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The nuclear factor-κB (NF-κB) signaling pathway is one of the most well-studied path-
ways related to inflammation, and its involvement in aging has attracted considerable
attention. As aging is a complex phenomenon and is the result of a multi-step process,
the involvement of the NF-κB pathway in aging remains unclear. To elucidate the role of
NF-κB in the regulation of aging, different systems biology approaches have been
employed. A multi-omics data-driven approach can be used to interpret and clarify
unknown mechanisms but cannot generate mechanistic regulatory structures alone. In
contrast, combining this approach with a mathematical modeling approach can identify
the mechanistics of the phenomena of interest. The development of single-cell technolo-
gies has also helped clarify the heterogeneity of the NF-κB response and underlying
mechanisms. Here, we review advances in the understanding of the regulation of aging
by NF-κB by focusing on omics approaches, single-cell analysis, and mathematical mod-
eling of the NF-κB network.

Introduction
The transcription factor nuclear factor-κB (NF-κB) is responsible for regulating genes associated with
inflammation [1]. NF-κB is linked not only to diseases such as cancer but also to the aging
process [2]. Aging is an unavoidable time-dependent decline in physiological organ function. By dis-
rupting the homeostasis of health, aging rapidly increases the risk of death from cancer, diabetes, or
heart disease [3,4].
As we age, our bodies accumulate senescent cells [5,6]. Notably, the activation of NF-κB signaling

promotes cell senescence [7]; NF-κB activation has been known to shorten the lifespan of fruit
flies [8] and mice [9,10]. Furthermore, an increase in NF-κB DNA-binding activity has been reported
in dermal fibroblasts and renal tissues derived from elderly individuals [11,12]. Therefore, a compre-
hensive understanding and control of the NF-κB system may shed light on how to prevent age-related
diseases and prolong lifespan.
NF-κB is the primary regulator of senescence-associated secretory phenotype (SASP), which con-

sists of inflammatory cytokines (interleukin [IL]-6 and IL-8), proteases (matrix metalloproteinases),
chemokines (monocyte chemoattractant proteins and macrophage inflammatory proteins), and growth
factors (granulocyte–macrophage colony-stimulating factor and transforming growth factor-β), and
has a significant function in aging [13,14]. SASP is responsible for maintaining tissue homeostasis by
removing unwanted senescent cells and triggers an inflammatory response that recruits immune cells,
such as granulocytes, macrophages, natural killer (NK) cells, and T cells [15]. Thus, if not properly
regulated, this system can cause pathological inflammation.
With age, our bodies become more susceptible to harmful inflammatory conditions, such as cyto-

kine storms (a state of excessive cytokine production) [16]. Senescent cells have higher basal levels of
various inflammatory cytokines and chemokines [17]. More importantly, in response to IL-1β,
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lipopolysaccharide (LPS), and tumor necrosis factor (TNF)-α stimulation, the induction of various inflamma-
tory mediators is enhanced in senescent cells compared to that in non-senescent cells, and LPS stimulation
causes significantly higher levels of NF-κB nuclear translation [17]. For example, elderly individuals infected
with the coronavirus disease 2019 (COVID-19) are likely to have very high rates of adverse health effects and
mortality due to cytokine storms [16].
Aging and senescence are caused by various developmental signals and different types of stresses and are

considered to be the results of a multistep process [18,19]. Although various induced senescent cell models
[20] and aging animal models [2] have been reported to elucidate the complex system, still lacking is an overall
picture that recapitulates the cellular transmission and spatial interactions of aging to understand and overcome
the unfavorable effects of aging. The utilization of multi-omics methods, such as transcriptomic, epigenetic,
and proteomic approaches, has contributed to the elucidation of complex mechanisms. However, these
methods cannot determine how age-related diseases can be prevented because they alone cannot generate
mechanistic regulatory structures [21]. By contrast, investigating aging and senescence by integrating data-
driven time-course omics with mathematical modeling approaches will expand our understanding of how the
whole system of aging is regulated and predict the individual outcomes of the system against genetic and envir-
onmental factors. Thus, here, ‘systems biology’ can be termed as a set of approaches to uncover complex mech-
anistic structures through analysis of comprehensive time-course omics data and mathematical models to
identify, dissect, and manipulate the molecular regulatory network of aging.
In this review, we summarize how NF-κB regulates aging systems and how multi-omics and mathematical

modeling approaches have contributed to the elucidation of transcriptional regulation of NF-κB and aging. We
also discuss the dynamic properties of the NF-κB system and the significance of oscillation and non-oscillation
dynamics in the regulation of downstream target genes.

NF-κB pathway
Since its discovery as a nuclear factor that binds to DNA elements in the intronic enhancer of the kappa light
chain gene of B cells, NF-κB has been investigated for its function as a transcription factor [22]. The NF-κB
network consists of seven family members: p105/p50 (NFKB1), p100/p52 (NFKB2), p65 (RELA), RelB (RELB),
and c-Rel (REL); these form homodimers or heterodimers and acquire the ability to bind to DNA differently.
Among these proteins, only p65 (RELA), RelB, and c-Rel contain the carboxy-terminal transactivation domain
(TAD) that activates the transcription of NF-κB target genes [23,24]. In most cells, the p50/p65 heterodimer is
a major NF-κB transcription factor. Homo- or heterodimers of p50 and p52 cannot promote transcription due
to the absence of TAD but instead bind to the κB site sequence and act as transcriptional repressors [25].
The NF-κB transcription factor constitutes a homo- or heterodimeric protein that binds to a

5’-GGGRNNNYCC-3’ (where G, C, R, Y, and N are guanine, cytosine, purine, pyrimidine, and any nucleotide
base, respectively) consensus κB site sequence consisting of 10 nucleotides [26]. The DNA-binding motifs of
most transcription factors, including NF-κB, have been identified by the Encyclopedia of DNA Elements
(ENCODE) Project Consortium using both chromatin immunoprecipitation (ChIP) and next-generation
sequencing [27–29]. To date, several different kB sites have been identified despite being limited to the p50/p65
heterodimer [30].
The NF-κB network is explained by two major pathways: the canonical NF-κB essential modulator

(NEMO)-dependent pathway and the non-canonical NEMO-independent pathway (Figure 1) [31,32]. The
canonical pathway is activated by stimuli such as TNF-α, IL-1β, and LPS, which leads to the phosphorylation
of the inhibitor of κB (IκB) kinase (IKK) complex; the latter is composed of IKKα, IKKβ, and NEMO. The
activation of the IKK complex phosphorylates IκB proteins (IκBα, IκBβ, and IκBε), leading to proteasome-
mediated proteolysis of IκB proteins and allowing the NF-κB complex (p50/p65) to enter the nucleus [33].
The non-canonical pathway is NEMO-independent but NF-κB-inducing kinase (NIK)- and IKKα-dependent

[34,35]. It is activated through receptors such as B-cell activating factor receptor [36,37], lymphotoxin beta
receptor [38], cluster of differentiation (CD) 40 [39], and receptor activator of NF-κB [40]. Signal transduction
by receptors activates the NIK/IKKα complex, which phosphorylates p100 and is processed into p52, which
allows RelB to form the NF-κB complex (p52/RelB) that moves into the nucleus [34,35]. This translocated
complex then binds to DNA and induces its target gene expression, including inflammatory cytokines and
modulators of the NF-κB pathway.
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NF-κB and cellular senescence
Accumulating senescent cells is one of the major causes of aging-related disorders [4–6]. It has been reported
that senescent cells increase with age in many mice and human tissues, such as the adipose tissue, liver, kidney,
and skeletal muscle [41]. Cellular senescence was first reported in 1961 by Leonard Hayflick using human
fibroblast cells to relay the limitations of mitotic capacity with replicative stress (RS), known as the Hayflick
limitation [42]. Senescent cells are stable, terminal-growth-arrest cells that can be characterized by flat, large-
shaped cell morphology, telomere shortening, promotion of cyclin-dependent kinase inhibitor p16 [43] or p21
[44], and increased senescence-associated β-galactosidase (SA-β-gal) activity. SA-β-gal was one of the first pub-
lished biomarkers of aging, and helped to demonstrate the accumulation of cells with aging characteristics in
various mammalian aging-related diseases and in aging tissues [44]. The removal of p16-expressing senescent
cells suppresses aging and extends the lifespan of mice, indicating that cellular senescence is an important
factor in aging research [43,45].
Reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), and DNA damage accumulate with cellu-

lar senescence and crosstalk with NF-κB signaling (Figure 2) [46,47]. ROS induce DNA damage, which results
in IKK activation via activation of ataxia-telangiectasia mutated kinase [48]. Typical IκBα is phosphorylated on
S32 and S36 by the IKK complex upon NF-κB activation, whereas H2O2 phosphorylates IκBα on Y42, a
process mediated by the spleen tyrosine kinase–casein kinase II pathway [49–51]. H2O2 directly activates [52–54]

Figure 1. Overview of the canonical and non-canonical NF-κB pathway.

In the canonical nuclear factor-κB (NF-κB) essential modulator (NEMO)-dependent pathway, the inhibitor of κB (IκB) kinase (IKK) complex is

activated by activated tumor necrosis factor receptor (TNFR), interleukin (IL)-1 receptor (IL1R), and Toll-like receptor (TLR)s. IKK complex activation

induces proteasome-mediated proteolysis of IκB proteins and allows the NF-κB complex (p50/p65) to accumulate in the nucleus. p50/p65 dimers

bind to DNA and regulate the transcription of senescence-associated secretory phenotype genes, such as IL-6 and IL-8. In the non-canonical

NEMO-independent pathway, NF-κB-inducing kinase (NIK) phosphorylates IKKα and leads to the phosphorylation of p100. This process induces

subsequent ubiquitination and partial degradation of p100 by the proteasome to form the NF-κB complex (p52/RelB). p52/RelB dimers enter the

nucleus and regulate downstream target genes.
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or inactivates [55–57] NF-κB via the IKK complex depending on the cell type and influences DNA binding
through the phosphorylation of p65 at S276 [58].
In human skin keratinocytes, the overexpression of c-Rel, a subunit of NF-κB, induces premature senescence

[59]. The inhibition of H2O2 in c-Rel-overexpressing keratinocytes decreases the expression of SA-β-gal, sug-
gesting that NF-κB is involved in cellular senescence. In addition, the overexpression of p50/p65 in keratino-
cytes induces cell growth arrest along with p21 activation [60]. Inflammatory SASPs (such as IL-6 and IL-8,
among others) are regulated by NF-κB and not only are characterized as senescence markers but also form
autocrine loops and induce growth arrest [61,62]. Microarray analysis of senescent human fibroblasts has
shown that the expression of SASP genes is up-regulated and that the inhibition of NF-κB leads to cells escap-
ing cell-cycle arrest [7].
NF-κB maintains cellular senescence by promoting DNA repair and genome stability. Wang et al. [63] com-

pared the rate of immortalization of primary fibroblasts from RelA/p65 (−/−) mouse fibroblasts and RelA/p65
(+/+) cells and found that RelA/p65 (−/−) cells undergo immortalization at a faster rate owing to early DNA
mutation and gene deletion caused by genome instability. In a study of NF-κB-dependent effects and mechan-
isms underlying ROS generation in normal human lung fibroblasts, ROS were reported to cause cell cycle arrest
and lead to premature senescence [64]. Interestingly, a previous report showed that the inhibition of NF-κB

Figure 2. Activation of NF-κB in cellular senescence via ROS.

Cellular senescence leads to the accumulation of reactive oxygen species (ROS), which can induce senescence. ROS interact with nuclear

factor-κB (NF-κB) at various locations during signal transduction and induce DNA damage. DNA damage induces activation of NF-κB via

ataxia-telangiectasia mutated (ATM) kinase activating the inhibitor of κB (IκB) kinase (IKK) complex. ROS are thought to directly affect downstream

targets by activating and deactivating the IKK complex, which occurs in a cell type-specific manner. Compared with canonical IKK activation, ROS

can alternatively activate the NF-κB complex through the spleen tyrosine kinase (Syk)–casein kinase II (CKII) pathway by phosphorylation of IκBα at

Y42. Phosphorylation of p65 at S276 by ROS activates the DNA binding of p65, resulting in greater NF-κB activation (adapted from [47]).
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signaling up-regulates p53-p21 expression and promotes premature senescence [64]. These reports indicate that
NF-κB signaling may not only function as a mechanism to promote aging but also have completely opposite
functions, suggesting the possibility of differences in functions among cell types and regulatory mechanisms
that have not yet been elucidated.

NF-κB and aging
The role of the NF-κB pathway has attracted increasing attention in the field of aging research [65,66].
Persistent NF-κB activation in chronic inflammation leads to the promotion of aging via the shortening of telo-
meres [67] and increased expression of γ-H2AX protein [68], which are both widely known aging markers [4,69].
Progressive decline in immune response, including a reduction in proliferative effector responses and a

decrease in T cell signaling, has been observed in aging [70]. T cells have several subtypes, including CD8+ T
cells (killer T cells), CD4+ T cells (helper T cells), and regulatory CD4+ CD25+ T cells [71]. Human CD8+ T
cells are further classified as naïve, central memory (T(CM)), and effector memory cells (T(EM) and T
(EMRA)) [72,73]. A Naïve CD8+ T cells and T(CM) CD8+ T cells in the elderly have been found to be more
sensitive to apoptosis than those in young individuals [70]. In contrast, T(EM) and T(EMRA) CD8+ T cells are
less sensitive, and there is no significant difference in their levels between younger and older individuals [70].
TNF-α production is known to accelerate aging in humans [74–77]. However, the expression of TNF receptors
(TNFRI and TNFRII) in CD8+ T cells has been reported to be similar between young and aged subjects [70].
Thus, heterogeneity in the age and cell type response in CD8+ T cells can be attributed to the difference in
TNFR downstream NF-κB signal transduction. Because T cells play a central role in cellular immunity, the
mechanistic association between NF-κB and aging in T cells will provide a deeper understanding of age-related
immune responses.
In terms of the immune response in aging, interesting findings from an animal model of aging, the naked

mole-rat (NMR, Heterocephalus glaber), have been reported. NMRs are relatively long-lived rodents for their
size, and the risk of mortality does not appear to increase with age [78]. Compared with those in mice, macro-
phages from NMRs have been reported to activate Toll-like receptors in response to LPS stimulation, initiate
NF-κB, and produce large amounts of cytokines to enhance immune responses [79]. Hilton et al. [80] collected
single-cell RNA sequencing (scRNA-seq) data from spleen derived from NMRs and mice and found NMRs
lack canonical NK cells. In addition, LPS was intraperitoneally administered to NMRs and mice, and their
spleens were harvested for bulk RNA-seq and scRNA-seq [80]. Subsequently, gene set enrichment analysis
(GSEA) revealed that LPS induces the NF-κB inflammatory pathway in both organisms and that NMRs have a
subset of LPS-responsive cells that are not present in mice. While no direct reports indicate that NMR aging is
linked to NF-κB, elucidation of NF-κB system regulation in NMR may lead to a deeper understanding of
aging.
Studies on human fibroblasts from elderly people [11] and animal organs, such as the liver, kidney, and

brain, have revealed that the nuclear concentration of NF-κB increases with age. In aging livers, a significant
age-related increase in NF-κB binding activity, along with increased levels of nuclear p52 and p65 proteins in
the rat liver, has been reported [81]. Interestingly, the expression of NF-κB mRNA (NFKB1, NFKB2, RELA,
and REL) and its inhibitor transcripts (NFKBIA and NFKBIB) have not shown statistically significant
age-related changes [81]. This result indicates that post-translational modifications occur during liver aging and
may affect nuclear localization and binding activity during aging. In rat kidney, decreased IκBα levels and
increased nuclear p65 protein levels indicate that NF-κB activity is enhanced by a reduction in IκBα
levels [82]. This increase in NF-κB activity is accompanied by an increase in the mRNA and protein levels of
cyclooxygenase 2, from which ROS is derived in the body. The roles of IKK-β and NF-κB in mouse brain
aging have also been reported. Zhang et al. [10] studied the hypothalamus and cortical tissues of young
(3–4-month-old), middle-aged (11–13-month-old), and old (22–24-month-old) C57BL/6 mice and found that
p-RelA expression increases in the hypothalamus and cortical tissues as mice age and that preventing the acti-
vation of IKK-β and NF-κB in these tissues can prolong their lifespan.
The relationship between NF-κB activation and aging has been demonstrated using aging animal models.

Senescence-accelerated mice (SAM), which have been used as an animal model for pathological aging, show
increased levels of oxidative stress-related dysfunction and inflammation [83]. SAM prone 8 (SAMP8), a strain
of SAM, is short-lived with accelerated aging and exhibits age-related pathologies, such as learning and
memory deficits, similar to those in human aging [84]. Pro-inflammatory, pro-apoptotic, and pro-oxidative
states are markedly increased in the lungs of aged SAMP8 compared with those of SAM resistant 1 [85].
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Forman et al. [85] showed that, in SAMP8 hearts, the nuclear concentration of NF-κB (p50, p52, and p65) is
increased, while the levels of cytoplasmic IκBα and IκBβ are reduced.
Experiments on transgenic Nfkb1−/− mice have also contributed to uncovering the relationship between

NF-κB and aging [2]. Nfkb1−/− mice lack both the p105 precursor and p50 subunits and demonstrate persistent
induction of p65/p65 homodimer formation [86]. The phenotype of this transgenic mouse shows accelerated
apparent senescence, shortened lifespan, telomere damage, and a chronic inflammatory state, which leads to
the production of SASP. A cellular level analysis of Nfkb1−/− mice showed decreases in proliferation speed and
apoptosis and increases in SA-β-gal positive cells, expression of cyclin-dependent kinase inhibitors p16 and
p21, and γ-H2AX accumulation [87]. These data indicate that the loss of Nfkb1 leads to premature senescence
in mammals.

Multi-omics regulation of NF-κB and aging
What occurs within our bodies as we age? To answer this question, multi-omics analysis has been vigorously
performed to understand transcriptomic, epigenetic, and proteomic regulation [88]. Attempts to collect omics
data on aging phenotypes have produced several databases, such as Human Aging Genomic Resources (HAGR)
[89], SeneQuest [90], and the Aging Atlas [91], which help us to integrate data and provide a bird’s eye view of
the biological pathways involved in the aging process. HAGR (http://genomics.senescence.info/) is a collection
of databases on human and model organism aging that can be searched for age-related genes, drugs, and
genetic variants [89]. SeneQuest (https://senequest.net/) is a database of genes related to senescence and is
maintained by the International Cell Senescence Association [90]. The Aging Atlas (https://ngdc.cncb.ac.cn/
aging/index) is a multi-omics database for aging biology that enables researchers to find information from gen-
omics, epigenomics, transcriptomics, proteomics, metabolomics, and pharmacogenomics data at either the bulk
or single-cell level [91]. These databases were developed with graphical user interface-based platforms and
enable biologists to readily access omics data related to aging and senescence.
Hereafter, we discuss omics research investigating the relationship between NF-κB and aging (Table 1).

Omics 1. Transcriptome regulation of NF-κB and aging
Transcriptomic changes during the aging of various cells and tissue samples indicate a relationship between
NF-κB and aging. To explore the cause of the decline in immune response, transcriptomic profiles of naïve
(CD44low) and memory (CD44high) CD4+ T cells, which are impaired by the aging process, were derived from
young and aged mice and examined by Taylor et al. [92]. To determine probable upstream regulators, cis-
regulatory analysis of differentially expressed genes during aging was performed, and NF-κB was identified as a
potential age regulator [92].
Transcriptome changes in senescent cells induced by RS and cigarette smoke exposure also indicate that

NF-κB is related to aging [93]. Cigarette smoke exposure and RS are well-known senescence inducers [94].
Voic et al. [93] performed RNA-seq in passaged cigarette smoke extract (CSE)-exposed and non-CSE-exposed
senescent primary human bronchial epithelial cells and showed that GSEA indicated dysfunction in the regula-
tion of ROS, proteasome degradation, and NF-κB signaling under either RS or CSE. miRNA analysis has also
been conducted to explore the influence of aging. Transcriptome analysis of miRNA from the peripheral blood
of young and aged rats showed that miR-136-3p and miR-503-3p are differentially expressed with aging and
are regulated by NF-κB and SIRT1 [95].
Aging has been reported to increase the risk of severe COVID-19 [96,97]. Ma et al. [98] created a single-cell

transcriptomic atlas of the cardiopulmonary system of aged cynomolgus monkeys and reported the involvement
of NF-κB in age-related susceptibility to severe acute respiratory syndrome coronavirus disease 2
(SARS-CoV-2). The authors reported that the expression of angiotensin-converting enzyme 2 (ACE2), a recep-
tor for SARS-CoV-2, increases with age in the alveolar epithelial barrier, cardiomyocytes, and vascular endothe-
lial cells. They also found that aged cardiopulmonary tissues accumulate IL-7 and induce ACE2 expression in
human vascular endothelial cells in an NF-κB-dependent manner.
Interestingly, the aging of the skin is thought to differ slightly from that of other tissues because it is caused

by both internal factors (such as senescent cells) and external factors (such as ultraviolet light [UV]). Haustead
et al. [99] focused on skin aging caused by internal factors by analyzing the transcriptome of sun-unexposed
skin tissue from healthy males aged 19 to 86 years. In middle-aged subjects (30–45 years old), the authors
found gene enrichment in response to DNA damage stimuli and positive regulation of the NF-κB cascade via
IKK. Regarding the relationship between UV light and NF-κB, O’Dea et al. [100] reported that UV light does
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Table 1 Omics studies of NF-κB and aging Part 1 of 2

Omics Methodology Sample Result Reference

Transcriptome
regulation

Microarray Naïve (CD44low) and
memory (CD44high) CD4+
T cells derived from young
(2–3-month-old) and aged
(28-month-old) mice

Upstream analysis of
differentially expressed
genes during aging was
performed, and NF-κB was
identified as a potential age
regulator

[92]

Transcriptome
regulation

RNA-seq pHBEC senescence
induced by RS and CSE

Under both RS and CSE
stress, gene set enrichment
analysis indicated
dysfunction in the regulation
of ROS, proteasome
degradation, and NF-κB
signaling

[93]

Transcriptome
regulation

miRNA
sequencing

Peripheral arterial and
venous blood of young
(8-week-old) and aged
(22-month-old) rats

miR-136-3p and
miR-503-3p are differentially
expressed with aging and
are regulated by NF-κB and
SIRT1

[95]

Transcriptome
regulation

scRNA-seq Lung, heart, and artery
tissues derived from young
(4–6-year-old) and old
(18–21-year-old)
cynomolgus monkeys

ACE2 expression increases
with age in alveolar epithelial
barrier, cardiomyocytes, and
vascular endothelial cells;
IL-7 accumulates in aged
cardiopulmonary tissues and
induces ACE2 expression in
human vascular endothelial
cells in an NF-κB-dependent
manner

[98]

Transcriptome
regulation

Microarray Sun-unexposed skin
tissue of healthy males
aged 19 to 86 years

Metabolic activity and cellular
damage associated with
NF-κB pathways increase in
the middle aged (30–45
years old)

[99]

Transcriptome
regulation

scRNA-seq Human upper eyelid skin
samples collected from
young (18–28-year-old),
middle-aged (35–
48-year-old), and aged
(70–76-year-old) groups

NF-κB signaling pathway is
up-regulated with aging in
several cell types, including
epidermal basal cells, mitotic
cells, granular cells, and
spinous cells

[101]

Transcriptome
and epigenetic
regulation

RNA-seq
ChIP-seq
(H3K27ac)

Brain tissues derived from
young (<60-year-old) and
old (>60-year-old) humans
and young (3-month-old)
and aged (18-month-old)
mice

The expression levels of
regulators of the NF-κB
pathway, TNFRSF1A,
NFKBIA, and TMED4,
increase in the aged brain,
and NF-κB and BCL3
binding annotations are
concentrated in up-regulated
genes

[106]

Transcriptome
and epigenetic
regulation

Microarray
ChIP-seq

ChIP-seq data from
ENCODE [27–29] and the
list of kidney age-regulated
genes from Rodwell et al.
[12]. Additionally, TNF-,
IFNγ-, and IL-6-treated
human renal proximal
tubular epithelial cells

Both transcriptomic and
epigenetic analyses showed
that the expression levels of
NF-κB, STAT1, and STAT3
increase with renal aging

[108]

Continued
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not induce but amplifies NF-κB activity. Using mathematical modeling, the authors showed that UV-induced
activation of NF-κB occurs not only through the IKK-mediated degradation pathway of IκBs but also through
the IKK-independent pathway. Single-cell transcriptomic analysis has also been used to reveal the involvement
of NF-κB in human skin aging. Zou et al. [101] collected scRNA-seq data from the eyelid skin of healthy indi-
viduals of various age groups and identified 11 canonical cell types and 6 basal cell types in skin tissues. Their
analysis showed that the NF-κB signaling pathway was up-regulated with aging in several cell types, including
epidermal basal cells, mitotic cells, granular cells, and spinous cells.

Omics 2. Epigenetic regulation of NF-κB and aging
When histones are subjected to epigenetic modifications, such as methylation and acetylation, chromatin
changes its shape to form either euchromatin, where transcription factors can likely bind to DNA and tran-
scription is actively carried out, or heterochromatin, where DNA aggregates and transcription factors cannot
easily bind, which can be monitored by ChIP-seq [102,103]. Epigenetic changes have been shown to be a
feature of aging [69]. For example, disturbance of histone H3 trimethylation at lysine 4 or lysine 27 (H3K4me3
or H3K27me3, respectively) has been reported to affect the lifespan of Caenorhabditis elegans [104,105]. In the
brains of aged humans and mice, a general loss of H3K27ac has been observed [106]. In addition, deletion of
SIRT6, a deacetylase of H3K9ac, results in excessive activation of NF-κB signaling and accelerated aging [107].
Here, we introduce epigenetic studies that elucidate the relationship between NF-κB and aging.
Brown et al. compared transcription factor changes during kidney aging using data from the ChIP-seq

dataset from the ENCODE Consortium [27–29] and genome-wide maps of transcription factor occupancy
obtained from ChIP-seq data of human cells [108]. The authors identified associations between ENCODE data
and kidney age-related genes derived from transcriptional profiles [12] and found NF-κB, signal transducer

Table 1 Omics studies of NF-κB and aging Part 2 of 2

Omics Methodology Sample Result Reference

Transcriptome
and epigenetic
regulation

RNA-seq
ChIP-seq
(H3K4me3 and
H3K27ac)

Heart, liver, cerebellum,
and olfactory bulb derived
along with primary cultures
of neural stem cells from
young (3-month-old),
middle-aged
(12-month-old), and aged
(29-month-old) mice

Both transcriptomic and
epigenetic analyses of heart,
liver, and cerebellum and
functional enrichment
analysis showed TNF-α
signaling via NF-κB is
up-regulated as age
increases

[109]

Protein
regulation

Nano LC-MS/
MS

Senescent human diploid
IMR-90 fibroblasts
induced by etoposide or
infection with oncogenic
H-RasV12

In senescent IMR-90 cells,
the NF-κB p65 subunit was
found to be one of the most
significantly enriched
transcriptional regulators
bound to chromatin

[113]

Protein
regulation

Nano LC–MS/
MS

Marmoset senescent TPC
induced by RS and TPC
from young (2–3-year-old)
and aged (10–15-year-old)
marmoset monkeys

In both the RS in vitro model
and aged cell in vivo model,
NF-κB signaling is altered by
aging

[114]

Protein
regulation

Nano LC–MS/
MS

Tear samples from health
humans (18–83 years old)

Upstream analysis of 17 tear
fluid-derived proteins, which
were correlated with donor
age, showed that the NF-κB
complex acts as a
transcriptional regulator

[115]

Abbreviations: NF-κB, nuclear factor-kappa B; pHBEC, primary human bronchial epithelial cell; RS, replicative stress; CSE, cigarette smoke extract;
ROS, reactive oxygen species; SIRT1, sirtuin-1; scRNA-seq, single-cell RNA sequencing; ACE2, angiotensin-converting enzyme 2; ENCODE,
Encyclopedia of DNA Elements; TNF, tumor necrosis factor; IFN, interferon; IL, interleukin; STAT, signal transducer and activator of transcription;
Nano LC–MS/MS, nanoscale liquid chromatography coupled to tandem mass spectrometry; TPC, testicular peritubular cells.
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and activator of transcription (STAT)1, and STAT3 to be promising candidates whose activities increase with
age in the epithelial compartment of the renal cortex [108]. They also showed that DNA variants common to
RELA and NFKB1 are associated with renal function and chronic kidney disease in genetic association studies,
showing that genetic variants in NF-κB contribute to the phenotype of renal aging.
Chronic inflammation aging profiling using RNA-seq and H3K27ac ChIP-seq of human and mouse brain

samples was performed by Cheng et al. [106]. The expression levels of regulators of the NF-κB pathway —
TNFRSF1A, NFKBIA, and TMED4 — were increased in the aged brain; NF-κB and BCL3 binding annotations
were enriched in up-regulated genes, whereas the expression of GATA-3, which is related to the regulation of
neuronal functions, was down-regulated [106].
Systematic studies of transcriptomic and epigenomic changes in several tissues and species during aging have

been reported. Benayoun et al. [109] generated ChIP-seq (H3K4me3 and H3K27ac) and RNA-seq datasets
from tissues of young, middle-aged, and old C57BL/6N male mice. Transcriptomic, epigenomic analyses of the
heart, liver, and cerebellum and functional enrichment analysis showed that TNF-α signaling via NF-κB
increases as age increases [109]. The authors also used public human [110], rat [111], and African turquoise
killifish (Nothobranchius furzeri) [112] transcriptome data to determine whether the effects of aging are con-
served in multiple vertebrates; they found that functional enrichment showed TNF-α signaling via NF-κB is
commonly regulated by aging.

Omics 3. Protein regulation of NF-κB and aging
While genetic and epigenetic regulation is important, it is also essential to understand the function of proteins
to identify changes in physiological phenomena. Here, we introduce the relationship between NF-κB and aging
at the proteomic level. Chien et al. [113] performed a proteomic analysis of proteins bound to chromatin in
senescent IMR-90 cells and found that the NF-κB p65 subunit is one of the most significantly enriched tran-
scriptional regulators. Stöckl et al. [114] reported proteome and secretome analyses of RS induced in testicular
peritubular cells derived from marmoset monkeys and showed impaired protein secretion, altered NF-κB sig-
naling, and reduced contractility.
The effect of aging on tear fluid samples and its association with NF-κB was reported by Nättinen et al.

[115], who performed proteomics analysis using healthy human tear samples collected from 115 subjects. In
their study, 17 tear proteins related to inflammation, immune response, and cell death were found to correlate
with donor age. Upstream analysis of these proteins indicated that the NF-κB complex acts as a transcription
regulator.
In vitro and in vivo multilayer omics analyses have shown that NF-κB signaling is highly related to senes-

cence and aging. Data-driven omics analyses in aging have revealed that the perturbation of aging activates the
promoter and enhancer regions of NF-κB target genes, promotes binding of NF-κB to the κB site, and
increases transcription of NF-κB target genes.

Mathematical modeling of NF-κB and aging
Data-driven omics analysis provides valuable information regarding the relationship between NF-κB and aging.
Snapshot omics studies do not provide information on the underlying mechanistic regulatory structures; only
the correlations between genes based on their expressions can be obtained [21]. From these static datasets, we
can construct only mathematical models (e.g. regression models [116]) based on the probability of correlation
between genes (Figure 3A). By contrast, time-course omics data on aging, along with knowledge of biological
aging, show a directed graph between the gene regulatory network (GRN) and the possible activity dynamics of
each gene. By integrating these data with mathematical models and performing numerical simulations, we can
predict the mechanistic structure of biological systems and even manipulate them (Figure 3B). Thus, integration
between time-course omics data and mathematical models can provide a mechanistic structure to understand
the entire system of aging.
Dynamic behaviors obtained from a mathematical simulation can also provide important insights into bio-

logical functions in silico, elucidating sensitivity and robustness of regulatory mechanisms and filling the gap
between experimentally observable data and theoretical regulatory principles [117,118]. Biological systems can
be represented using several networks, such as the ordinary differential equation (ODE) model, Boolean model,
and Bayesian network [119–121].
ODE models are most commonly used to quantitatively understand biological systems [122,123]. The ODE

model is said to be ordinary because it contains only one independent variable, which is basically time. It
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assumes that species are present in well-mixed compartments and that concentrations can be considered to be
continuous [119], which generally makes the ODE model unsuitable for representing processes such as diffu-
sion, spatial heterogeneity, and stochasticity [124]. Each variable represents the concentration of one compo-
nent (e.g. gene), and how it changes over time depends on the initial value of each variable, the concentrations
of other variables, and fixed kinetic parameters. Hence, if we attempt to represent the biological system with
the ODE model, we need to estimate the kinetic parameters that correspond to the time-series data, which
increases the computational cost by expanding the model.
The Boolean network is a type of dynamic model that is based on quantitative logical rules [120,121,125].

Based on the interaction between genes, regulation (e.g. transcriptional regulation) can be termed as active or
inactive. In other words, this can be stated as Boolean logical values: OFF (‘0’) or ON (‘1’). The regulation
network between nodes, for example, genes, phosphorylation, or ubiquitination, can be connected with ‘logic

A

B

Figure 3. Differences between time-course and snapshot omics analysis.

(A) Time-course aging omics showing a directed graph between the gene regulatory network and the dynamics of each gene.

By integrating these data with mathematical models, mechanisms of biological functions can be obtained. (B) Snapshot omics

studies do not provide information on the underlying regulatory mechanisms but provide only information regarding the

correlations between genes. For these datasets, we can only construct mathematical models based on the probability of

correlation among genes.
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gates’ found in digital electronic circuits (e.g. AND, OR, and NOT gates) [120,121]. Each logic gate has a set of
logical rules that connect the input to the output. Time in the Boolean network takes integer values, and nodes
are either ‘OFF’ or ‘ON’ depending on the activation or repression, respectively, of each factor, which allows us
to simulate dynamic behavior.
A Bayesian network reconstructs a gene regulatory expression network between nodes to statistically evaluate

different connections in a network with conditional probability [126,127]. One characteristic of the Bayesian
network is that it simplifies high-dimensional data into a simple graph. In a Bayesian network graph, the nodes
represent the variables (e.g. gene), and the edges represent the links between genes. Displaying probability dis-
tributions as a directed graph makes graphical analysis possible. Calculating these probabilities according to the
occurrence path makes it possible to quantify the probability of the occurrence of causal relations with complex
pathways.
Mathematical models using the Boolean network have been proposed to elucidate the regulatory network

between NF-κB and aging [128–130]. A Boolean network model-based GRN of the SASP activated by DNA
damage was proposed by Meyer et al. [128]. They simulated a model of pathway interactions between p53/
p16-induced cell cycle arrest, NF-κB-regulated SASP, and IL-1/IL-6-driven inflammatory activity based on
knowledge of biological aging. From their work, NEMO was identified as a target for mechanistic inhibition of
IL-6 and IL-8 and was experimentally validated using NEMO knockout murine dermal fibroblasts.
In addition to the knowledge-based mathematical model, Schwab et al. integrated data-driven omics analysis

and the Boolean model to clarify hidden knowledge under NF-κB signaling and aging [129,130]. The authors
used a binarized time-series gene expression dataset of muscle samples [131] from young and elderly healthy
male humans to construct a Boolean network and found behavioral changes in NF-κB signaling during aging [129].
A combination of sc-RNA-seq of human hematopoietic stem cells (HSCs) derived from young (19–

40-year-old) and aged (61–70-year-old) human individuals [132] and a Boolean network was used to capture
the heterogeneity of aging in NF-κB signaling-regulated genes [130]. With aging, the number of HSCs
increases, but their activity becomes highly heterogeneous and impaired, which is known to be related to
NF-κB signaling-induced inflammation [133]. Using pseudo time-series of single-cell data in dormant and
active HSCs, Schwab et al. [130] reconstructed specific regulatory networks for each individual and performed
attractor analysis to show that single-cell dynamics of NF-κB target genes capture heterogeneity in mechanisms
and regulatory networks of aging HSCs. This study shows that the integration of omics analysis and mathemat-
ical models is a powerful tool to elucidate hidden mechanisms between NF-κB and aging. Moreover, it might
be possible to elucidate transcriptional heterogeneity in other tissues using scRNA-seq aging data with time-
course omics and mathematical integration methods [134].
Notably, aging is a physiological phenomenon that progresses over several decades. By contrast, cellular sen-

escence can be induced by a variety of stimuli in a rather short time period [20]. In other words, time-series
information on signal transduction is important for phenomena that change rapidly, such as cellular senes-
cence, and a model that allows a structural understanding of signal pathways, such as the ODE model, is con-
sidered suitable. Thus, the selection of an appropriate model for each dataset in aging and senescence should
be considered before building the model.

Dynamic properties of NF-κB regulation
Based on scRNA-seq analysis of aging cells and tissues, such as T-cells [135], aorta and coronary arteries [136],
pancreas [137], microglia cells [138], lung [139], skin [101,140], and muscle [141], transcriptional heterogeneity
has been reported to increase with aging [134]. Understanding the heterogeneity in aging will make it possible
to identify new markers that distinguish between actual and biological age and provide optimal treatment
options for individuals [142]. Moreover, single-cell dynamics of NF-κB target genes capture heterogeneity in
the mechanisms and regulatory networks of aging HSCs [130]. Dysregulation of nuclear localization of NF-κB
leads to various pathological conditions [143]; therefore, controlling the localization of NF-κB might shed light
on the heterogeneity in aging, and research on the regulation of NF-κB dynamics is needed. Thus, in this
chapter, we first introduce what has been elucidated in the regulatory systems of NF-κB dynamics, then
examine how NF-κB dynamics change the response to different types of input stimuli from mathematical
research findings.
Along with the activation of inflammation-related genes, NF-κB has multiple negative feedback mechanisms

and constitutes a complex regulatory mechanism. These negative feedback loops shape the characteristic oscilla-
tion dynamics of NF-κB nuclear localization (Figure 4). IκBs (NFKBIA [IκBα], IKBKB [IκBβ], and IKBKE
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[IκBε]) and TNFAIP3 (A20) are target genes of NF-κB; when NF-κB is activated, IκBs are released from the
DNA binding domain of NF-κB, and A20 suppresses IKK activation [144–146]. These two negative feedback
processes have distinct functions in the regulatory system of NF-κB dynamics. IκBα protein is synthesized
upon stimulation of the NF-κB pathway and rapidly transferred to the nucleus; it strips NF-κB bound to DNA
and transfers it to the cytoplasm [145]. Therefore, knockout of IKBA abolishes NF-κB oscillation, which
induces sustained activation of NF-κB target genes [147,148]. IκBβ, which has high homology with IκBα, is
reported to be unable to provide the same adequate negative feedback as IκBα [149]. In contrast to IκBα, IκBε
has been reported to show delayed negative feedback due to transcriptional delay [150]. Using the ODE model,
Longo et al. [151] showed that this delayed negative feedback by IκBε controls dampened oscillation of NF-κB.
Interestingly, A20 mainly shapes the late NF-κB response rather than the initial response, and thus, knockout
of TNFAIP3 does not directly affect NF-κB localization [147].
Many mathematical models include a negative feedback mechanism by IκBs or A20 in NF-κB signaling to iden-

tify the mechanism of NF-κB oscillations or their encoding or decoding properties. The difference between oscillat-
ing and non-oscillating NF-κB dynamics was investigated by Mothes et al. [152] using the ODE model. They
found that NF-κB can exhibit heterogeneity of dynamics from the same stimulus, which is caused by a change in
intracellular parameters in the pathway. They also indicated that the concentration of NF-κB and the transcrip-
tional rate constant of IκBα are important parameters that change the dynamics and fold change of NF-κB.
Benary and Wolf extended the ODE model developed by Lipniacki et al. [153] to investigate the impact of the
regulation of beta-transduction repeat containing protein (β-TrCP)-mediated IκB degradation [154]. NF-κB is

A B

Figure 4. Negative feedback mechanism in NF-κB dynamics.

(A) Upon inhibitor of κB (IκB) kinase (IKK) complex activation by tumor necrosis factor (TNF) stimulation, nuclear factor-κB (NF-κB) is released by

IκBs (IκBα, IκBβ, and IκBε) and enters the nucleus. Along with the activation of inflammation-related genes, NF-κB induces IκBs and A20. When

NF-κB is activated, IκBs are released from the NF-κB DNA-binding domain, and A20 suppresses IKK activation. IκBα, which rapidly transfers to the

nucleus upon synthesis, is the primary component of this negative feedback and has the function of stripping NF-κB bound to DNA and transferring

it to the cytoplasm. Due to this negative feedback system, NF-κB moves in and out of the nucleus, resulting in an oscillating behavior. (B) IKBA

knockout abolishes NF-κB oscillations. By contrast, A20 mainly shapes the late NF-κB response rather than the initial response, and thus, knockout

of TNFAIP3 does not directly affect NF-κB localization (adapted from [147]).
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activated when IκBs are degraded, and this process is mediated by β-TrCP. In this study, they found that enhan-
cing the β-TrCP-mediated degradation of IκB increases the steady-state concentration of nuclear NF-κB.
A20 is also an important feedback system, along with IκBs. Mothes et al. [155] used a modular modeling

approach to determine the impact of different A20 feedback implementations on the dynamics of NF-κB. The
authors used three different models (Lipniacki et al. [153], Ashall et al. [146], and Murakawa et al. [156]),
which had different A20 implementations against IKK inhibition, and combined them with a common IκBα–
A20 negative feedback core module. The authors also analyzed the effects of a wide range of changes in A20
feedback strength, IκBα feedback strength, and TNF-α stimulus strength on NF-κB dynamics. The results
showed that A20 feedback strength and TNF-α stimulation strength had different effects on the initial and
long-term NF-κB concentrations depending on the models analyzed. Based on experimental validation using
TNF-α-stimulated HeLa cells, Murakawa et al. [156] best described the dynamic features of NF-κB. This indi-
cates that regulation described in their ODE model [156], in which both TNF-α-dependent and -independent
regulation increases the amount of active IKK and its inhibition by A20, is imprinted in TNF-α-stimulated
HeLa cell systems. Using their modular modeling approach, we can elucidate the mechanism by which A20
negative feedback inhibits IKK depending on the cell type.
Positive feedback regulates the TNF-α pathway. A positive feedback mechanism within the upstream kinase

signaling complex induces the switch-like activation of NF-κB [157]. TNF-α itself is also transcriptionally regu-
lated by NF-κB, which is reported to function as a feedforward-like rather than positive feedback regulation
because several additional regulations, such as splicing control, mRNA degradation, pro-TNF-α activation, and
secretion, are needed to fully activate TNF-α [144,158].
Recent reports indicate that the oscillation dynamics of NF-κB nuclear localization are functionally import-

ant for biological systems [148,159]. Adelaja et al. [159] reported that different stimuli, such as TNF-α,
Pam3-Cys-SK4 (P3CSK), polyinosinic:polycytidylic acid (Poly(I:C)), LPS, and CpG, induce the activation of
NF-κB with different dynamics. Using the features of different stimuli and machine learning, they identified six
dynamic features encoding NF-κB dynamics: activation speed, peak amplitude, oscillatory dynamics, total activ-
ity, duration, and ratio of early to late activity. They further utilized the ODE model to visualize the underlying
mechanism and indicated four key characteristics: ligand half-life, receptor translocation and replenishment
rates, dose response of adaptor proteins, and deactivation kinetics of adaptors. This study illustrated that cyto-
kine stimuli (TNF-α) and bacterial pathogenic stimuli (P3CSK, Poly(I:C), LPS, and CpG) are recognized by
cells as differences in dynamics and induce different biological functions.
Cheng et al. [148] identified NF-κB dynamics as important properties regulating epigenetic changes induced

by different input stimuli in macrophage activation. In particular, they showed that non-oscillatory NF-κB lib-
erates chromatin by disrupting nucleosome–histone and DNA interactions. This finding not only indicates that
NF-κB oscillation influences chromatin accessibility and regulates gene expression but also presents important
evidence that NF-κB dynamics have significant implications for biological systems.
scRNA-seq has been used to reveal the heterogeneity of NF-κB dynamics. Lane et al. [160] revealed the rela-

tionship between live-cell imaging of nuclear NF-κB dynamics and scRNA-seq gene expression induced by LPS
stimulation using the same single cell. By comparing clustered cells based on NF-κB dynamics observed by
microfluidic single-cell imaging and scRNA-seq, the authors found that strong and long-lasting nuclear p65
signaling correlated with increased expression of pro-inflammatory cytokines. Since pro-inflammatory cytokines
increase with aging, sustained nuclear p65 activation might be a promising target for the treatment of aging.
As shown in this chapter, the nuclear NF-κB localization pattern is regulated by multiple feedback mechan-

isms, and NF-κB dynamics are meaningful for the regulation of downstream target genes. Mathematical models,
in particular the ODE models, have played important roles in elucidating NF-κB dynamics. How nuclear NF-κB
dynamics are involved in aging and what the results of NF-κB dynamics disturbance would be in terms of aging
remain unclear; however, these areas seem to be promising targets for preventing age-related diseases.
Next, we will look closer at NF-κB mathematical models for a deeper theoretical understanding of NF-κB

dynamics and consider the possibility of regulating aging.

Single-cell analysis and mathematical modeling of the
NF-κB network
The unique properties of oscillation dynamics of the NF-κB signaling pathway have been studied and reviewed
using mathematical models [161–165]. As previously mentioned, the dynamic properties of NF-κB regulation
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during aging are not yet fully understood. Thus, utilization of NF-κB mathematical models in aging phenom-
ena, such as decline in immune response, may provide clues to understanding the mechanistic structure of
NF-κB dynamics. Here, through a mathematical model of NF-κB, we explore how the heterogeneity of NF-κB
dynamics is regulated at the single-cell level and aim to gain insights into the relationship between NF-κB
dynamics and aging.
The control of heterogeneity in NF-κB dynamics has been studied along with the development of technolo-

gies that allow live imaging observation of single cells; for instance, microfluidic devices allow constant imaging
under various conditions specified by the researcher.
When NF-κB activity is measured at the bulk population level using methods such as western blot (WB)

analysis, the behavior of single cells is masked in the underlying system [166]. For example, an analog response
to a gradual increase in activation and an all-or-nothing digital response may produce similar WBs even
though the number of activated cells and the amount of activity per cell may be different [166]. Thus, single-
cell level observation is a powerful tool to elucidate NF-κB heterogeneity.
Cells regulate inflammation, caused by cell damage or microbial invasion, by detecting changes in the surround-

ing environment through NF-κB signaling. However, in the actual cellular environment, the concentration of
NF-κB ligands around the cells may fluctuate randomly even when no immune or inflammatory response occurs.
Therefore, the NF-κB pathway must distinguish between this external ‘noise’ and significant increases in ligands
associated with the immune response. To overcome this problem, a system regulated as ‘ON’ or ‘OFF,’ called the
switch-like system, is activated only when a sufficiently strong signal exceeding the internal threshold is applied in
NF-κB signal transduction [167–169]. This increases the robustness of cellular decision-making in noisy environ-
ments, resulting in cell-to-cell heterogeneity in transcriptional response [170,171].
To clarify the heterogeneity of NF-κB activation among single cells, Kellogg et al. [167] and Tay et al. [169]

focused on the encoding and decoding of the duration and concentration of ligand of the input information by
the NF-κB system. Experimental observation of single-cell NF-κB activation by LPS [167] or TNF-α [169]
treatment suggested that NF-κB activation at the microscopic level is similar to a switch, with the strength of
the induced signal altering the stochastic all-or-nothing response in each cell. Using a hybrid stochastic–deter-
ministic mathematical model, Kellogg et al. [167] found that the integral value (calculated by multiplying ‘con-
centration’ by ‘duration’) of stimulation determines the activation of NF-κB in single cells and that the
sustained weak stimulation results in heterogeneous activation and timing delay, which is transmitted to gene
expression. By contrast, transient strong stimulation at the same site results in rapid and uniform dynamics
[167]. These results indicate that it is possible to control the phenotype of a cell via the strength of the input
and to control the activation probability of a single cell. They also indicate that a switch-like NF-κB system
response to bacterial pathogenic stimuli results in a heterogeneous reaction in the cell population and protects
against chronic activation by external ‘noise’ in the environment. With aging, SASP and chronic inflammation
(inflammaging) occur; the ‘concentration’ and ‘duration’ of NF-κB perturbation may be said to increase with
aging, causing an ‘ON’ state in the switch-like NF-κB system.
To understand the sources of internal ‘noise’ under intercellular heterogenic responses in the NF-κB system,

Bass et al. [172] combined single-transcript measurements with mathematical models to study transcriptional
noise in NF-κB-regulated genes. A main cause of gene expression noise in a single cell is the flow of promoters
between transcriptionally active and inactive states, a process known to induce ‘transcriptional bursting’ [173].
By analyzing the changes in gene expression noise and transcriptional bursts at endogenous NF-κB target pro-
moters before and after TNF-α stimulation, they found that TNF-α primarily activates transcription by increas-
ing the burst size while maintaining burst frequency at gene promoters with relatively high basal values of
histone 3-acetylation, which marks the open chromatin status [172]. The authors simulated the transcriptional
bursting behavior using a two-promoter state model in which a promoter switches the ‘OFF’ state to the ‘ON’
state [172]. In this model, the transcription process is described by two main features: burst size, defined as the
average number of mRNAs produced per burst (gene activation event), and burst frequency, defined as the fre-
quency at which bursts occur [174]. Using this model, Bass et al. [172] showed that positive feedback of TNF-α
amplifies the noise of gene expression by transcription through burst size, forming a subset of cells that express
high levels of TNF-α protein. The effect of ‘transcriptional bursting’ in aging has not been reported, but since
the levels of TNF-α are known to increase with aging [74–77], this internal ‘noise’ might provide clues to eluci-
date the heterogeneity in aging between cells and individuals.
To understand whether cells respond to absolute cytokine levels or to the rate of change in the dynamic con-

centration of cytokines around the cells, Son et al. [175] studied how the NF-κB pathway responds to time-
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varying immune inputs, such as increases, decreases, and fluctuations in cytokine signaling. From experimental
single-cell observations, they found that NF-κB activity responds to differences in absolute cytokine concentra-
tions, not the cytokine concentrations themselves. Sensitivity analysis using their ODE modeling suggested that
A20 and IκBα negative feedback mechanisms accurately detect the dynamics of extracellular cytokines. This
work indicates that changes in environmental cytokine concentrations are important for signal processing and
that expression of some NF-κB target genes (TNFAIP3 and CCL2) correspond closely to the TNF-α dose at a
given time during ramping.
The impact on the rate of change in the localization of NF-κB has also been reported [176]. Nuclear NF-κB

levels vary considerably among cells, even in unstimulated cells. To elucidate the mechanism underlying this
heterogeneity, Lee et al. [176] confirmed the localization of p65 (RELA) upon TNF-α stimulation in single
cells, indicating that the rate of change rather than the absolute amount present in the nucleus is important for
the transcriptional activity of NF-κB. Using mathematical modeling, Goentoro et al. [177] found that an
incoherent feedforward loop (I1-FFL) (Figure 5) initiated by competition for κB motif binding provides the
pre-ligand state required for fold-change detection [176]. In the I1-FFL model, NF-κB and its competitors
competitively bind to the κB motif and transcribe the target genes downstream. In the absence of I1-FFL
regulation, the transcriptional dynamics of IL-8, TNFAIP3, and NFKBIA could not be reproduced when TNF-α
stimulation was applied to experimentally obtained dynamics, whereas the I1-FFL model reproduced the
experimental dynamics [176]. The I1-FFL model involves transcription and translation of the competitive
factor, and its inhibition results in a structure that causes a time delay [176]. These findings indicate that the
transcriptional activity of NF-κB is controlled by two contradictory controls, that is, both activation and repres-
sion of the same gene target.
To determine whether fold-change detection in localization of NF-κB is universally implemented in NF-κB

target genes, Wong et al. [176] used an I1-FFL model and single-cell live imaging to show that even genes with
low levels of TNF-induced transcription induced by NF-κB are responsive to the fold-change in nuclear NF-κB
[178]. Using live cell imaging, the authors tracked nuclear NF-κB after TNF-α stimulation and quantified the
number of transcripts by RNA fluorescence in situ hybridization in the same cells. They found that the pres-
ence of TNF-α induces transcripts of low and high abundance target genes correlated with similar intensity of
nuclear NF-κB fold change [178]. The I1-FFL model implements fold-change detection from competition for
κB motif binding and shows that fold-change detection can be reproduced across the range of experimentally
measured transcripts [178]. This study suggests that cells use the same mechanistic model for low and high

Figure 5. Schematic diagrams of simple and I1-FFL models.

In a simple model, nuclear factor kappa B (NF-κB) binds to the κB motif, which results in the transcription of downstream

target genes. In the incoherent feedforward loop (I1-FFL model), NF-κB and its competitors competitively bind to the κB motif

and initiate transcription of downstream target genes.
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levels of transcription genes and distinguish them by adopting different kinetic parameters. Thus, multiple bio-
logical mechanisms regulate transcriptional output while maintaining the robustness of NF-κB fold-change
detection.
The studies summarized in this chapter show that NF-κB regulation at the single-cell level has been eluci-

dated using mathematical models. A switch-like system and fold-change detection lead to robustness in NF-κB
regulation. Linking these systems with aging will further elucidate the mechanistic structure of NF-κB signal
transduction regulation in aging as a promising target for research.

Discussion
In recent years, drug discovery and development based on systems biology have attracted increasing interest in
the scientific and industrial fields [179,180]. Human disease models and multi-layered omics data can improve
the success rate of drug development and predict the safety and efficacy of drugs in patients [181]. Systems
biology is a powerful tool for deepening understanding of diseases, such as neurodegenerative diseases [182]
and cancer [183]. Drugs related to NF-κB signaling have also been identified using systems biology [184].
Pabon et al. [184] reported a network-centric drug discovery approach to predict drugs that inhibit NF-κB sig-
naling and elucidate the network response. By integrating transcriptome analysis, machine learning, structural
analysis, and live cell imaging, the authors showed that the maturation of multiprotein complexes required for
IKK activation can be inhibited, thus effectively inhibiting NF-κB signaling. Oppelt et al. [185] used a mathem-
atical model to identify factors — IKK and free cytoplasmic IκBα—that contribute to increased hepatotoxicity
caused by the combination of TNF-α and the anti-inflammatory drug diclofenac. They not only proposed a
new mathematical model of NF-ĸB but also used it to assess the safety of drugs.
Although cell fate is determined by the crosstalk of complex signaling networks, the priority in drug efficacy

studies to date has been to confirm the efficacy of a single target. Because the phenotypic system of aging is a
product of various signaling networks, a systems biology approach can allow us to view the entire system from
a bird’s eye view and extract its characteristics. This approach is expected to be applied not only to drug discov-
ery but also to research on general commercial products for aging.
As introduced in this review, the application of mathematical models can elucidate complexes hidden under

signal pathways. In the future, combining mathematical models of different signaling pathways for a certain
disease or symptom will be important to comprehensively confirm the effects, which will lead to better under-
standing and treatment of the target disease. Methods are also being developed to accelerate the integration
and utilization of the crosstalk of multiple models [121,186–189]. Software tools, such as MATLAB, Copasi
[190], Berkeley Madonna [191], and CellDesigner [192,193], are used as modeling tools. For logical modeling
(e.g. Boolean networks), tools such as BoolNet [194], MaBoSS [195], GINsim [196], and PyBoolNet [197] are
widely used and are summarized by the CoLoMoTo consortium (http://www.colomoto.org/). Our group devel-
oped a Python-based ODE modeling and analysis tool for signaling systems called BioMASS [198], which
allows multiple sets of parameters to be optimized simultaneously, generating multiple candidate parameters
that describe the desired signaling dynamics. Using these tools allows us to integrate two or more separately
developed models and perform parameter estimation to fit the experimental data of individual researchers.

Conclusion
In addition to the classical roles of NF-κB, such as inflammation and response during immunity, the role of
the NF-κB pathway should not be overlooked in terms of aging. In this review, we outlined the relationship
between aging and NF-κB signaling, the contribution of multi-omics analysis to aging research, and the math-
ematical models indicating the relationship between NF-κB and aging. We summarized the dynamic properties
of the NF-κB system and showed that NF-κB dynamics are meaningful for the regulation of downstream target
genes. The integration of mathematical models and observation of cell dynamics, such as immunoprecipitation,
live single-cell observation, and scRNA-seq analysis, is a powerful tool for deepening understanding of bio-
logical phenomena. A combination of both omics analysis and mathematical models will enable us to under-
stand the whole system of aging; these research results are expected to be widely implemented in society in the
near future.
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