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Mitochondria play essential roles in cellular energetics, biosynthesis, and signaling trans-
duction. Dysfunctional mitochondria have been implicated in different diseases such as
obesity, diabetes, cardiovascular disease, nonalcoholic fatty liver disease, neurodegenera-
tive disease, and cancer. Mitochondrial homeostasis is controlled by a triad of mitochon-
drial biogenesis, dynamics (fusion and fission), and autophagy (mitophagy). Studies have
underscored FoxO transcription factors as key mitochondrial regulators. Specifically,
FoxOs regulate mitochondrial biogenesis by dampening NRF1-Tfam and c-Myc-Tfam
cascades directly, and inhibiting NAD-Sirt1-Pgc1α cascade indirectly by inducing Hmox1
or repressing Fxn and Urod. In addition, FoxOs mediate mitochondrial fusion (via Mfn1
and Mfn2) and fission (via Drp1, Fis1, and MIEF2), during which FoxOs elicit regulatory
mechanisms at transcriptional, posttranscriptional (e.g. via miR-484/Fis1), and posttransla-
tional (e.g. via Bnip3-calcineurin mediated Drp1 dephosphorylation) levels. Furthermore,
FoxOs control mitochondrial autophagy in the stages of autophagosome formation and
maturation (e.g. initiation, nucleation, and elongation), mitochondria connected to and
engulfed by autophagosome (e.g. via PINK1 and Bnip3 pathways), and autophagosome-
lysosome fusion to form autolysosome for cargo degradation (e.g. via Tfeb and cathepsin
proteins). This article provides an up-to-date view of FoxOs regulating mitochondrial
homeostasis and discusses the potential of targeting FoxOs for therapeutics.

Introduction
Mitochondrial homeostasis is essential to normal cell and tissue functions. Most known about mito-
chondria is the primary role in oxidative phosphorylation (OXPHOS) that produces energy molecule
(i.e. ATP), underscoring mitochondria as the powerhouse in the cell [1–3]. Mitochondrial metabolism
also produces intermediates or metabolites that serve as the chemical building blocks for biosynthesis
(e.g. the synthesis of nucleotides, glucose, fatty acids, cholesterol, amino acids, and heme) [1,4]. In
addition, mitochondria may release signaling molecules (e.g. reactive oxygen species, cytochrome C,
and mitokines) that mediate intracellular and exocellular communications in homeostasis and stress
[2,5–10]. As such, mitochondrial defects or dysfunction has been implicated in various human dis-
eases including obesity, diabetes, cardiovascular disease, nonalcoholic fatty liver disease, neurodegen-
erative disease, and cancer [1,4,11–13].
Mitochondrial homeostasis is maintained primarily via a triad of mitochondrial biogenesis, mito-

chondrial dynamics (i.e. fusion and fission), and mitochondrial autophagy or mitophagy (i.e. autopha-
gic removal of mitochondria) (Figure 1) [1,6,7,14–18]. Studies have shown that the family of
peroxisome proliferator-activated receptor (PPAR)-γ coactivator 1 (Pgc1) interact with energy sensors
(e.g. AMPK and Sirt1) among others to switch on mitochondrial biogenesis via mitochondrial tran-
scription factor A (Tfam) [7,12,19]. Mitochondrial network is controlled by dynamic processes of
fusion, fission, and remodeling that involve mitofusin 1 (Mfn1), Mfn2, optic atrophy protein 1
(OPA1), dynamin-related protein 1 (Drp1), and mitochondrial fission protein 1 (Fis1) [6,17].
Mitochondrial dynamics not only regulates the morphology of but also facilitates content exchange
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among these organelles (including mitochondrial DNA), thereby keeping mitochondrial integrity in check [17].
Unilateral loss of fusion or fission dysregulates mitochondrial function and mitochondrial signaling pathways
that mediate cell pluripotency, division, differentiation, senescence, and apoptosis [6,17]. Augmented fission
promotes mitochondrial segregation and mitophagy by producing mitochondrial fragments of appropriate size
for autophagosomes to engulf (non-selective mitochondrial autophagy) [6,16,17]. In addition, the dynamics
proteins Drp1 and Mfn2 also participate in PINK1–Parkin mediated selective mitochondrial autophagy
[6,16,17]. For instance, PINK1-mediated phosphorylation of Mfn2 facilitates Mfn2–parkin interaction, which
promotes mitochondrial protein ubiquitination and recruitment of autophagosomes through the adaptor
protein LC3 [6,16,20].
The family of forkhead box class O (FoxO) transcription factors include FoxO1, FoxO3, FoxO4, and FoxO6.

FoxOs regulate genes that are involved in various pathways such as metabolic regulation, cell and tissue homeo-
stasis, and immunity [21–25]. FoxO activities are controlled by a nuclear localization signal (NLS) domain, a
nuclear export sequence (NES) domain, a DNA-binding (i.e. forkhead box) domain (DBD), and a C-terminal
transactivation domain [21,24,26]. Emerging evidence suggests that FoxOs may localize to mitochondria and
bind to mitochondrial DNA, and further studies are needed to define the role of FoxO in regulating mitochon-
drial genes [27,28]. Regardless, FoxO transcription factors regulate the expression of nuclear genes that mediate
mitochondrial biogenesis, dynamics, and mitophagy, underscoring FoxOs as the key regulators of mito-
chondrial homeostasis [29–40]. This article discusses the mechanisms or pathways by which FoxOs control
mitochondrial homeostasis.

Foxo transcription factors in mitochondrial biogenesis
FoxO proteins undergo posttranslational modifications (e.g. phosphorylation and acetylation) in response to
external stimuli such as stress or altered nutrient or cellular signaling [24,26,41]. For instance, insulin signaling
may silence FoxOs via protein kinase B (or Akt)-mediated phosphorylation, which controls glucose production
in the liver and protein homeostasis in skeletal muscle [41–43]. Obese or diabetic individuals who are insulin
resistant show metabolic derangements and mitochondrial dysfunction [44–47]. While it is under debate

Figure 1. A schematic view of the triad in mitochondrial homeostasis.

Finely tuned mitochondrial biogenesis, dynamics (fusion and fission), and mitophagy contribute to the homeostasis of these

organelles. Studies have established key regulators of mitochondrial biogenesis (e.g. Pgc1, NRF1, and Tfam), mitochondrial

fusion (e.g. Mfn1, Mfn2, and OPA1), fission (e.g. Drp1 and Fis1), and mitophagy (e.g. PINK1/Parkin, FUNDC1, and Tfeb).
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whether mitochondrial deficiency or dysfunction leads to insulin resistance [48], studies have shown that
insulin sensitivity is essential to mitochondrial homeostasis by finely tuning FoxO activity [3,36,44,46,49,50].
Mitochondrial biogenesis requires Pgc1α, a transcription coactivator that can be activated by the NAD

dependent deacetylase Sirt1, to trigger the cascade of NRF1-Tfam [7,12,19,29]. In line with the notion that
insulin promotes mitochondrial biogenesis [46], insulin resistance activates FoxO1 and reduces mitochondrial
content or compromises mitochondrial integrity [29,49,50]. Mitochondrial OXPHOS relies on a series of redox
reactions (e.g. the oxidation of NADH into NAD) through respiratory chain complexes I-IV that build up an
electrochemical gradient (i.e. mitochondrial membrane potential) to drive ATP production through complex V
(ATP synthase) [29,51,52]. Activation of FoxO1 in the liver up-regulates heme oxygenase 1 (Hmox1), which is
located in inner mitochondrial membrane and catabolizes mitochondrial heme [29,53], the essential cofactors
for redox enzymes on the electron transport chain (ETC), thereby compromising the integrity and function of
ETC (Figure 2A) [29,54]. Although the subcellular location of biliverdin reductase is arguable and under inves-
tigation [53,55,56], there is evidence showing that biliverdin reductase may partner with Hmox1 in inner mito-
chondrial membrane to facilitate heme breakdown (by Hmox1) into biliverdin and then into bilirubin (by
biliverdin reductase), thereby interfering with ETC and mitochondrial respiration [53,56]. The ETC deficiency
results in a lower NAD/NADH ratio and dampens the NAD-dependent deacetylase Sirt1. As a result, Pgc1α is

Figure 2. FoxO transcription factors regulate mitochondrial biogenesis.

(A) In the liver, FoxO1 may induce Hmox1, Fxn, and Urod, which disrupt mitochondrial ETC and NAD/NADH ratio, thereby

suppressing NAD-dependent Sirt1-Pgc1α-NRF1-Tfam pathway in mitochondrial biogenesis. Glucagon activated FoxO1

represses NRF1 and accounts for reduced mitochondrial biogenesis in the liver. (B) In contrast with the liver, FoxO1 induces

Cyb5r3 and maintains ETC activity and NAD/NADH ratio in the pancreas. It is unclear but of interest whether the FoxO1–

Cyb5r3 axis regulates mitochondrial biogenesis via the known NAD-dependent Sirt1-Pgc1α-NRF1-Tfam pathway (indicated by

question marks). (C) In the heart, FoxO1 activation due to diabetes causes mitochondrial abnormality by dysregulating PDK4

and CPT1 via a to-be-defined mechanism (indicated by question marks). (D) In cancer cells, FoxO3 suppresses mitochondrial

biogenesis and function by inhibiting c-Myc/Tfam signaling cascade.
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deactivated by high level of acetylation, which inhibits the NRF1-Tfam cascade and reduces mitochondrial bio-
genesis [29] (Figure 2A). In contrast, overexpression of a constitutively active Pgc1α (i.e. R13-Pgc1α that con-
tains 13 lysine-to-arginine substitutions to mimic Pgc1α activation by deacetylation) restores mitochondrial
content, suggesting that deactivation of Sirt1-Pgc1α cascade accounts for FoxO1 induced suppression of mito-
chondrial biogenesis [29]. Suppression of Pgc1α and mitochondrial biogenesis by FoxO1 was also observed in
renal tubular epithelial cells, where FoxO1 keeps CREB from forming CREB-CBP-P300 complex, thereby
down-regulating Ppargc1 (the gene encoding Pgc1α) [40]. Recent studies show that FoxO1 down-regulates
NRF1-Tfam and suppresses mitochondrial biogenesis, which may account for glucagon-mediated mitochon-
drial alteration [50]. In addition, glucagon induces ETC deficiency through FoxO1-dependent down-regulation
of Fxn and Urod, the genes involved in heme biosynthesis (Figure 2A) [50]. Interestingly, glucagon stimulates
fatty acid oxidation (FAO) regardless of ETC defects in hepatocytes [50,57], and long-term exposure to high
glucagon level can impair fatty acid oxidation activity [50]. The increased FAO by glucagon is attributed to
inositol triphosphate receptor 1 (INSP3R1) [57]. A glutamine-dependent reductive carboxylation pathway may
account for sustained FAO during ETC impairment [58], but it warrants further studies to determine whether
such a mechanism underlies glucagon-induced FAO and ETC defects.
In line with the role of FoxO1–Hmox1 axis in dysregulating mitochondrial and metabolic homeostasis,

Hmox1 has been associated with metaflammation and insulin resistance in mouse and man [59]. Hmox1 may
also contribute to hyperglycemia through catabolism of heme and release of excessive free ferrous in hepato-
cytes, which activates FoxO1 via NF-kB mediated phosphorylation at Ser273(FoxO1) and induces gluconeo-
genic gene in mice [60]. The Hmox1→ Fe2+→NF-kB→ FoxO1 cascade might serve as an adaptive
mechanism of selective clearance of dysfunctional mitochondria in the liver given the essential role of FoxO1
in mitochondrial autophagy (discussed in detail below). In adipose tissue and human adipocytes, Hmox1 is
associated with iron excess-induced dysfunction and impaired glucose uptake and respiratory capacity [61]. Of
note, induction of Hmox1 in specific immune cells may exert protective function via antioxidant and anti-
inflammatory reactions, underlining cell type- or tissue-dependent roles of FoxO1 or Hmox1 [26,54]. To this
end, activation of FoxO1 in pancreas was shown to promote pancreatic β-cells function and insulin secretion
[62,63]. In β-cells FoxO1 can directly bind to the promoter of Cyb5r3 and transactivates the gene to encode
mitochondrial membrane-bound cytochrome b5 reductase 3, the enzyme that mediates mitochondrial electron
transport (Figure 2B) [63]. Ablation of FoxO1 or Cyb5r3 dysregulates mitochondrial function and NAD/
NADH ratio and causes secretory granule abnormalities [63]. Nevertheless, it is unclear whether ablation of
FoxO1 or Cyb5r3 impairs mitochondrial biogenesis via the known NAD-dependent Sirt1-Pgc1α pathways. In
diabetic cardiomyocyte, FoxO1 induced mitochondrial alteration is associated with elevation of PDK4 and
CPT1, shifting substrate from glucose to fatty acid and causing cardiac dysfunction (Figure 2C) [49].
Suppression of FoxO1 activity with a selective inhibitor (AS1842856) ameliorates mitochondrial and cardiac
abnormality [49]. Of note, mitochondrial biogenesis in skeletal muscle or myoblasts may undergo a Pgc1α
independent pathway in response to exercise or high flux of oxidative substrates (e.g. pyruvate) [64,65].
Although the Pgc1α independent pathway remains to be defined, it is of interest for future studies to determine
whether and how FoxOs regulate mitochondrial biogenesis in skeletal muscle.
As another member of the FoxO family, FoxO3 plays an inhibitory role in mitochondrial biogenesis like

FoxO1 [38,50]. Activation of FoxO3 results in down-regulation of mitochondrial DNA copy number, lower
expression of mitochondrial proteins and mitochondrial respiratory activity in cancer cells [38]. In addition,
FoxO3 induces PDK4 and reduces mitochondrial oxygen consumption rates as observed for FoxO1 [38,49].
Intriguingly, FoxO3 induced suppression of mitochondrial biogenesis appears to be independent from Pgc1
family and NRF1; instead, it depends on the inhibition of c-Myc, a transcription factor that regulates nuclear
encoded mitochondrial genes by directly binding to the promoter of Tfam (Figure 2D) [38].
Overall, FoxO1 and FoxO3 appear to serve as a suppressor of mitochondrial biogenesis. In pancreas, FoxO1

was found to up-regulate mitochondrial protein and maintain mitochondrial function, and the role in mito-
chondrial biogenesis remains to be defined. The role of FoxO4 and FoxO6 in mitochondrial regulation is
largely unexplored. During oxidative stress FoxO4 binds to the promoter of SOD2 gene and induces expression
of manganese superoxide dismutase, an antioxidant enzyme located within the mitochondrial matrix [66].
FoxO4 may also interact with p53 to induce apoptosis that involves mitochondria and caspase-dependent
pathway [67,68]. FoxO6 activation was associated with redox homeostasis in kidney tissues from calorie restric-
tion rats [69]. However, in colorectal cancer cells FoxO6 seems to increase glycolysis and suppresses mitochon-
drial respiration, and the regulatory mechanism remains to be defined [70]. Further studies of FoxO4 and
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FoxO6 in this respect are desirable and critical to paint a whole picture of FoxO transcription factors in mito-
chondrial regulation.

FoxO transcription factors in mitochondrial dynamics
Mitochondria undergo constant fusion and fission, and the balance of these dynamic processes is essential to
mitochondrial hemostasis. Mitochondrial fusion is controlled by Mfn1, Mfn2 and Opa1 while mitochondrial
fission is controlled by Drp1 and Fis1 among other regulators [6,17]. In overnutrition conditions (e.g. obesity),
activation of FoxO1 leads to deformed mitochondria in the liver of insulin resistant mice [29,71] or glucagon
treated mice [50], which is associated with dysregulated fusion (e.g. up-regulation of Mfn1 and Mfn2) and
fission (e.g. down-regulation of Drp1 and Fis1) proteins (Figure 3A). Lower ATP production is reported for the
deformed mitochondria compared with normal mitochondria [29]. Ablation of FoxO1 normalizes mitochon-
drial morphology and ATP production [29], suggesting that FoxO1 plays a central role in mitochondrial
dynamics [29,50,71]. Interestingly, undernutrition conditions (e.g. nutrient depletion or starvation) activate

Figure 3. FoxO transcription factors regulate mitochondrial dynamics.

(A) In the liver or hepatocytes, FoxO1 up-regulates fusion proteins (Mfn1 and Mfn2) but down-regulates fission proteins (Drp1

and Fis1), leading to enlarged mitochondria. (B) Estrogen receptor (ERα) signaling induces Drp1 via Polg1 in brown adipocytes.

It is known that ERα signaling deactivates FoxO via PI3K/Akt in adipose tissue and the liver, raising the question whether

FoxOs may account for ERα induced mitochondrial fission (indicated by question marks). (C) FoxO3 inhibits mitochondrial

fission by repressing MIEF2 or inducing miR-484, which are cardioprotective in doxorubicin (DOX)-induced mouse

cardiotoxicity. Notably, FoxO3 was shown to stimulate mitochondrial fission via Bnip3-calcineurin mediated dephosphorylation

(activation) of Drp1 in phenylephrine (PE)-stressed adult cardiomyocytes or heart from rats. The discrepancy may arise from

different models of cardio stress induced by DOX vs PE. (D) In intestinal crypt-based columnar cells, FoxO1 and FoxO3

dampens mitochondrial fission by transactivating miR-484 that in turn silences Fis1.
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cAMP-PKA pathway that leads to inhibitory phosphorylation of Drp1 and mitochondrial elongation, which
serves as an important mechanism to sustain cell viability by preventing mitochondria from autophagic degrad-
ation and maintaining mitochondrial ATP production [72]. Given FoxO1 is also activated during fasting state
[42], it will be of interest to investigate whether FoxO1 participates in undernutrition induced changes in mito-
chondrial dynamics. In addition, studies of mice lacking estrogen receptor α (ERα) in brown adipose tissue
revealed a role of mtDNA polymerase γ (Polg1) in increased mitochondrial fission via Drp1 [73]. Because ERα
is a potent inhibitor of FoxO1 via Akt -mediated phosphorylation [74,75], future studies are warranted to
examine whether FoxO1 mediates ERα regulation of mitochondrial dynamics (Figure 3B).
FoxO3 is implicated in the regulation of mitochondrial dynamics, and the role appear to be multifaceted. In

cardiomyocytes, FoxO3 inhibits mitochondrial fission by transactivating microRNA-484 (miR-484) expression
[76]. FoxO3 induced miR-484 binds to the amino acid coding sequence of Fis1 mRNA and suppresses Fis1
protein expression and mitochondrial fission, which attenuates apoptosis and myocardial infarction in mice
(Figure 3C) [76]. The cardioprotective function is also associated with FoxO3 repressing mitochondrial dynam-
ics protein of 49kDa (MiD49 or MIEF2) by directly binding to the promoter of MIEF2 gene (Figure 3C) [35].
MIEF2 protein facilitates the recruitment of Drp1 to mitochondrial membrane, where Drp1 is polymerized and
rings at constriction sites to promote mitochondrial fission [77]. Overexpression of FoxO3 in cardiomyocytes
suppresses mitochondrial fission and apoptosis, protecting against chemotherapeutic drug doxorubicin-induced
cardiotoxicity in mice [35]. Interestingly, FoxO3 was also shown to promote mitochondrial fission, apoptosis,
and cardiac stress or heart failure by up-regulating BCL2/adenovirus E1B 19-kDa protein-interacting protein 3
(Bnip3) in rats [37]. Mechanistically, FoxO3 induced Bnip3 dysregulates calcium in the cytosolic and mito-
chondrial compartments. The increase in cytosolic calcium activates calcineurin, a phosphatase that activates
Drp1 via dephosphorylation at Ser637(Drp1), thereby promoting Drp1-mediated mitochondrial fragmentation
(Figure 3C) [37]. This discrepancy may arise from the different chemicals and resultant models of cardiotoxi-
city, i.e. phenylephrine-stressed adult cardiomyocytes versus doxorubicin-induced cardiotoxicity [35,37].
FoxO-regulation of mitochondrial dynamics plays a key role in stem cell proliferation and differentiation

[32,78]. In line with FoxO dampening mitochondrial fission by transactivating miR-484 to silence Fis1 [76],
ablation of FoxO1 and FoxO3 in mouse Lgr5+ intestinal stem cell or crypt-based columnar cells (CBC) pro-
motes mitochondrial fission (Figure 3D) [32]. FoxO deficient CBC have lower mitochondrial respiration rates
and undergo a metabolic transition from OXPHOS to glycolysis, which drives the differentiation of CBC into
secretory Paneth cells and goblet cells [32,79]. Inhibition of mitochondrial fission by targeting Drp1 prevents
the increase in secretory cell numbers [32]. Interestingly, the proliferation and differentiation of intestinal stem
cells (ISC) in fruit flies requires a metabolic transition from glycolysis to OXPHOS [78]. Disruption of ETC
complexes leads to up-regulated FoxO, which blocks the ISC commitment to enteroblast (EB),
EB-to-absorptive enterocyte specification, and EB-to-secretory enteroendocrine cell specification [78]. The dis-
crepancy may arise from cell type (e.g. Lgr5+ vs. Lgr5-intestinal stem cell) or species (e.g. mouse vs. fruit flies)
dependent differences.
Taken together, activation of FoxOs may induce transcriptional, posttranscriptional (e.g. miR-484), and post-

translational (e.g. Drp1 dephosphorylation) changes that dysregulate mitochondrial fusion and fission. FoxOs
seem to play multifaceted roles in mitochondrial fission depending on experimental models or species, and
further studies are warranted to identify the underlying determinants of the multifaceted roles.

FoxO transcription factors in mitochondrial autophagy
Selective mitochondrial clearance by autophagy may undergo receptor (e.g. Bnip3, NIX, and FUNDC1) and
adaptor (e.g. NBR1 and p62/SQSTM1) dependent pathways, which facilitate mitochondria being connected to
and engulfed by autophagosome (Figure 4A) [15,16,80,81]. Receptor proteins contain a COOH-terminal trans-
membrane domain that connects with mitochondrial membrane and an NH2-terminal LC3-interacting region
(LIR) motif that binds to lipidated LC3 and facilitates connecting mitochondria to autophagosome membrane
[16]. Like receptor proteins, adaptor proteins contain an LIR motif. However, a transmembrane domain is
absent from adaptor proteins; instead, a ubiquitin binding domain (UBD) is present to facilitate the connection
to mitochondria through the binding to polyubiquitinated proteins located on mitochondrial outer membrane
[15,16]. The ubiquitin-dependent mitophagy requires PTEN induced kinase 1 (PINK1), which is accumulated
during stress conditions and recruits of Parkin to mitochondria to initiate ubiquitination of mitochondrial pro-
teins. Parkin also participates in cargo sorting, budding of mitochondrial-derived vesicles, and matrix delivery
to lysosomes for degradation [82,83]. Regardless of the differences discussed above, studies have revealed cross-
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talk existing between receptor-mediated pathways and adaptor-mediated ubiquitin-dependent pathways [15,81].
For instance, the mitophagy receptor protein Bnip3 interacts with PINK1 to promote PINK1 accumulation on
the mitochondrial outer membrane, triggering the PINK1–Parkin mediated ubiquitin-dependent pathways
[84,85]. On the other hand, Parkin induced ubiquitination of mitophagy receptor protein NIX promotes the
recruitment of adaptor protein NBR1, initiating ubiquitin dependent pathway to mitochondrial clearance [86].
FoxO transcription factors regulate an array of genes involved in autophagic regulation [23,24,87]. In the

process of selective mitochondrial autophagy, FoxO proteins regulate both adaptor-mediated ubiquitin-
dependent pathways and receptor-mediated pathways (Figure 4A). In mouse podocyte cells, FoxO1 induces
PINK1 by directly binding to the promoter of PINK1 gene and stimulates PINK/Parkin dependent mitophagy,
which protects against podocyte injury and ameliorates diabetic nephropathy progression [36]. In white
adipocytes, ERα signaling induces a browning phenotype by deactivating PINK1/Parkin pathways [73],
presumably because ERα suppresses FoxO1 by activating Akt [74,88]. Indeed, FoxO1 occupancy on PINK1
promoter is dampened by insulin sensitization that enhances Akt-mediated inhibition of FoxO1, whereas
overexpression of constitutively active FoxO1 promotes PINK1-dependent mitophagy [89]. Conditional deletion
of FoxO1 and FoxO3 in cardiomyocytes down-regulates PINK1 and significantly increases the infarct area in
mice subjected to myocardial infarction (MI) or acute ischemia/reperfusion (I/R) injury [90]. Interestingly,
inhibition of FoxO1 prevents renal I/R injury in mice [40]. In dopamine neurons, manganese increases FoxO3
nuclear retention and activates PINK1/Parkin cascade, which is associated with reduced cell viability [91].
Mechanistically, FoxO3 stimulates mitophagy by transactivating the expression of PINK1 gene (Figure 4A)
[92]. Given manganese induced neurotoxicity accounts for the loss of dopamine neurons in Parkinson’s disease
(PD), future study of the FoxO3-mitophagy pathways may lead to new therapeutic options for PD [33,91].
In receptor dependent mitophagy, FoxO transcription factors control the expression Bnip3 and Bnip3L

(Figure 4A) [33,37,39]. FoxO3 expression is elevated in heart failure, concurrent with up-regulation of Bnip3,
mitophagy, and apoptosis in cardiomyocytes [39]. Knockdown or overexpression of FoxO3 in cardiomyocytes
leads to down- or up-regulation of Bnip3, respectively [37,39]. Chromatin immunoprecipitation (ChIP) sequen-
cing analysis suggests that FoxO3 directly binds to the promoters of Bnip3 and Bnip3L among other genes
[33]. In adult neural stem and progenitor cells, ablation of FoxO3 reduces Bnip3 and Bnip3L expression and
mitochondrial turnover but increases aggregate levels [33]. FoxO1 induction of Bnip3 was also observed in
neurons lacking JNK [93] and in skeletal muscle [94]. Overexpression of Sirt1 deactivates FoxO1 and FoxO3
through deacetylation, thereby suppressing Bnip3 [94].
With the assistance of adaptor or receptor proteins, mitochondria are connected with and engulfed by autop-

hagosomes (Figure 4A,B), which in turn fuse with lysosome to form autolysosomes for mitochondrial degrad-
ation (Figure 4C) [16]. FoxOs regulate not only adaptor- and receptor-dependent engulfing of mitochondria
(as discussed above) but also gene expression that are involved in autophagosome [23,24] and lysosome
regulation [31,95]. Specifically, FoxOs regulate genes involved in the stages of initiation (e.g. Ulk1 and Ulk2),

Figure 4. FoxO transcription factors regulate mitochondrial autophagy (mitophagy).

FoxOs mediate mitophagy in three aspects: (A) mitochondria connected to and engulfed by autophagosome via adaptor- and receptor-dependent

pathways; (B) the formation and maturation of autophagosome (e.g. the initiation, nucleation, and elongation steps), and (C) fusion with lysosome to

form autophagosome for cargo degradation.
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nucleation (e.g. Becn1, Atg14, and Pi3kIII), elongation (e.g. Map1lc3b, Gabarapl, Atg4, Atg5, and Atg12), and
fusion (e.g. Tfeb and Rab7) (Figure 4A), which has been discussed in recent reviews [23,24]. As a target of
FoxOs, Tfeb regulates autophagosomal and lysosomal genes as well as the fusion of autophagosome with lyso-
some [96–98]. Tfeb activity is controlled by posttranslational modification, such as mTORC1 mediated phos-
phorylation that excludes Tfeb from the nucleus [99–101]. At transcriptional level, Tfeb gene was transactivated
by FoxO1, which might account for mitophagy regulation and white-beige adipose tissue conversion [95].
FoxO1 induces Tfeb by directly binding to the promoter of Tfeb gene [95], and inhibition of FoxO1 down-
regulates Tfeb and its target genes (e.g. CTSB, CTSD, CTSH, and CTSS) (Figure 4C) [31]. In aged T cells,
FoxO1 deficiency increases cell mass and secretion of cytotoxic exosomes due to impairment of
TFEB-mediated lysosomal activity and proteostasis [31].
Together, FoxOs induce mitophagy in three major aspects, (i) expression of autophagosome machinery pro-

teins, (ii) expression of adaptor and receptor proteins that facilitate mitochondria connected to and engulfed by
autophagosome, and (iii) expression of lysosome proteins essential to autolysosome formation and cargo
degradation.

Conclusions
Mitochondrial quality is controlled through a triad of biogenesis, dynamics, and mitophagy, which underpins
metabolic health and tissue homeostasis. Accumulated evidence has underscored FoxO transcription factors as
the key regulators of mitochondrial homeostasis. FoxO activation may suppress mitochondrial biogenesis, dys-
regulate mitochondrial fusion and fission, and induces mitophagy through adaptor- and receptor-dependent
pathways. Dysregulation of FoxOs is associated with mitochondrial alterations and metabolic derangements,
and pharmacological modulation of FoxO activity has been one of the top candidates for drug discovery [21].
Regardless, caution should be exercised with the following complexity in order to develop effective therapeutics
in the future: first, FoxOs may regulate mitochondria in a cell type- and tissue-dependent manner. For instance,
inactivation of FoxO1 improves mitochondrial homeostasis in the liver [29,50,71] and kidney [40] but the
opposite was observed in the pancreatic β-cells [62,63]. Likewise, ablation of FoxO in cardiomyocytes dampens
PINK1/Parkin dependent mitophagy and increases cardiac ischemia/reperfusion (I/R) injury [90], while inhib-
ition of FoxO1 prevents renal I/R injury in mice [40]. Secondly, the interplays among mitochondrial biogenesis,
dynamics, and mitophagy may complicate the outcome of FoxO modulation. In addition to mediating mito-
chondrial dynamics, Mfn2 and Drp1 also regulate mitophagy by interacting with PINK1, Parkin, and Bnip3 in
cardiomyocytes and dopamine neurons [20,37,102–104]. Moreover, Mfn2 also regulates Pgc1α-mediated mito-
chondrial adaptation in response to increased energy demand in skeletal muscle and brown adipose tissue
[105]. As such, targeting FoxOs for mitochondrial biogenesis (e.g. via Pgc1α cascade) could impose undesired
effects on mitochondrial dynamics and mitophagy, or vice versa. Future studies designed to precisely target
FoxOs and mitochondrial alterations are critical for the development of effective therapeutics, such as selective
organ targeting approaches and nanotechnology [106,107].
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