complex algorithms to link kinase inhibitor specificity with their effects
in the phosphoproteome. Despite these caveats, these large-scale screens, combined with mass spectrometry-
based phosphoproteomics could contribute to a more balanced annotation of less well-explored kinases in com-
monly used reference databases.

Data variability
One of the perceived drawbacks of phosphoproteomics data is that the high instability of phosphorylated pep-
tides, due to their rapid degradation by phosphatases and high pH, contributes to noise and variability in such
datasets. For phosphoproteomics data to be clinically meaningful, it has to be resilient to the highly dynamic
nature of kinase signalling, which makes this technique susceptible to environmental changes. Responses to
kinase inhibitors have been characterised minutes after treatment, in in vitro models [125] and in cancer cells
left in ambient conditions, which resulted in the activation of stress and autophagy signalling pathways [126].
However, the activation of these pathways was reduced using simple measures (by placing cells on ice prior to
the lysis procedure). In addition, phosphoproteomics experiments carried out in separate laboratories show dif-
ferences in peptide coverage, in addition to intra-laboratory variation from different staff members. This high-
lights the reactivity of phosphorylation activity and the requirement for robust sample preparation protocols to
create reliable datasets. However, these issues also greatly impact other omics methodologies such as single-cell
RNA-Seq, RNA-Seq and CHIP-Seq [127–129].
The impact of batch effects has been greatly diminished in omics datasets due to improvements in their

throughput, which allows characterising a wider range of biological conditions, improving signal-to-noise ratio
and ultimately separating variation of biologically relevant changes from data noise [128,130]. Recent advances
in automation have also allowed for the development of robust high throughput desalting and phosphoenrich-
ment procedures, requiring minute protein amounts and allowing more samples to be processed in shorter
times and improving reproducibility. These advancements in turn have made phosphoproteomics approaches
more suited for use in translational and clinical investigations.

Applications of phosphoproteomics in cancer research
Phosphoproteomics has numerous uses in cancer research (examples are shown in Figure 3). Among other
applications, it has been used to rationalise cancer phenotypes, as a readout of gene knock-out experiments, to
investigate the mode of action of anti-cancer drugs, and as a source of biomarkers for precision medicine.
Below we give examples of studies that illustrate the use of phosphoproteomics in these research areas.

Rationalisation of cancer phenotypes using phosphoproteomic data
The first application of phosphoproteomics followed by KSEA focused on the investigation of determinants of
drug response phenotypes in AML cell lines and primary samples treated with PI3K inhibitors [17]. Contrary
to expectations, cells with higher PI3K/MTOR pathway activity were not more sensitive to PI3K/MTOR dual
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inhibitors than cells with lower activity of this pathway. Instead, activities of kinase in parallel pathways —
namely PKC and ERK — were increased in resistant cells, showing that measuring the activity of compensatory
pathways is needed to fully rationalise why some cancer cells respond to kinase inhibitors whereas others do
not. This phenomenon was also observed in cells treated with trametinib, a MEK inhibitor. Although cells with
high MEK/MAPK pathway activity responded better to trametinib than cells with low pathway activity, other
compensatory pathways (including FLT3 mutations and STAT5 activation) were increased in cells that, despite
activating MEK/MAPK, were resistant to inhibitors this pathway [14]. More recently, in a pan-cancer study,
KSEA of phosphoproteomics data was used to estimate activities of 218 kinases across 1 110 tumours and 77
cell lines [131]. These data were matched to the activities of 292 transcription factors as well as genetic muta-
tions and responses to therapy. An interesting observation was that overall kinase phosphorylation is, for some
kinases, significantly associated with their extent of activation, as noted in a previous study [24], while TF acti-
vation is associated with their expression at the protein level. Of note, it was found that loss of function muta-
tions was not on the whole associated with the activation of downstream signalling cascades, suggesting that, in
most cases, feedback loops that suppress excessive pathway activation [132] are maintained in cancer cells.
However, the activities of frequently dysregulated proteins were found to be associated with drug responses
[131], thus suggesting that these could be used to determine prognosis. Taken together, these studies illustrate
the complex nature of kinase signalling regulation, which underpin the idea that proxies of pathway activities
(such as genetic mutation or protein expression) often fail to accurately reveal the extent of oncogenic pathways
activation in cancer cells.
Several other studies have applied phosphoproteomics methods to investigate the mode of action of specific

anti-cancer drugs. A study by Kazi et al. [133] applied phosphoproteomics analysis to KRAS mutant dependent
and non-dependent pancreatic cancer cell lines to reveal a key role of CDK kinases in KRAS dependency.
Following these results the authors validated their finding through mining CRISPR–cas9 dependency data, drug
screens and western blot endpoints showed that targeting CDK hyperactivation may be an effective way of
treating KRAS mutant pancreatic cancer. Similarly, Lee et al. [134] applied this approach to gauge the signal-
ling shifts involved in the development of resistance against an EGFR/HER2 inhibitor (lapatinib) in human
gastric cancer cells (SNU216 cells). Comparison between lapatinib resistant and parental SNU216 cells identi-
fied a MET-derived signalling cascade that increases the activity of the PI3K/AKT and MAPK/ERK signalling
axes. Another example of phosphoproteomic interrogation is provided by Vye et al. [135], who used SILAC
mass spectrometry to identify two distinct resistance mechanisms to both pazopanib and dasatinib in A204
cells, revealing that dasatinib-resistant cells upregulated insulin receptor/IGF-1R signalling as a compensatory
pathway. An elegant study by Emdal et al. [19] extended this to primary AML samples where phosphoproteo-
mic analysis of responders and non-responders to selinexor highlighted AKT as a combination target for resist-
ant cells.

Figure 3. Application of phosphoproteomics in cancer research.
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Phosphoproteomics to elucidate disease mechanisms
Phosphoproteomics is also a powerful tool to provide mechanistic insights into cancer cell biology and signal-
ling in different tumour types. Examples of discoveries made by KSEA include the identification of protein
kinase A as a mediator of an increasing cell metabolism in tumours with low FAK expression in cancer-
associated fibroblasts [7], the identification of the MAPK-ROCK2 pathway being activated in cancer cells by
loss of β-integrin in mural endothelial cells [136] and the discovery of MAPKAPK2 as a kinase downstream of
MTOR that regulates the senescence secretome [137]. In a recent study, phosphoproteomics and KSEA showed
that targeting the lysine demethylase LSD1 in AML cells activates the MEK/MAPK pathway, while inhibiting
PI3K/AKT signalling. Consequently, LSD1 inhibition produced a signalling switch that primed cells for MEK
treatment [138].
In a different study, Tamir et al. applied functional kinome screens for target stratification followed by phos-

phoproteomic interrogation. The authors performed a gain-of-function arrayed screen whereby 385 kinases
and kinase-associated proteins where overexpressed in HEK-293T cells. Using this approach, an unexplored
kinase BRSK1/2 showed a pivotal role in NFR2 transcription factor regulation, relevant in cancer and neurode-
generative disease. Subsequent analysis using TMT labelled phosphoproteomics of transfected BRSK1 and
BRSK2 cells revealed an increased number of key phosphosites in BRSK2 transfected cells, suggesting a more
central signalling role than its BRSK1 homologue [139].

Precision medicine
The phosphoproteome stands to provide a rich source of biomarkers of drug responses that can complement
the information provided by genetics to advance the field of precision medicine. As an example of study, Liu
et al. [140] were able to define molecular-based subtype profiles for cancer patients and signatures which were
used to propose candidate drugs for more informed treatment. The volume and complex nature of biomarkers
identified will require machine learning approaches to make sense of this wealth of data for advancing precision
medicine and this is a highly active area of research. For example, Gerdes et al. [22] developed a machine-
learning workflow which used phosphoproteomic data to rank the most effective treatments based on phospho-
proteomic profiles. To this end, the authors used a novel feature selection strategy and an internal distance
metric to narrow down selected markers, thereby accurately predicting drug responses in cell lines obtained
from different lineages. Importantly, the models created by Gerdes et al. [141], also predicted drug responses in
an independent study focusing on cholangiocarcinoma cell lines and primary samples. These proof-of-principle
studies support the integration of machine learning-based precision medicine [142], although more work is
needed for the confident roll out of these methods in the clinic. Despite the remaining challenges, it is clear
that the phosphoproteome will be an invaluable source of information to guide the next generation of targeted
and personalised therapies.

Unpacking kinome dynamics
Signalling is a dynamic process and perturbation with agonists or antagonists induces waves of kinase activa-
tion that are specific for given pathways and cell types. Thus, sampling time should be carefully considered as
targeting distinct kinase signalling nodes can have temporally distinct influences on cell phenotypes [143].
Analysis techniques tailored for temporal analysis are being developed in attempt to increase time-series under-
standing of kinases [144]. As depicted in Figure 4, the importance of phosphorylation can be felt across the
gene expression process illustrating complex and non-linear timelines in terms of relaying signals from/to the
transcriptome/genome. For example, an in-depth view of the Drosophila phosphoproteome in combination
with proteomics/transcriptomics, identified key kinases involved in the organism’s circadian rhythm [145].
Understanding key checkpoint kinases could be used for targeting disease phenotypes. Alternatively, these tem-
poral phosphoproteomics could pin point key signalling effectors in the acquisition of disease phenotypes and
enable increasing understanding of how successful treatment leads to transition from a disease to disease-free
state. As an example, an insightful study [146] used phosphoproteomics to compare kinase activation in
HER2-postive gastric cancers before and after treatment with the HER2 antibody inhibitor trastuzumab. By
comparing phosphoproteomic analysis of gastric cancer biopsies before and after treatment, the authors were
able to gain insight into the impact of the HER2 antibody on the phosphoproteome enabling the discovery of
new response biomarkers.
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Phosphoproteomics’ role in the omics landscape
Phosphoproteomics data have had an important role to play in the multi-omic profiling of primary clinical
samples. A successful initiative known as the clinical proteomic tumour analysis consortium (CPTAC) was
established in 2011 and since become a trove of proteomic and genomic data from primary tumour samples.
These and other studies have provided invaluable datasets from different cancer types including breast [147],
hepatocellular [148], ovarian [149], haematological [14,150], lung [151] and colorectal [152] among others.
These studies are providing a wealth of information of disease subtypes and opportunities to identify new
kinase drug targets [149]. As an example, Casado et al. [153] found a phosphoproteomic signature that defines
two biologically distinct forms of KMT2A rearranged AML (also known as MLL-AML). This is significant
because MLL-AML was considered to be a homogenous disease from a biological standpoint. Contrary to this
view, phosphoproteomics data revealed two MLL-AML subgroups that differ in the phosphorylation of several
proteins involved in KMT2A-mediated regulation of gene expression, including DOT1L. These differences in
the biochemistry of MLL-AML cells translated to differences in responses to genotoxic and other drugs, sug-
gesting that the identified signature may be used to select patients for therapy.
Integration of multi-omic data is key for making the most of such complex datasets but, until recently, soft-

ware for this purpose was not available and researchers have used simple approaches such as the correlation
between protein and RNA expression [154]. In response to this, computational tools have been developed to
integrate different omics datasets. One such tool includes MiNETi [155], a computational pipeline that

Figure 4. The Phosphoproteome acts as the cell’s sensor, regulator and effector.

Protein phosphorylation has diverse impacts and roles in cell biology. Effects relayed by increase expression of exomic genes

often yield protein products whose activity is regulated by phosphorylation. A prime example is transcription factors (here uses

IFN regulatory factor 3 (IRF3) as an illustrative example), whereby phosphorylation can lead to increased expression of genes

and drive as well as regulate changes in cell phenotype, which can occur due to external or internal stimuli. Changes in the

phosphoproteome can originate from extracellular/intracellular cues and impact all stages of the central dogma in biology

(lower left panel).
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integrates proteomics, phosphoproteomics and transcriptomics to construct a multi-network spanning graph.
This is achieved by sequential network updates starting with a proteomics-based PPI network, updated with
phosphorylation network data and finally transcriptional networks [155]. Other multi-omic analysis tools
include COSMOS, which also connects transcription factors and kinase activity. COSMOS performs this by
constructing prior knowledge network spanning the multi-omic space [156].

Conclusions
There is a clear role for phosphoproteomics to play in the interrogation of oncogenic mechanisms and for drug
development. Improvements in technology offer new opportunities to derive insights into cellular signalling
and regulatory biology with unprecedented depth, accentuating the interwoven nature of signalling mechan-
isms. However, challenges remain in the field of phosphoproteomics. For example, research resources for phos-
phoproteomics lag behind those of nucleotide-based ‘omics’ due to the highly specialised nature of the
technology and the need for expensive equipment, and the potential to translate phosphoproteomics biomar-
kers into clinical assays has not yet been demonstrated. In the future, further advances will come from improve-
ments in mass spectrometers with enhanced sensitivity and shorter duty cycles that allow the application of
new forms of data analysis (e.g. DIA) and from the development of computational methods to better interro-
gate phosphoproteomics data in the context of kinase-phosphosite relationships and the biological function of
the phosphorylation sites that can be profiled with this technique. Together, these developments are enabling
the analysis of the phosphoproteome as a means to tailor drug treatments to patients, for drug development
and for the elucidation of mechanisms that govern normal and disease biology.
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