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Mitochondria produce the bulk of the energy used by almost all eukaryotic cells through
oxidative phosphorylation (OXPHOS) which occurs on the four complexes of the respira-
tory chain and the F1–F0 ATPase. Mitochondrial diseases are a heterogenous group of
conditions affecting OXPHOS, either directly through mutation of genes encoding subu-
nits of OXPHOS complexes, or indirectly through mutations in genes encoding proteins
supporting this process. These include proteins that promote assembly of the OXPHOS
complexes, the post-translational modification of subunits, insertion of cofactors or
indeed subunit synthesis. The latter is important for all 13 of the proteins encoded by
human mitochondrial DNA, which are synthesised on mitochondrial ribosomes. Together
the five OXPHOS complexes and the mitochondrial ribosome are comprised of more
than 160 subunits and many more proteins support their biogenesis. Mutations in both
nuclear and mitochondrial genes encoding these proteins have been reported to cause
mitochondrial disease, many leading to defective complex assembly with the severity of
the assembly defect reflecting the severity of the disease. This review aims to act as an
interface between the clinical and basic research underpinning our knowledge of
OXPHOS complex and ribosome assembly, and the dysfunction of this process in mito-
chondrial disease.

Introduction
Mitochondria are ubiquitous organelles that have their own DNA and translation machinery. The
human mitochondrial (mt) DNA is a circular double-stranded molecule containing 16 569 base pairs
and 37 genes [1]. Two of these genes encode mitochondrial ribosomal RNAs (mt-rRNA) which are
required for the assembly of the mitochondrial ribosome (mitoribosome). Another 22 genes encode
mitochondrial transfer RNAs (mt-tRNAs) which are responsible for deciphering RNA sequences
during protein translation. The mt-tRNA for valine (tRNAval) is also present as a structural compo-
nent of the mitoribosome [2–4] (Figure 1, lower inset). The remaining 13 mitochondrial genes encode
highly hydrophobic transmembrane proteins that are translated on mitoribosomes and assembled into
complexes I, III, IV and V of the oxidative phosphorylation (OXPHOS) system [5–8] (Figure 1, upper
inset). Besides the 37 genes encoded on mtDNA, over a thousand other proteins encoded on nuclear
DNA (nDNA) are translated in the cytosol and imported into the mitochondria via dedicated protein
import machinery [9,10]. Mitochondria are responsible for generating the majority of cellular ATP via
OXPHOS, which occurs on the mitochondrial respiratory chain (MRC) and the F1F0-ATPase. The
MRC consists of four multiprotein complexes (complexes I–IV) embedded in the inner mitochondrial
membrane (IMM) and two electron carriers called coenzyme Q (CoQ, Q) and cytochrome c (Cyt C,
C). Complexes I, III and IV are also found together in higher order structures known as supercom-
plexes or respirasomes [11], though the precise function this coalescence is not fully clear [12]. The
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MRC as a whole, as well as the two electron carriers are involved in a series of redox reactions that creates a
proton gradient across the IMM, which is in turn used by the fifth complex, complex V or the F1F0-ATPase, to
synthesise ATP.
The MRC, complex V and the mitoribosome are built through a series of orchestrated steps that require the

help of other proteins not part of the mature complex, often called assembly factors. Not all assembly factors
directly promote assembly, the controlled coalescence of subunits into complexes through stabilisation of
assembly intermediates, but many instead provide critical services in the form of maturation and delivery of
cofactors such as heme, copper and iron–sulfur clusters (Fe–S), post-translational modification of subunits and
regulation of translation. Furthermore, transcription of mtDNA, mitochondrial mRNA processing, mitochon-
drial tRNA maturation, mitoribosome assembly and translation all directly influence OXPHOS complex

Figure 1. The oxidative phosphorylation (OXPHOS) system and the mitoribosome.

Upper inset, the OXPHOS system consists of complexes I, II, III and IV of the respiratory chain and complex V (the F1Fo-ATP Synthase). Complexes

I, III and IV also exist in large assemblies known as supercomplexes (SC). Subunit compositions of individual complexes are indicated. mtDNA,

mitochondrial DNA; nDNA, nuclear DNA; Q, Coenzyme Q; C, Cytochrome c. Lower inset, the mitoribosome synthesises the 13 mtDNA-encoded

subunits that are present within the OXPHOS complexes. It consists of two major parts, the small subunit (SSU) and large subunit (LSU). The SSU

contains one mtDNA-encoded rRNA (12S rRNA) and 30 nDNA encoded proteins. The LSU contains one mtDNA-encoded rRNA (16S rRNA), 52

nDNA encoded proteins and a single mtDNA-encoded tRNAval molecule that has a structural role in mitoribosome. All 22 mtDNA-encoded tRNAs,

including tRNAval, are involved in the synthesis of the 13 mtDNA-encoded proteins from 11 mRNAs. Two mRNAs, MT-ND4/MT-ND4L and

MT-ATP6/MT-ATP8 share open reading frames and the proteins are transcribed as bicistronic elements. Orange elements in mtDNA represent

mtDNA associated protein TFAM. IMS, intermembrane space; IMM, inner mitochondrial membrane; Matrix, mitochondrial matrix. Models for

complexes I, II, III, IV, V and mitoribosome generated from PDB: 5LDW, 1ZOY, 1BGY, 5B1A, 5ARE and 3J9M, respectively.
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biogenesis function [5–8]. Dysfunction in any of the aforementioned processes can lead to mitochondrial
disease. Given the central importance of mitochondria to cellular function, disease can affect any tissue in the
body, though tissues and organs of high energy demand such as heart, brain and muscle are frequently affected.
Furthermore, some patients present with tissue or organ specific phenotypes (e.g. cardiomyopathy) while
others exhibit multi-system disorders or delayed onset, reflecting the different requirements for mitochondrial
energy production in different cell types, the function of affected protein, their tissue-specific expression or
their being encoded on nuclear or mitochondrial DNA [5–8]. There are over 300 known disease genes, located
in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA), implicated in mitochondrial diseases
([5,13], this review). Broadly speaking, these can be separated into two categories: genes that are involved in
primary energy generation (i.e. subunits or assembly factors of the OXPHOS system, mitoribosome, involved in
transcription, mtDNA homeostasis and related systems) and genes that have a secondary function (i.e. protein
quality control, membrane structure and metabolite transport) [5,14,15]. Of the over 190 known primary
disease genes, more than half lead to defective assembly of the OXPHOS complexes or the mitoribosome ([5],
this review).
The current diagnostic paradigm for mitochondrial disease involves a combination of whole exome (WES)

or whole genome (WGS) sequencing, with linkage studies and homozygosity mapping [5,13]. In the case of
mtDNA mutations, diagnosis can be even more challenging considering that the mtDNA is present in multiple
copies per cell and might contain a heterogenous population of mutated and non-mutated mtDNA, a phenom-
enon termed heteroplasmy. In the case of mitochondrial disease, the ratio of mutated to non-mutated mtDNA
is termed mutation load, which is particularly important in the onset and tissue-specific manifestation of mito-
chondrial diseases [16]. Diagnostic yield when using strategies combined with WES or WGS is only 30–68%
[17–20], suggesting that other novel disease genes and variants remain to be discovered. The principal challenge
in the current diagnosis paradigm is validation of variants of uncertain significance (VUS) detected in patients
with suspected mitochondrial disease [21]. To address this, investigators often turn to functional studies.
Studies such as these, sometimes continuing long after confirmed diagnosis, have been incredibly informative
to our understanding of mitochondrial complex assembly. The results of these studies can later provide infor-
mation invaluable to those attempting to solve new undiagnosed cases. For example, we now know from cul-
tured cell line knockout studies that loss of proteins required for some steps of complex I assembly does not
greatly impact assembly and function of the enzyme, whereas loss of proteins required for other steps leads to
catastrophic failure in complex biogenesis [22]. Perhaps unsurprisingly, in patients null mutations have been
described in genes required for the former step, but not the second (see the below sections for detail). Armed
with this information, an investigator may be able to prioritise a novel VUS in a gene associated with one of
these steps for follow-up studies. It is, therefore, the intention of this review to present a common ground to
both basic researchers interested in the assembly of mitochondrial complexes, as well as more clinically focused
audiences, in the hope that both will benefit from each other’s ongoing efforts to understand the function and
impacts of dysfunction in these complex molecular machines.
Due to the large number of steps in the biogenesis of these complexes, most of the following sections have

been separated into sub-sections describing distinct stages of assembly and the impacts of disease on this
process. Subunits (i.e. structural proteins found in the fully assembled complex) in the below sections are indi-
cated in bold typeface, whereas assembly factors and other proteins are listed in regular typeface. The nomen-
clature for some subunits and assembly factors is complicated, different groups may use different symbols and
for most complexes the subunit naming convention differs between humans and other organisms. For the pur-
poses of this review, we have chosen to refer to the subunits and assembly factors by their Human Genome
Organisation (HUGO) approved gene symbol [23], though have aimed to include the commonly used protein
symbol in parenthesis at first mention. Finally, due to the large number of case reports for some disease genes
we have chosen to cite the first example for each commonly observed phenotype. Further case reports can be
found by referring to the relevant entry in the Online Mendelian Inheritance in Man database (https://www.
omim.org), with the OMIM entry number cited for each gene in the relevant table.

Complex I
Mitochondrial complex I (NADH, Ubiquinone reductase) is the first complex in the MRC. The fully assembled
complex I is L-shaped with a hydrophobic arm embedded in the IMM and a hydrophilic arm extending into
the mitochondrial matrix [24,25]. The latter contains the catalytic N-module, which is involved in oxidation of
NADH to NAD+, and the Q-module which transfers electrons via Fe–S clusters to Coenzyme Q [26,27]. This
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in turn triggers conformational changes leading to pumping of protons across the membrane arm
(ND-modules) and creation of the proton-motive force used by complex V [28]. Complex I consists of 45 sub-
units (44 distinct subunits as one subunit, NDUFAB1 is present in two locations within the complex) [29]. Of
the 44 distinct subunits, 14 are classified as core subunits since they possess catalytic function and homologues
are present in all organisms with complex I, including bacteria [30,31]. Of the 14 core mammalian subunits, 7
are encoded on mtDNA: ND1, ND2, ND3, ND4, ND4L, ND5 and ND6, all of which are present in the mem-
brane arm, while the remainder are encoded on nuclear DNA. Four are located in the Q-module: NDUFS2,
NDUFS3, NDUFS7, NDUFS8; and three in the N-module: NDUFS1, NDUFV1, NDUFV2. The remaining 30
subunits (prefixed NDUFA, NDUFB, NDUFC and NDUFAB1) are known as accessory or supernumerary
subunits, with 25 of them being characterised as essential for the assembly and stability of the complex [22].
The assembly of complex I occurs through the sequential addition of modules seeded by core subunits to
which accessory subunits are added. Although the order of module coalescence is still not fully understood, the
assembly pathway for complex I is one of the most well studied of all mitochondrial complexes and there is an
increasingly well accepted model (Figure 2) [22,24,32].

Assembly of the Q and ND1 modules
The Q-module subassembly contains nuclear-encoded subunits NDUFA5, NDUFS2, NDUFS3, NDUFS7 and
NDUFS8 and appears to be one of the earlier modules to assemble (Figure 2) [22,24,32]. With the exception of
NDUFA5, all of the above subunit genes have been associated with Leigh syndrome, leading to early childhood
death (Table 1). In line with this, their gene-editing based ablation in the commonly used human embryonic
kidney cell (HEK293T) model system leads to complete loss of complex assembly and activity [22]. The assem-
bly factors NDUFAF5 and NDUFAF7 are required for maturation of the Q-module [33–35] and they contain
the S-adenosylmethionine (SAM)-dependent methyltransferase domains [33,36] that provide post-translational
modifications to subunits within the Q-module. NDUFAF5 is responsible for hydroxylation of an arginine
residue in NDUFS7 [34] and requires the assembly factor NDUFAF8 for its stabilisation, though its molecular
function in this capacity is not yet clear [37,38]. On the other hand, NDUFAF7 is required for dimethylation
of an arginine residue in NDUFS2 [33,35]. While the function of these modifications is unknown, their loss
results in complex I dysfunction [39,40]. There have been no patients reported for NDUFAF7, however, a

Figure 2. Schematic depicting the complex I assembly pathway showing known mitochondrial disease genes in red,

mtDNA-encoded subunits underlined and assembly factors in italics.

Complex I assembly is characterised by coalescence of distinct modules assembled individually prior to final assembly into large

intermediates and eventually the functional complex. The Q-module joins the ND1 module and coalesces with ND2, ND4 and

ND5 modules. The N-module (harbouring the site of NADH oxidation) is the last module to join the complex in the assembly

pathway. Fe–S, iron–sulfur. IMS, intermembrane space; IMM, inner mitochondrial membrane; Matrix, mitochondrial matrix.
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Table 1. Defects affecting biogenesis of the Q and ND1 modules Part 1 of 2

Gene S.
A.
F.

Types of genetic variants and
protein impact

Clinical presentations and relevant
information Ref. OMIM

Q-module

NDUFS2 X Various missense leading to
uncertain impact or near absence of
protein.

Leigh syndrome, optic atrophy, hypertrophic
cardiomyopathy, elevated blood lactate.

[380,381] 602985

NDUFS3 X Missense leading to uncertain
protein impact.

Leigh syndrome, optic atrophy. [382] 603846

NDUFS7 X Predominantly missense but also
intronic (nonsense) leading to
truncated protein or uncertain
impact on protein.

Leigh syndrome, hypotonia, may present
normal blood lactate and pyruvate.

[383,384] 601825

NDUFS8 X Missense leading to uncertain
impact on protein or reduced levels.

Ranging from severe Leigh syndrome,
elevated blood lactate and pyruvate,
hypotonia, early death to slowly progressive
neurological disease at the end of first
decade of life.

[385–387] 602141

NDUFAF3 X Missense leading to uncertain
protein impact.

Severe lactic acidosis, optic atrophy,
respiratory failure and variable brain
involvement including Leigh syndrome,
myoclonic seizures, macrocephaly and
cavitating leukoencephalopathy.

[41,388,389] 612911

NDUFAF4 X Missense leading to decreased
protein levels or uncertain protein
impact.

Leigh syndrome, hypotonia, elevated blood
and cerebrospinal fluid lactate, may present
severe infantile cardiomyopathy.

[42,390] 611776

NDUFAF5 X Predominantly missense but also
intronic (nonsense) leading to
uncertain protein impact.

Most common presentation of Leigh
syndrome, but also fatal lactic acidosis,
hyponatremia, hypotonia and bilateral optic
neuropathy. Variable survival depending on
variant. Decreased CI activity.

[36,391–393] 612360

NDUFAF8 X Nonsense (frameshift and intronic)
and missense leading to uncertain
protein impact.

Leigh syndrome, may present optic atrophy
and elevated blood lactate.

[38] 618461

ND1 module

MT-ND1 X Multiple, predominantly missense
variants with protein levels
dependant on variant. and mutant
mtDNA load.

LHON, MELAS. [43–45] 516000

NDUFA1 X Missense leading to decreased
protein levels.

X-linked. Variable presentation from severe
Leigh syndrome to developmental delay,
hypotonia, elevated blood lactate and
myoclonic epilepsy and survival to
childhood.

[48] 300078

NDUFA8 X Missense leading to reduced
proteins levels.

Psychomotor retardation, severe
quadriplegia, elevated blood lactate,
cerebral atrophy, hypertonia, epilepsy with
survival to adulthood.

[394] 603359

NDUFA13 X Missense or nonsense (frameshift)
leading to reduced protein levels.

Hypotonia, dyskinesia, sensorial
impairments or Leigh syndrome and mild
hypertrophic cardiomyopathy.

[395,396] 609435

NDUFAF6 X Predominantly missense but also
frameshift and intronic leading to
decreased protein levels or
uncertain protein impact.

Leigh syndrome is the most common
presentation, but also Fanconi syndrome,
lactic acidosis, bilateral striatal necrosis and
progressive dystonia in childhood.

[47,66,397,398] 612392

Continued
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number have been reported for NDUFAF5 and NDUFAF8 (Table 1). For NDUFAF5, the majority of patients
harbour missense mutations leading to impaired complex assembly. The phenotype is predominantly Leigh
syndrome, however, many patients have survived until adolescence or adulthood (Table 1). NDUFAF8 was only
recently reported to be a disease gene, with the patients described having presumably null mutations leading to
a classic Leigh syndrome phenotype [38]. The assembly factors NDUFAF3 and NDUFAF4 are required for
maturation of the Q-module and have been found in association with both NDUFS3 and NDUFS3 subunits
[41] as well as the Q-module intermediate [32]. While the precise molecular function of NDUFAF3 and
NDUFAF4 are not known, they appear to be essential for progression to the next assembly stage [22,32,42].
Consistent with this, patients for both have presented with severe infantile disease due to predominantly mis-
sense, presumably null variants (Table 1).
Following association with NDUFAF3 and NDUFAF4, the assembled Q-module joins with the

mtDNA-encoded ND1 subunit and the assembly factor TIMMDC1 [32]. Numerous mutations in ND1 have
been reported leading to Leber hereditary optic neuropathy (LHON) and mitochondrial encephalomyopathy,
lactic acidosis, and stroke-like episodes (MELAS) (Table 1). Generally, these patients have high mutant loads or
are in some cases homoplasmic (100%) for the variants [43–45]. Like most mutations in mtDNA, variants in
ND1 generally lead to adult onset disease. TIMMDC1 is only a recently identified disease gene with a single
homozygous intronic variant detected, leading to a splicing defect and no detectable protein [46] (Table 1).
The assembly factor NDUFAF6 is also required for ND1 biogenesis. While many missense variants in the
NDUFAF6 gene lead to Leigh syndrome, it does not appear to be stably associated with an intermediate and its
precise function is not yet known [47]. Once the nascent Q–ND1 module is formed, it subsequently incorpo-
rates the subunits NDUFA3, NDUFA8 and NDUFA13 [32] to produce the final Q–ND1 intermediate. Both
NDUFA8 and NDUFA13 are disease genes with missense variants leading to complex I deficiency, however,
the few patients identified have survived into young adulthood (Table 1). The reason for only missense variants
leading to reduced protein levels being reported for NDUFA8 and NDUFA13 might be explained by the fact
that loss of either protein products in HEK293T cells leads to complete loss of complex assembly and activity
[22], suggesting that complete absence of these proteins might be not tolerated. Finally, while NDUFA1 is a
subunit of the ND1 module, it is not added to the complex I until late during assembly [32]. Many missense
variants in NDUFA1, encoded on the X chromosome, have been linked to complex I deficiency with pheno-
types ranging from mild (survival into childhood) to severe (Leigh syndrome and death in early childhood)
[48] (Table 1).

Assembly of the ND2 module
In the early steps of the assembly of the ND2 module, the subunits ND2, NDUFC1 and NDUFC2 associate
with assembly factors ACAD9, ECSIT, NDUFAF1 and COA1 (Figure 2). To this subcomplex, ND3 and the
assembly factors TMEM126B and TMEM186, and subsequently ND4L and ND6 are added [32,49]. The afore-
mentioned assembly factors are also known to form the mitochondrial complex I intermediate assembly
(MCIA) complex which is essential for the assembly of the ND2 module [49]. COA1, which was originally sug-
gested to be a complex IV assembly factor [50], has recently been shown to be involved in the early stages of
ND2 translation [51]. Patients have been described for all mtDNA-encoded subunits present in this intermedi-
ate (ND2, ND3, ND4L and ND6). The phenotype spectrum is broad and depends on both the variant itself
and mutant load, however, Leigh syndrome, LHON and associated phenotypes are predominant (Table 2).
Although ND4L is transcribed as a biscistronic mRNA with ND4 (of the ND4 module) [52] no variants have
been described that affect the both proteins. All assembly factors present in the MCIA complex, with the

Table 1. Defects affecting biogenesis of the Q and ND1 modules Part 2 of 2

Gene S.
A.
F.

Types of genetic variants and
protein impact

Clinical presentations and relevant
information Ref. OMIM

TIMMDC1 X Intronic variant causing frameshift
and early termination leading to
decreased protein levels.

Infantile muscular hypotonia, developmental
delay, neurological deterioration.

[46] 615534

S., subunit; A.F., assembly factor; LHON, Leber’s hereditary optic neuropathy; MELAS, mitochondrial encephalopathy, lactic acidosis and stroke-like
episodes.
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exception of ECSIT and newly identified members COA1 and TMEM186 [49], are known disease genes
(Table 2). The function of NDUFAF1 (formerly CIA30) was first linked to complex I assembly through the use
of fungal [53] and then mammalian [54] model systems, and eventually led to the identification of patients pre-
senting with cardiomyopathies [55–57]. Fibroblasts from NDUFAF1 patients have reduced levels of complex I
and defective assembly of the ND2 module [55]. ACAD9 was originally thought to be involved in β-oxidation

Table 2. Defects affecting biogenesis of the ND2 module

Gene S.
A.
F.

Types of genetic variants and
protein impact

Clinical presentations and relevant
information Ref. OMIM

MT-ND2 X Predominantly missense but also
nonsense and deletion leading to
frameshift and protein impact
dependant on variant and mutant
mtDNA load.

Variable onset and presentation from Leigh
syndrome, LHON, mild exercise intolerance,
myalgia with survival into late adulthood
reported.

[171,399,400] 516001

MT-ND3 X Missense and protein impact
dependant on variant and mutant
mtDNA load.

Variable onset and presentation including
severe Leigh syndrome, encephalopathy,
lactic acidosis, LHON, hypotonia, ataxia,
seizures, dystonia with survival into adulthood
reported.

[401–406] 516002

MT-ND4L X Missense leading to unclear protein
impact.

LHON. Decreased CI activity. [407,408] 516004

MT-ND6 X Missense and protein impact
dependant on variant and mutant
mtDNA load.

Most common presentation of LHON and
dystonia with variable onset, but also MELAS
with survival into childhood and severe Leigh
syndrome or adult onset Leigh-like
syndrome.

[409–413] 516006

NDUFA9 X Missense leading to decreased
protein levels.

Variable phenotype of childhood-onset of
progressive dystonia developing neuropathy
and Leigh syndrome without acidosis in
adulthood or severe respiratory and
metabolic acidosis, retinitis pigmentosa and
early death.

[64,69] 603834

NDUFA10 X Predominantly missense but also
insertion leading to decreased
protein levels.

Leigh syndrome combined with hypertrophic
cardiomyopathy, hypotonia.

[65,66] 603835

NDUFA11 X Missense and intronic with unclear
protein impact.

Variable presentation from mild late-onset
myopathy to fatal infantile lactic acidosis,
encephalocardiomyopathy, hypotonia,
bilateral optic atrophy

[67,68] 612638

NDUFAF1 X Missense leading to decreased or
unclear protein levels.

Hypertrophic cardiomyopathy, failure to
thrive, developmental delay, lactic acidosis,
hypotonia, leukodystrophy.

[55–57] 606934

ACAD9 X Predominantly missense but also
duplication leading to frameshift
with unclear protein impact.

Variable phenotype from mild growth
retardation, exercise intolerance, cardiac
hypertrophy surviving to adulthood to severe
hypertrophic cardiomyopathy,
encephalopathy and lactic acidosis.

[414,415] 611103

TMEM126B X Missense but also nonsense
(frameshift) leading to unclear
protein impact.

Most common presentation of myalgia and
exercise intolerance with survival to
adulthood but also hypertrophic
cardiomyopathy, renal tubular acidosis and
severe muscle weakness. Decreased CI
assembly.

[416,417] 615533

S., subunit; A.F., assembly factor; LHON, Leber’s hereditary optic neuropathy; MELAS, mitochondrial encephalopathy, lactic acidosis and stroke-like
episodes.
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based on sequence homology with other members of the acyl-CoA family as well as its ability to bind
acetyl-CoA substrates in vitro [58]. The association with cardiomyopathy [59], demonstration of its interaction
with other MCIA members and requirement for complex I assembly [60] solidified its role as an assembly
factor. ACAD9 is one of the most common causes of complex I deficiency and while it typically presents as car-
diomyopathy, the phenotype can be quite varied with milder presentations such as mild growth retardation
and exercise intolerance also noted (Table 2) [61]. Interestingly, while it is now clear that ACAD9 deficient
cells lack β-oxidation defects, riboflavin supplementation has been shown to lessen symptoms in patients and
improve complex I activity [61]. ACAD9 is a flavoprotein (riboflavin is a precursor to flavin adenine dinucleo-
tide; FAD), however, a catalytically dead mutant retains the ability to rescue complex I assembly, suggesting
that ACAD9 has a secondary role in mitochondrial function [62]. TMEM126B was identified as an assembly
factor through complexome profiling studies [63] with patients later being identified. The role of TMEM126B
in complex I assembly is still not completely clear, although we know this protein has multiple transmembrane
domains and may act as an anchor for the other MCIA subunits, despite their levels remaining unaffected by
loss of TMEM126B [49]. Patients harbouring mutations in TMEM126B also present milder phenotypes com-
pared with those with mutations in NDUFAF1 and ACAD9 (Table 2).
At this stage of complex I biogenesis there appears to be multiple parallel routes to the final complex, either

the ND2 module joins with the Q–ND1 intermediate or the ND4 intermediate [32] (Figure 2). Once either the
Q–ND1–ND2 subcomplex or ND2–ND4 subcomplex is assembled the ND2 module subunits NDUFA9, or
NDUFA10 and NDUFS5 are respectively incorporated. NDUFA11 appears to be added later during assembly
once the membrane arm is fully built [32]. Despite the timing of these subunit additions, all are critical for
complex I assembly in gene-edited HEK293T cells [22]. Patients have been identified for NDUFA9, NDUFA10
and NDUFA11 (Table 2) and generally present with severe infantile Leigh syndrome or encephalocardiomyopa-
thy and isolated complex I deficiency [64–68], though there have been reports of milder NDUFA9 and
NDUFA11 cases presenting with childhood-onset progressive dystonia [69] and late-onset myopathy respect-
ively [68].

Assembly of the ND4 and ND5 modules
The assembly steps of the ND4 and ND5 modules are less well characterised than the other modules, with
assembly factors only identified in recent years. In the case of the ND4 module, a subcomplex containing four
accessory subunits NDUFB5, NDUFB6, NDUFB10 and NDUFB11 assemble early and are followed by the
addition of NDUFB1 and the mtDNA-encoded subunit ND4. Like for NDUFA10 and NDUFS5 (discussed in
the ND2 module section), NDUFB4 seems to be incorporated into the ND4 module once the intermediate
ND2–ND4 subcomplex is formed [32]. In our HEK293T model system, loss of all nuclear subunits present in
the ND4 module leads to turnover of almost all complex I subunits, leaving only an intermediate containing Q/
ND1 subunits module intact [22]. As such, defects in genes associated with the ND4 module lead to severe
disease (Table 3). ND4, NDUFB10, NDUFB11 are known disease genes and patients with variants in ND4
largely present with similar clinical features to those with mutations in other mtDNA-encoded complex I subu-
nits, with LHON the dominant phenotype but also Leigh syndrome and encephalopathy have been reported.
Indeed, one ND4 variant (11778A), accounts for more than half of the reported primary cause of LHON in
Caucasian families [70] and over 90% in the Chinese families [71]. Although ND4 and ND4L (found in the
ND2 module) are transcribed as a biscistronic mRNA [52], no cases have been described where both proteins
are affected. For NDUFB10 there is a single known case that presented with severe neonatal cardiomyopathy
leading to infantile death. The patient harboured a compound frame shift variant leading to early termination
and a missense (p.C107S) variant leading to a mutation in the conserved CXnC motif important for import of
the protein into mitochondria [72]. Consistent with an import defect, tissues had reduced but not absent levels
of NDUFB10 and accumulation of complex I intermediates. Similarly, variants in NDUFB11 also typically lead
to infantile cardiomyopathy, though the presentation is complicated by the gene being present on the X
chromosome (Table 3) [66,73,74]. Interestingly, female patients appear to suffer strong skewing of
X-chromosome inactivation toward the mutant allele [73].
The assembly factors TMEM70, FOXRED1 and ATP5SL are found associated with a near complete ND4

module [22,32,75]. While their function in assembly of this module is not clear yet, all three interact with subu-
nits of the ND4 module and their loss, either in model systems or patient cell lines [22,76] leads to accumula-
tion of membrane assembly intermediates. While no patients have been identified for ATP5SL, both TMEM70
and FOXRED1 are known mitochondrial disease genes (Table 3). FOXRED1 was identified through high-
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Table 3. Defects affecting biogenesis of the ND4 and ND5 modules Part 1 of 2

Gene S.
A.
F.

Types of genetic
variants and protein
impact

Clinical presentations
and relevant information Ref. OMIM

ND4 module

MT-ND4 X Missense with unclear
protein impact.

LHON, early onset Leigh
syndrome, late-onset
encephalopathy, may
present lactic acidosis.
Phenotype severity may
correlate with mutation
load.

[418–421] 516003

NDUFB10 X Missense and nonsense
leading to impaired
protein import.

Fatal lactic acidosis and
cardiomyopathy.

[72] 603843

NDUFB11 X Nonsense but also
missense and deletion
leading to reduced
protein levels.

X-linked gene.
Encephalopathy,
cardiomyopathy, MIDAS,
LIMD, sideroblastic
anaemia

[66,73,74] 300403

FOXRED1 X Missense, frameshift and
nonsense leading to
unclear protein impact

Variable phenotype from
severe neonatal lactic
acidosis with early death to
Leigh syndrome,
hypotonia, lactic acidosis,
hypertrophic
cardiomyopathy and
survival into adolescence
and adulthood. Decreased
CI activity

[77,78,422] 613622

TMEM70 X Clinical cases are
presented at the
complex V defects
section

ND5 module

MT-ND5 X Predominantly missense
but also deletion leading
to frameshift with protein
impact dependant on
variant and mutant
mtDNA load

Variable onset MELAS,
Leigh syndrome, LHON.
May present as
combination of the
previous phenotypes with
hypotonia, failure to thrive,
cardiomyopathy, renal
failure, myopathy.
Phenotypes may vary
according to age of onset
and mutation load

[86,87,423–
427]

516005

NDUFB3 X Missense but also
nonsense leading to
unclear protein impact

Variable phenotype from
mild short stature,
distinctive facial
appearance surviving into
childhood and decreased
CI assembly to severe
encephalopathy, myopathy,
hypotonia, lactic acidosis,
failure to thrive

[88–90] 603839

NDUFB8 X Predominantly missense
but also frameshift

Leigh syndrome, fatal
infantile lactic acidosis,

[91] 602140

Continued
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throughput sequencing of a complex I deficient cohort [77] and since then many patients have been charac-
terised [77–79]. The phenotype is variable, with both severe (Leigh syndrome, cardiomyopathy) and mild cases
having been identified, presumably dependent on the severity of the particular variant(s). Interestingly,
FOXRED is an FAD-dependent oxidoreductase, and although it is not clear if FAD binding is important in its
function, Rendon and co-workers [79] identified a patient with relatively mild symptoms (epilepsy and severe
psychomotor retardation) that suffered a combined complexes I and II defect, suggesting FOXRED1 may be
involved in the biogenesis of multiple flavoprotein containing complexes. TMEM70 is an assembly factor impli-
cated in the assembly of both complexes I and V, with functional studies showing that its loss leads to accumu-
lation of assembly intermediates for both complexes [75,80]. In line with this dual role, patients commonly
have cardiac and brain involvement and defects in both OXPHOS complexes [81] or isolated complex I or V
deficiencies, varying according to tissue type [81–84] (Tables 3 and 14).
The ND5 module contains the core subunit ND5 and accessory subunits NDUFB2, NDUFB3, NDUFB7,

NDUFB8, NDUFB9 and NDUFAB1. NDUFAB1 is unique in that it is found in two pools, a soluble non-
complex I associated pool where it associates with many different proteins containing the LYR motif [85] and a
complex I associated pool [24]. In the case of the latter it is found twice, associating with the two LYR motif
containing complex I subunits, NDUFB7 of this module and NDUFA6 of the N-module (discussed below)
(Figure 2). Interestingly, loss of NDUFAB1 in the gene-edited HEK293T model system leads to cell death
(whereas loss of the other accessory subunits leads to a presumed shift to glycolysis), and while there is a severe
complex I assembly defect the essential role of NDUFAB1 appears to be related to its non-complex I associated
pool [22]. Little is known about assembly of the ND5 module with the only intermediate observed containing
all known subunits [32]. The recently identified assembly factor DMAC1 [22] is thought to be required for
ND5 module assembly as it has been shown to interact with newly synthesised ND5 and other subunits of the
module [22], however, its molecular function is not yet known. Interestingly the stability of both the ND2 and
ND5 modules appears to rely on the presence of a properly built ND4 module but not vice versa [22]. Defects
in ND5 lead to the typical late onset (LHON, MELAS) phenotypes observed in patients with mutations in
mtDNA-encoded complex I subunits (Table 3) although there have been many reports of more severe infantile
presentations [86,87]. Variants have been identified in NDUFB3, NDUFB8 and NDUFB9. Patients present with
typical severe childhood phenotypes underpinned by complex I dysfunction (e.g. encephalopathy, myopathy,
hypotonia), dependent on the variants impact on protein function [88–92]. In line with the requirement of
these genes for complex I assembly in the HEK293T model system [22], in all patients, residual levels of the
presumably semi-functional proteins have been detected [88–92].

Assembly of the N-module
The N-module, which is the site of NADH oxidation, is probably pre-assembled into two subcomplexes con-
taining the NDUFV1 and NDUFV2 subunits and NDUFS1 and NDUFA2 subunits before incorporation with
the Q–ND1 subcomplex (Figure 2) [32]. Defects have been identified in all four genes encoding these subunits
(Table 4). In line with their central role in complex I enzyme function [24,25], patients present with severe
disease, typically Leigh syndrome in infants, although some variants in NDUFA2 which is not thought to be
directly involved in NADH catalysis, lead to less severe disease and survival into childhood [93–102]. The

Table 3. Defects affecting biogenesis of the ND4 and ND5 modules Part 2 of 2

Gene S.
A.
F.

Types of genetic
variants and protein
impact

Clinical presentations
and relevant information Ref. OMIM

leading to decreased
protein levels

respiratory failure, cardiac
hypertrophy, hypotonia,
failure to thrive

NDUFB9 X Missense leading to
decreased protein levels

Early onset progressive
hypotonia, increased blood
lactate

[92] 601445

S., subunit; A.F., assembly factor; LHON, Leber’s hereditary optic neuropathy; MIDAS, mitochondrial dysfunction-associated senescence; LIMD,
lethal infantile mitochondrial disease; MELAS, mitochondrial encephalopathy, lactic Acidosis and stroke-like episodes.
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assembly factor NUBPL has a CXXC motif that binds iron–sulfur clusters and is thought to aid their delivery
to NDUFS1 and NDUFV1. Depletion of NUBPL in model systems leads to turnover of some N-module subu-
nits and accumulation of intermediates [103]. NUBPL was identified in the same high-throughput sequencing
study as FOXRED1 [77] and since then a few other patients have been identified [72,77,104]. Patients have
milder symptoms than those harbouring mutations in the two known NUBPL substrates, typically presenting
with leukoencephalopathy and childhood ataxia followed by other variable but progressive symptoms suggesting
that biogenesis of NDUFS1 and NDUFV1 remains partially functional.
The subunits NDUFA6, NDUFA7, NDUFA11, NDUFA12, NDUFS4, NDUFS6, NDUFV3 and the other

copy of NDUFAB1, associated with LYR motif containing NDUFA6, seems to be incorporated at later

Table 4. Defects affecting biogenesis of the N-module

Gene S.
A.
F.

Types of genetic variants and
protein impact

Clinical presentations and relevant
information Ref. OMIM

NDUFA2 X Majority missense but also
intronic and frameshift with
unclear protein impact.

Variable phenotype from severe Leigh
syndrome, hypertrophic cardiomyopathy,
severe lactic acidosis to cystic
leukoencephalopathy and survival into
childhood. Impaired CI assembly/activity.

[93,94] 602137

NDUFA6 X Frameshift, nonsense and
missense leading to unclear
protein impact.

Variable phenotype from optic atrophy, motor
regression and survival into childhood to
severe fatal lactic acidosis and brain
abnormalities, hypotonia, seizures.
Decreased CI assembly/activity.

[106] 602138

NDUFA12 X Nonsense leading to complete
absence of protein.

Leigh syndrome, dystonia, hypotonia, normal
hearing and vision.

[107] 614530

NDUFS1 X Predominantly missense but also
nonsense with unclear protein
impact.

Variable severe phenotypes including Leigh
syndrome, bilateral optic atrophy,
hyperlactatemia, mental retardation,
macrocytic anaemia, cavitating
leukoencephalopathy, dystonia, hypotonia
mostly leading to early death. Decreased CI
assembly/activity.

[95–98] 157655

NDUFS4 X Variable. Nonsense, intronic,
duplication and deletion causing
frameshift. Unclear or undetected
protein levels.

Variable presentations with predominant
Leigh syndrome phenotype but also brain
atrophy, cardiac hypertrophy, hypotonia, may
present lactic acidosis and decreased CI
activity.

[108–111] 602694

NDUFS6 X Intronic, missense and deletion
leading to uncertain or decreased
protein level.

Severe presentation of fatal lactic acidosis,
Leigh syndrome.

[112–114] 603848

NDUFV1 X Missense, nonsense and intronic
leading to unclear protein impact.

Leigh syndrome and may present
progressive muscular hypotonia, myoclonic
epilepsy, elevated plasma and cerebrospinal
fluid lactate. CI deficiency.

[95] 161015

NDUFV2 X Intronic deletion and insertion
causing protein frameshift leading
to decreased protein levels.

Hypertrophic cardiomyopathy and
encephalopathy, Leigh syndrome, hypotonia.

[100–102] 600532

NDUFAF2 X Predominantly nonsense but also
deletion causing frameshift
leading to undetectable protein
levels.

Severe progressive brain abnormalities
distinct from Leigh syndrome, hypotonia,
may present apnoea, normal or mildly
elevated plasma lactate.

[77,116,118,119] 609653

NUBPL X Predominantly missense but also
frameshift leading to decreased
protein levels.

Leukoencephalopathy, may present elevated
serum and cerebrospinal fluid lactate.

[77,104] 613621

S., subunit; A.F., assembly factor.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND). 4095

Biochemical Journal (2020) 477 4085–4132
https://doi.org/10.1042/BCJ20190767

D
ow

nloaded from
 http://port.silverchair.com

/biochem
j/article-pdf/477/21/4085/896952/bcj-2019-0767c.pdf by guest on 09 April 2024

https://creativecommons.org/licenses/by-nc-nd/4.0/


assembly stages of the complex I [32]. Some of these subunits appear to be able to be dynamically exchanged
from the assembled complex, possibly to prevent accumulation of oxidatively damaged subunits [105]. Patients
have been described for NDUFA6 [106], NDUFA12 [107], NDUFS4 [108–111], and NDUFS6 [112–114]. Patients
with mutations in the latter three generally present with severe childhood Leigh syndrome (Table 4).
Interestingly, loss of these proteins in the HEK293T model system leads to only mild defects in complex I assem-
bly, turnover of only selected N-module subunits, and mild impacts on complex I function [22]. In line with this,
mutations found in these patients generally lead to complete absence of the proteins (Table 4). In contrast, the
known patients for NDUFA6, which is required for N-module assembly in model systems [22], present with vari-
able symptoms ranging from severe infantile disease to survival into childhood, presumably due to differing
effects on protein stability and function [106]. These examples highlight the delicate balance between the role of
the protein in complex assembly and the severity of the variant and presentation of phenotypes in patients.
Finally, the N-module requires the assembly factor NDUFAF2 for its biogenesis (Figure 2). NDUFAF2 is

found associated with a complex I intermediate that lacks the N-module, but contains a near complete Q–
ND1–ND2–ND4–ND5 subcomplex [22,32,115]. HEK293T cell lines lacking some N-module subunits as well
as patients with mutations in NDUFAF2 contain this partially built assembly as a stable intermediate [22,105].
NDUFAF2 is thought to have evolved through duplication of the NDUFA12 gene [116], and the structure of
the intermediate isolated from a fungal NDUFS6 knockout model (lacking the N-module) shows NDUFAF2
occupying the site usually taken by NDUFA12 in the mature complex [117], giving rise to the suggestion that
the assembly factor caps the near final Q–ND1–ND2–ND4–ND5 intermediate priming it for addition of the
N-module. NDUFAF2 patients present with complex I deficiency and severe progressive childhood disease.
Most patients present with no detectable NDUFAF2 protein [77,116,118,119], which given the loss of asso-
ciated N-module in patients is reflected in the similar complex I defect upon loss of NDUFAF2, NDUFA12,
NDUFS4 and NDUFS6 in gene-edited model systems [22], as well as the similarity of phenotypes observed in
patients for these genes (Table 4).

Complex II
Mitochondrial complex II (or succinate dehydrogenase) is an important enzyme that participates in both
central metabolic processes relevant to mitochondrial energy generation: the MRC and the tricarboxylic acid
cycle (TCA). This enzyme is responsible for the oxidation of succinate to fumarate with the extracted electrons
used to reduce Coenzyme Q [120]. Complex II is the smallest complex in the OXPHOS system and the only
one where all subunits are of nuclear origin (SDHA, SDHB, SDHC, SDHD). While all except for SDHC have
been linked to mitochondrial disease (Table 5), genes associated with complex II are more commonly known
for their association with tumorigenesis, particularly heritable paragangliomas (discussed below). SDHA is the
most frequently associated with mitochondrial disease, with multiple variants and presentations leading to
complex II deficiency having been described [121–129]. In general, patients carrying mutations in the SDHA
locus predicted or shown to lead to reduced protein levels present with classical mitochondrial disease pheno-
types including Leigh syndrome (Table 5). There are few examples of SDHB and SDHD patients with pheno-
types in line with classical mitochondrial dysfunction. For the former, there are only three known patients
[130,131] all harbouring the same homozygous transversion leading to an aspartate to valine substitution,
reduced levels of SDHB protein and assembled complex II. Two of these patients presented neurologic impair-
ment, developmental regression and leukoencephalopathy [130,131], but the third, a sibling of one affected
individual, was asymptomatic [130] suggesting incomplete penetrance. As such this variant is still classified as a
VUS (see OMIM 185470.0020). For SDHD there are only two known patients, both variants leading to
reduced levels of protein and impaired complex II assembly, complex II deficiency, however, both presenting
with fatal hypertrophic cardiomyopathy or encephalomyopathy [131,132] suggesting this is a genuine mito-
chondrial disease gene.
The assembly of this complex is not well characterised, with the known steps dominated by the insertion of

two cofactors, thought to be catalysed by the assembly factors SDHAF1–4 (Figure 3). The first step is likely the
flavination of the SDHA subunit by the assembly factor SDHAF2 [133,134]. Although the requirement for
SDHAF2 in the flavination of SDHA has been disputed in some cancer cell lines [135,136], evidence exists to
the contrary, including both the absence of SDHA flavination in tumours harbouring heterozygous SDHAF2
mutations [133] and a structure of the bacterial homologue of SDHAF2 bound to SDHA [137]. SDHA also
interacts with the assembly factor SDHAF4, which is proposed to prevent the generation of reactive oxygen
species (ROS) from the oxidation of succinate by unassembled SDHA but has also been suggested to facilitate
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the interaction of SDHA with SDHB [138]. The other notable step is the insertion of an Fe–S prosthetic group
into SDHB, which is thought to be incorporated prior to the formation of an SDHA–SDHB intermediate and
be promoted by SDHAF1 and SDHAF3 [139–142]. SDHAF1 is the only assembly factor known to be a mito-
chondrial disease gene, the two known homozygous missense variants lead to reduced complex II activity
[143]. Patients present with infantile leukodystrophy and developmental regression, therefore having similarities

Table 5. Defects affecting biogenesis of complex II

Gene S.
A.
F.

Types of genetic
variants and protein
impact

Clinical presentations and
relevant information Ref. OMIM

SDHA X Predominantly missense
but also intronic and
nonsense leading to
unclear or decreased
protein levels.

Majority presenting Leigh
syndrome and may also present
leukodystrophy, dystonia, ataxia,
optic atrophy, lactic acidosis,
cardiomyopathy.

[121–
129]

600857

SDHB1 X Single known
homozygous missense
variant with possible
reduced penetrance but
leading to decreased
protein levels.

Leukoencephalopathy,
hypotonia or virtually
asymptomatic, minor brain
lesions.

[127,130] 185470

SDHD X Predominantly missense
but also disruption of
stop codon and protein
extension leading
unclear or decreased
protein levels.

Fatal hypertrophic
cardiomyopathy or
encephalomyopathy,
developmental delay and lactic
acidosis. Symptoms developed
after viral infection.

[131,132] 602690

SDHAF1 X Missense with unclear
protein impact.

Infantile leukodystrophy, spastic
quadriparesis, lactate and
succinate accumulation in the
brain. Decreased CII activity/
assembly.

[143] 612848

1Possible VUS, see text for detail. S., subunit; A.F., assembly factor.

Figure 3. Schematic depicting the complex II assembly pathway showing known mitochondrial disease genes in red

and assembly factors in italics.

Heme b binds SDHC and SDHD. SDHA is flavinated (FAD) in the presence of SDHAF2. SDHB receives iron–sulfur (Fe–S)

clusters through the assistance of SDHAF1 and SDHAF3 and binds SDHA to finalise the assembly of the complex. IMS,

intermembrane space; IMM, inner mitochondrial membrane; Matrix, mitochondrial matrix.
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to those harbouring the VUS in the associated subunit SDHB, discussed above (Table 5) [131,143]. Little is
known about the assembly of the membrane anchored CII subunits, SDHC and SDHD. The heme b group
situated at their interface is incorporated is required for their stability [144], but appears to play no catalytic
role in the enzymatic function of the complex [145]. Interestingly the presence of both matrix exposed subu-
nits, SDHA and SDHB is required for the stability of the SDHC/SDHD [134,141].
Unlike for the other OXPHOS complexes, the genes encoding succinate dehydrogenase subunits and assem-

bly factors are better known as being implicated in tumorigenesis over mitochondrial disease. Mutations in
SDHA [146], SDHB [147], SDHC [148], SDHD [147] and SDHAF2 [133,149] are linked to heritable paragan-
gliomas, gastrointestinal stromal tumours, renal carcinomas and pituitary adenomas [150]. This is likely due to
metabolic and epigenetic alterations [151] as unlike the mutations leading to complex II deficiency discussed
above, those leading to tumorigenesis are typically heterozygous with modest effects on complex function. The
impact of these mutations on complex II assembly and function are discussed in excellent recent reviews from
Dalla Pozza et al. [151] and Bezawork-Geleta et al. [152].

Complex III assembly
Complex III or the cytochrome bc1 complex sits at the centre of the MRC, using electrons from complexes I
and II via Coenzyme Q to reduce cytochrome c, while also pumping protons into the intermembrane space
from the matrix [153]. Complex III forms an obligate homodimer (CIII2), with each monomer being composed
of one mtDNA-encoded subunit (CYB) and nine nuclear-encoded subunits, CYC1, UQCRC1, UQCRC2,
UQCRFS1, UQCRH, UQCRB, UQCRQ, UQCR10, UQCR11 [154,155]. CYB and the nuclear-encoded cyto-
chrome c1 (CYC1) and UQCRFS1 are the three subunits with electron transfer capabilities [153,156]. Much of
the human complex III assembly pathway has been extrapolated from studies of the yeast complex, which pre-
sents a similar structure and subunit composition [157–159]. Assembly can be broken down into many discreet
steps (Figure 4), which are summarised below.

Translation of CYB and initial steps of complex III assembly
The assembly of complex III begins with the translation of mtDNA-encoded cytochrome B (CYB) on mitori-
bosomes and its co-translational insertion into the IMM (Figure 4) [158]. For efficient translation, the

Figure 4. Schematic depicting the complex III assembly pathway showing known mitochondrial disease genes in red,

mtDNA-encoded subunits underlined and assembly factors in italics.

CYB is joined by UQCRB and UQCRQ. The subcomplex joins with a tetramer of UQCRC1 and UQCRC2, CYC1, UQCRH and

UQCR10, resulting in the first dimeric intermediate, pre-CIII2. UQCRFS1 receives the iron–sulfur cluster from the assembly factor

LYRM7 and is assembled into the pre-CIII2 structure with the aid of the translocase BCS1L. The incorporation of UQCR11

subunit occurs at later stages of complex III assembly. The assembly factor TTC19 clears proteolytic fragments arising from

UQCRFS1 maturation. IMS, intermembrane space; IMM, inner mitochondrial membrane; Matrix, mitochondrial matrix.
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mitoribosome must be bound by a dimer of the assembly factors UQCC1 and UQCC2 [160,161]. This dimer
interacts with the newly translated polypeptide at the mitoribosome exit tunnel and remains bound to CYB
after its incorporation into the IMM [161], which is believed to be aided by the insertase OXA1L [162,163].
Like all other mtDNA protein coding genes, the phenotype and disease onset due to mutations in CYB depend
on the variant and mutant load. Though many patients present with relatively mild symptoms (myopathy
expressed as exercise intolerance; [164–169]), the classic LHON phenotype is also a common presentation
[170–174] (Table 6). Interestingly, for many of these variants, complex III deficiency as well as high levels of
mutant load appear to be restricted to muscle tissue. There are two known patients for the assembly factor
UQCC2, both with mutations leading to near absence of the protein [160,175] (Table 6). In contrast with those
with CYB mutations, the one UQCC2 patient harbouring complete loss of the protein due to defective mRNA
splicing showed complex III deficiency in both the expected muscle tissue but also skin fibroblasts [160].
Another noteworthy point is that defects in UQCC2 also lead to a combined complex I defect [160,175], which
is likely due to the reliance of complex I on the presence of complex III for its assembly [176].

Table 6. Defects affecting translation of CYB and initial steps of complex III assembly

Gene S.
A.
F.

Types of genetic
variants and protein
impact

Clinical presentations
and relevant information Ref. OMIM

MT-CYB X Predominantly missense
but also nonsense
leading to reduced levels
of protein. Effect is often
restricted to muscle
tissue.

Variable phenotypes and
onset depending on
variant, spanning from mild
exercise intolerance and
lactic acidosis, may
develop encephalopathy
and seizures in adulthood,
may include multisystemic
involvement (growth
retardation, deafness,
cognitive dysfunction) to
LHON. A single severe
case of fatal infantile
cardiomyopathy has also
been described.

[164–
167,286,428]

516020

UQCC2 X Missense or intronic
splicing defect, leading
to undetectable or very
low protein levels.

Lactic acidosis, growth
retardation, neurological
impairment.

[160,175] 614461

UQCC3 X Single patient with
missense leading to
undetectable protein
levels.

Lactic acidosis,
hypoglycaemia, hypotonia,
delayed development.

[178] 616097

UQCRB X Single patient with
deletion leading to
C-terminal extension, but
with unclear protein
impact.

Episodic infantile lactic
acidosis, hypoglycaemia,
transient liver dysfunction,
followed by normal
psychomotor development
in early childhood.
Decreased CIII activity.

[179] 191330

UQCRQ X Missense leading to
unclear protein impact.

Severe non-lethal
psychomotor retardation
dystonia, athetosis, ataxia,
mildly elevated blood
lactate. Decreased CIII
activity and variable CI
deficiency.

[180] 612080

S., subunit; A.F., assembly factor; LHON, Leber’s hereditary optic neuropathy.
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Following membrane integration of CYB, the first of two heme b molecules is incorporated at the bL site
[158,177], triggering the binding of the assembly factor UQCC3 which based on work on its fungal homologue
is thought to promote the incorporation of a second heme b molecule at the bH site [177]. This leads to dissoci-
ation of the UQCC1–UQCC2 dimer, which is free to initiate another round of CYB translation [161,177].
There is a single known patient for UQCC3, harbouring a missense variant leading to undetectable protein
[178] (Table 6). The patient presented with isolated complex III deficiency (complex I was at the lower end of
the control range in muscle), displayed lactic acidosis, hypotonia and delayed development, and fibroblasts
exhibited defects in CYB and complex III assembly [178]. Fully hemylated CYB is then stabilised by the
binding of the first nuclear-encoded subunits UQCRB and UQCRQ (Figure 4) [177]. Both of these subunits
are mitochondrial disease genes, although there are only single variants known for each with limited cases
(Table 6). For UQCRB, the single known case harbours a homozygous mutation leading to deletion of the last
seven amino acids of the protein and inclusion of a new stretch of 14 amino acids derived from non-coding
exons [179]. The protein impact of this mutation is not clear, although the patient, an infant who presented
with episodic lactic acidosis, hypoglycaemia and liver dysfunction, had impaired complex III activity in liver,
lymphocytes and fibroblasts. Interestingly, by the age of four the patient showed normal growth and psycho-
motor development. Without further cases or related functional studies, the mechanism underpinning the mild
impact of this variant is unknown. For UQCRQ there is a single homozygous missense variant with multiple
affected cases, however, these present with a more severe psychomotor retardation phenotype (Table 6). The
impact of the mutation on protein function is unknown, although muscle from the patients has only a moder-
ate complex III activity defect [180]. As for most other patients with defects affecting complex III, complex I
activity was also moderately impaired in some, but not all of the reported cases.

Assembly of the pre-complex III dimer
Parallel to the coalescence of hemylated CYB with UQCRB and UQCRQ, matrix facing subunits UQCRC1
and UQCRC2 form a separate tetrameric module (i.e. a dimer of each), which is likely incorporated into the
CYB-containing module simultaneously with CYC1 and UQCRH to yield the first dimeric intermediate of
complex III, the pre-CIII2 (Figure 4) [181]. This step coincides with the dissociation of UQCC3, which may
prevent the dimerisation of earlier intermediates [181]. Following dimerisation, the subunit UQCR10 is added
to pre-CIII2 [158]. UQCRC2 and CYC1 are mitochondrial disease genes (Table 7). Although there exist only a
few patients for both, there is a consistent and similar phenotype and clinical progression to what is seen in the
UQCRB patient [179]. Patients present with recurring episodes of metabolic acidosis that largely resolves in
childhood or early adulthood [182–184]. Analysis of fibroblasts from the patients have combined complexes I
and III defects in assembly, though the complex I enzyme defect is not significant for the CYC1 patients [184].
The mechanism underpinning the similarity in phenotypes between these patients and those with mutations in
UQCRB is not yet clear, though suggests a similar impact on complex III assembly and function.

Table 7. Defects affecting assembly of the pre-complex III dimer

Gene S. A.F.

Types of
genetic
variants and
protein impact

Clinical presentations and
relevant information Ref. OMIM

CYC1 X Missense
leading to near
absence of
protein

Episodic severe infantile ketoacidosis,
insulin-responsive hyperglycemia,
hyperammonemia followed by normal
development in childhood or early
adulthood. Isolated CIII deficiency

[184] 123980

UQCRC2 X Missense
leading to
uncertain protein
impact

Episodic infantile hypoglycaemia,
lactic acidosis, ketonuria, variable
liver failure followed by normal
development in childhood.
CIII deficiency and may present
combined CI deficiency

[182,183] 191329

S., subunit; A.F., assembly factor.
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Biogenesis of UQCRFS1 and final steps of assembly
The Rieske iron–sulfur protein, UQCRFS1, is first imported into the matrix where it is bound by the chaperone
LYRM7 which stabilises it and mediates the insertion of a 2Fe–2S cluster (Figure 4) [185,186]. Now-folded and
containing an iron–sulfur cluster, UQCRFS1 is thought to be translocated into the IMM by the AAA+ ATPase
BCS1L [187]. BCS1L is an inner membrane protein that forms a matrix-sided heptameric ring structure [188],
allowing for the translocation of the hydrophilic folded C-terminus of UQCRFS1 across the inner membrane
[187–189]. The incorporation of UQCRFS1 marks the important transition to a catalytically active complex III
[158]. Both assembly factors and the UQCRFS1 gene itself are linked to mitochondrial disease, with multiple
variants described, most of which lead to severely reduced protein levels of the corresponding protein
(Table 8). Functional studies in fungal models have indicated that absence of the LYRM7 homologue leads to
destabilisation and degradation of UQCRFS1 [185,190,191], although a small amount of UQCRFS1 is still
assembled into complex III, which is not seen in cells lacking the homologue of BCS1L [187]. In line with this,
patients for all three genes have some similarity in clinical presentation, particularly LYRM7 and UQCRFS1,
both of which present severe infantile conditions consistent with complex III deficiency (Table 8) [192–195].
While BCS1L patients can also present with these symptoms, there is considerable symptomatic variability
depending on the variant, including hepatic iron overload and the absence of a complex III defect entirely
(Table 8) [196–202]. This had led to suggestions that BCS1L may have another yet to be characterised role in
mitochondrial function [196].

Table 8. Defects affecting biogenesis of UQCRFS1 and final steps of CIII assembly

Gene S.
A.
F.

Types of genetic
variants and protein
impact

Clinical presentations and
relevant information Ref. OMIM

UQCRFS1 X Missense, intronic,
nonsense leading to
total absence or
decreased protein
levels.

Severe hypertrophic
cardiomyopathy, lactic acidosis,
alopecia. Isolated CIII
deficiency. Depending on
severity of variant survival into
childhood with slightly lightly
impaired gross and fine motor
skills.

[195] 191327

BCS1L X Predominantly
missense but also
nonsense leading to
decreased protein
levels or unclear
protein impact.

Variable phenotype including i)
mild Björnstad syndrome (pili
torti, neurosensory deafness), ii)
severe Leigh syndrome,
tubulopathy, hepatic
dysfunction, metabolic acidosis,
iii) GRACILE syndrome. May
not present CIII deficiency.

[196–201] 603647

LYRM7 X Multiple. Nonsense,
intronic, deletion,
duplication, missense
leading to decreased
protein levels.

Lactic acidosis, early onset
multifocal cavitating
leukoencephalopathy, fatal
neurologic decompensation.
Isolated CIII deficiency.

[192–194] 615831

TTC19 X Predominantly
nonsense but also
deletions likely leading
to absence of protein.

Variable onset and neurological
phenotypes including
psychiatric symptoms,
progressive neurodegenerative
disorder, developmental delay,
ataxia, as well as Leigh
syndrome. Isolated CIII
deficiency. Onset tends to late
childhood with some cases
presenting in adulthood.

[203,205–
208]

613814

S., subunit; A.F., assembly factor; GRACILE, growth retardation, amino aciduria, cholestasis, iron overload, lactic acidosis and early death.
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The final steps of complex III assembly include the incorporation of the last subunit, UQCR11 [158], fol-
lowed by transient association of the assembly factor, TTC19. Although with unknown function at the time,
TTC19 was identified in patients with progressive neurological phenotypes and isolated complex III deficiency
[203]. Functional studies using a mouse knockout model showed that TTC19 is involved in proteolytic clear-
ance of protein fragments derived from the N-terminus of UQCRFS1 that likely inhibit the enzyme [204].
Many other patients and variants have since been reported, generally leading to loss of detectable protein and
similar late-onset phenotypes (Table 8) [192–201,205–208]).

Complex IV assembly
Complex IV or cytochrome c oxidase (COX) is the last proton-pumping enzyme in the ETC and displays many
interesting features compared with other OXPHOS complexes. For instance, complex IV has the highest ratio
of known assembly factors per subunit as well as tissue and developmental specific isoforms which together
adds complexity for the diagnosis of mitochondrial diseases [6,209,210]. Mammalian complex IV consists of 14
subunits of which three are core subunits encoded on mtDNA, MT-CO1 (frequently referred to as COX1),
MT-CO2 (COX2) and MT-CO3 (COX3) with the remainder encoded by nDNA, COX4 (with 2 possible iso-
forms encoded on separate genes, COX4I1 and COX4I2), COX5A, COX5B, COX6A (2 possible isoforms,
COX6A1-2), COX6B (2 isoforms, COX6B1-2), COX6C, COX7A (3 isoforms, COX7A1-3), COX7B, COX7C,
COX8A and COX8C [211–213]. It is generally thought that assembly of complex IV occurs in a modular
fashion (Figure 5) [210,214,215], with the three mt-DNA encoded acting as platforms for assembly of nDNA
encoded subunits into modules.

Assembly of the COX1 module
The assembly of complex IV starts with translation of COX1, which requires a specific translational activator
(TACO1) [216,217], and COA3 and COX14, which appear to interact with COX1 [218–220] and suggested to
prevent its degradation [218,220]. Another assembly factor, CMC1, has also been implicated in stabilising
COX1 at this stage of assembly [221]. At this early step, mutations in TACO1 have been linked to a range of
phenotypes, commonly presenting as Leigh syndrome, optic atrophy and muscle involvement with variable

Figure 5. Schematic depicting the complex IV assembly pathway showing known mitochondrial disease genes in red,

mtDNA-encoded proteins underlined and assembly factors in italics.

Complex IV assembly is driven by the coalescence of three distinct modules named after the mtDNA-encoded subunits they

contain, COX1, COX2 and COX3. COX1 receives heme and copper (Cu) cofactors and joins COX4 and COX5A to form the

COX1 module. COX2 receives copper and is assembled with COX5B, COX6C, COX7B, COX7C and COX8A to form the COX2

module. COX1 and COX2 module are integrated prior to addition of the COX3 module, which is composed of COX6A, COX6B

and COX7A. NDUFA4 is the last subunit to be added to form the mature complex IV. IMM, inner mitochondrial membrane;

Matrix, mitochondrial matrix.
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survival [216,222,223]. Importantly, TACO1 patients have overlapping phenotypes to those with disease caused
by mutations in COX1 (Table 9). Patients with mutations in COX1 (MT-CO1) tend to survive into adulthood
and present with phenotypes common to other mtDNA-encoded genes such as Leigh syndrome, lactic acidosis,
hearing loss and myopathy, although other presentations including recurrent myoglobinuria and cerebellar
ataxia have also been reported, and indeed overlap with patients with mutations in other mtDNA-encoded
complex IV subunits [224–226]. Mutations in COA3 have also been identified as the cause of a relatively mild
phenotype of peripheral neuropathy, with exercise intolerance and short stature without clear involvement of
heart, liver or brain [227], while a homozygous mutation in its assembly partner, COX14, leads to a severe
phenotype of respiratory distress, lactic acidosis, hypertrophic cardiomyopathy, brain hypertrophy, micro-
phthalmia and ketonuria [218]. The mild phenotype of the COA3 patient compared with the severe phenotype
of COX14 patients might not be explained by residual protein levels as both patients showed almost or totally
absent COX14 protein [218,227] and reduced COA3 levels [227]. This might suggest that although these two
assembly factors are involved at the same step in complex IV assembly their precise function might differ.
The insertion of heme A is a two-step process performed by COX10, which converts heme B to heme O,

and COX15, which converts heme O to heme A [228]. The heme A group is thought to be delivered to COX1
by SURF1 based on its ability to stoichiometrically bind heme A [229,230]. This step is thought to occur after
dissociation of CMC1, which coincides with the binding of nuclear-encoded subunits COX4 and COX5A
[221] and the formation of the COX1 module (Figure 5). Patients have been identified harbouring mutations
in both COX4 isoform encoding genes, with clinical phenotypes shown to differ depending on which isoform
is affected. For example, variants in the ubiquitously expressed COX4I1 [231] cause short stature, increase in
chromosomal breaks and a phenotype similar to Fanconi anaemia [232], as well as more severe presentations
of developmental delay, short stature and seizures, resembling Leigh syndrome in two siblings [233]. The two
severely affected siblings also share compound heterozygous missense variants in MDN1, which is a AAA
ATPase involved in cytosolic ribosomal biogenesis [234,235]. Despite the lack of functional studies to confirm
pathogenicity of the MDN1 variants, their involvement in the more severe phenotype cannot be discarded and
might account for their combined OXPHOS deficiency, especially given that their unaffected sibling has inher-
ited only one MDN1 variant [233]. Likewise, COX4I2 is highly expressed in lungs [231] and in the pancreas
[236] with mutations in this gene leading to exocrine pancreatic insufficiency, dyserythropoietic anaemia, cal-
varial hyperostosis and failure to thrive, without a complex IV defect detected in fibroblasts [236] (Table 9).
Taken together, the distinct expression patterns of COX4I1 and COX4I2 seem to correlate with their general-
ised or tissue-specific presentations. The third COX1 module subunit, COX5A, has also been linked to disease,
with mutations in COX5A leading to early onset pulmonary hypertension, brain abnormalities and lactic acid-
osis [237] (Table 9). Mutations in the assembly factors COX10 and COX15 have been reported to cause variable
severe phenotypes including lactic acidosis, Leigh syndrome, hypertrophic cardiomyopathy and hypotonia
[238–241], while mutations in SURF1, one of the most common causes of Leigh syndrome (reviewed in [242],
has also been associated with other severe phenotypes such as Charcot–Marie–Tooth disease, rapidly progres-
sive encephalopathy, ataxia, hypotonia, lactic acidosis and early death (Table 9). Analysis of patient-derived
fibroblasts harbouring null mutation in SURF1 revealed a rapidly degraded monomer and an accumulation of a
complex IV subassembly, while a fully assembled complex IV was present in supercomplexes — higher order
structures comprised of complexes I, III and IV [11]. Interestingly this phenomenon may be tissue specific, as
analysis of different tissues from a patient harbouring truncating mutations in SURF1 revealed decreased levels
of fully assembled complex IV in heart, brain and muscle with increased accumulation of complex IV sub-
assemblies in heart and muscle, but absent from brain [243].
The copper biosynthesis and insertion in mammalian cells has mostly been extrapolated from yeast studies.

In this pathway, the CuB group is moved by COX17 to COX11, which is a metallochaperone [244,245] contain-
ing a conserved copper-binding motif [246]. COX11 also requires another assembly factor, COX19, to maintain
its redox state [247] after copper binding. Finally, MITRAC7 is a COX1-specific chaperone that prevents
COX1 degradation prior to the fusion of the COX1 and COX2 modules (Figure 5) [248]. Another protein
thought to be involved in assembly of the COX1 module is HIGD1A. Based mainly on studies primarily per-
formed in yeast, HIGD1A is thought to bind and stabilise COX4 and COX5A subunits prior to incorporation
to COX1 [215] and potentially stay bound to regulate complex IV activity [249]. However, while mammalian
HIGD1A associates with COX4 and COX5A [214,215], knockout of HIGD1A in mammalian cells had only a
very minor effect on the stability of COX4 and COX5A subunits, or complex IV assembly more broadly
[214,250].
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Table 9. Defects affecting assembly of COX1 module Part 1 of 2

Gene S.
A.
F.

Types of genetic
variants and
protein impact

Clinical presentations and
relevant information Ref. OMIM

MT-CO1
(COX1)

X Missense, nonsense
leading to unclear
protein impact.

Majority of cases present
survival into adulthood and
phenotypes of late-onset
Leigh syndrome, recurrent
myoglobinuria, lactic acidosis,
cerebellar ataxia, optic
atrophy, hearing loss,
myopathy.

[224–226] 516030

COX4I1 X Missense or
deletion/insertion
leading to unclear or
decreased protein
levels.

Short stature, increased
chromosomal breaks,
resembling Fanconi anaemia
or severe cases of
developmental delay, short
stature and seizures,
resembling Leigh syndrome.

[232,233] 123864

COX4I2 X Missense leading to
unclear protein
impact.

Exocrine pancreatic
insufficiency, dyserythropoietic
anaemia, calvarial
hyperostosis, failure to thrive.

[236] 607976

COX5A X Missense leading to
decreased protein
levels.

Early-onset pulmonary
hypertension, lactic acidosis,
heart abnormalities, failure to
thrive.

[237] 603773

COA3 X Missense and
duplication causing
frameshift leading to
decreased protein
levels.

Peripheral neuropathy,
exercise intolerance, short
stature. Survival to adulthood.

[227] 614775

COX10 X Missense leading to
unclear protein
impact.

Variable severe phenotypes
mostly presenting metabolic
acidosis and anaemia
combined with Leigh
syndrome or hypertrophic
cardiomyopathy but also
tubulopathy, ataxia, hypotonia
and early death.

[238,239] 602125

COX14 X Missense leading to
undetectable protein
levels.

Severe lactic acidosis,
microphthalmia, ketonuria,
hypertrophic cardiomyopathy,
respiratory distress, brain
hypertrophy.

[218] 614478

COX15 X Missense, intronic
and nonsense
leading to unclear
protein impact.

Variable severe phenotypes.
Fatal infantile hypertrophic
cardiomyopathy, lactic
acidosis, seizures, hypotonia
or Leigh syndrome, failure to
thrive, psychomotor delay,
hypotonia, elevated plasma
lactate and pyruvate

[240,241] 603646

SURF1 X Over 80 mutations
from variable
genetic nature.
Missense,
nonsense,

Most common cause of Leigh
syndrome associated with CIV
deficiency but variable severe
phenotypes including
Charcot-Marie-Tooth disease,

(Reviewed in
[242])

185620

Continued
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Assembly of the COX2 module
The assembly of the COX2 module starts with the translation and membrane insertion of the first transmem-
brane domain of COX2, which is stabilised by COX20 (Figure 5) [251]. The insertion of the second transmem-
brane domain also leads to translocation of the globular copper-binding domain which occurs with the
assistance of assembly factor COX18 [251]. Patients harbouring mutations in the mtDNA-encoded COX2
(MT-CO2) have been reported to present with phenotypes ranging from mild exercise intolerance and recurrent
myoglobinuria or late-onset cerebellar ataxia to severe fatal lactic acidosis, depending on variant and mutant
load [252–255]. There are some overlap in phenotypes seen in cases caused by mutations in the assembly
factor COX20 [256–259], particularly ataxia and hypotonia with survival into adulthood reported (Table 10).
The insertion of the copper centre (CuA) in COX2 requires five known assembly factors: COX17, SCO1,

SCO2, COA6 and COX16 (Figure 5). COX17 donates copper to SCO1 [260], a metallochaperone that delivers
the copper to COX2. Copper delivery to COX2 also requires SCO2, another metallochaperone that reduces the
disulfide bonds in COX2 to allow the copper insertion [261]. COA6 and COX16 also interact with COX2,
probably at the time of copper insertion, and promote the function of SCO1 and SCO2 [262–264]. COX16 has
also been shown to act in the recruitment of the COX1 module to the COX2 module in the next step of assem-
bly, in a COX2-dependent manner [264]. Another putative assembly factor, TMEM177, was shown to associate
with the COX2/COX20/SCO1/SCO2 intermediate [265], and while TMEM177 is thought to regulate COX20
levels, loss of TMEM177 does not impair complex IV assembly in mammalian HEK293T cells [265]. Of the
proteins involved in copper assembly, mutations have been identified in SCO1, SCO2 and COA6, all leading to
severe phenotypes and commonly linked to fatal infantile cardiomyopathy, with shared clinical presentations of
encephalopathy, liver failure, respiratory distress and metabolic acidosis [88,266–272] (Table 10).
The timing of the incorporation of the mammalian subunits COX5B, COX6C, COX7B, COX7C and

COX8A to the COX2 module remain unclear as well as the precise functions of associated assembly factors
PET100, PET117 and MR-1S [215,273–275]. Despite their unclear roles, functional studies suggest the inter-
action between PET117, MR-1S and complex IV subunits are mediated by PET100 [215]. At this step, muta-
tions in COX7B and COX8A and the genes encoding assembly factors PET100 and PET117 have been linked
to diseases with variable presentations [274,276–280] (Table 10). COX7B is an X-linked gene, and while many
variants have been described, all known cases are in females who present with facial dysmorphism, linear skin
defects, short stature with variable presentation of tetralogy of Fallot and ventricular hypertrophy [276,277].
For COX8A, a homozygous intronic mutation has been shown to cause a more severe phenotype of Leigh-like
syndrome, developmental delay, pulmonary hypertension, epilepsy and elevated lactate in blood and cerebro-
spinal fluid [278]. For PET100 and PET117 it is useful to consider the fungal studies where much more is
known about their function. The yeast homologue pPet100 was found in an assembly intermediate containing
pCox7, pCox7a and pCox8 (human COX7A, COX6C and COX7C) and loss of pPet100 leads to its

Table 9. Defects affecting assembly of COX1 module Part 2 of 2

Gene S.
A.
F.

Types of genetic
variants and
protein impact

Clinical presentations and
relevant information Ref. OMIM

insertions, deletions,
intronic.

rapidly progressive
encephalopathy, ataxia,
hypotonia, lactic acidosis and
early death.

TACO1 X Duplication causing
frameshift or
missense leading to
unclear protein
impact.

Variable phenotype from mild
mental retardation and
survival to early adulthood to
severe slowly progressive
childhood-onset of Leigh
syndrome, may present optic
atrophy, dystonia, spastic
tetraparesis, renal
tubulopathy.

[216,222,223] 612958

S., subunit; A.F., assembly factor.
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Table 10. Defects affecting assembly of COX2 module Part 1 of 2

Gene S.
A.
F.

Types of genetic
variants and protein
impact

Clinical presentations and
relevant information Ref. OMIM

MT-CO2
(COX2)

X Missense, nonsense,
deletion leading to
unclear or decreased
protein levels.

Variable phenotypes from
mild exercise intolerance,
recurrent myoglobinuria,
late-onset cerebellar ataxia
and survival into adulthood
to severe cases of lactic
acidosis and early death.

[252–255] 516040

COA6 X Mostly missense but
also nonsense leading
to decreased protein
levels.

Hypertrophic
cardiomyopathy may present
lactic acidosis. Decreased CI
and CIV in heart but not
effect in fibroblasts.

[88,271,272] 614772

COX7B X Intronic and deletion
causing protein
frameshift or nonsense
leading to unclear
protein impact.

X-linked gene. Facial
dysmorphism, linear skin
lesions with survival into
childhood, may present
tetralogy of Fallot, ventricular
hypertrophy.

[276,277] 300885

COX8A X Intronic leading to
unclear protein impact.

Leigh-like syndrome,
developmental delay,
pulmonary hypertension,
epilepsy, elevated blood and
cerebrospinal fluid lactate.
Decreased CIV assembly.

[278] 123870

COX20 X Predominantly
missense but also
intronic leading to
decreased protein
levels.

Most presentations include
ataxia, hypotonia but can
also present mild elevation of
blood lactate, sensory
neuropathy and static
encephalopathy with
reported survival into
adulthood.

[256–259] 614698

PET100 X Nonsense or missense
abolishing first
methionine leading to
unclear protein impact.

Variable severe phenotypes.
Fatal infantile lactic acidosis,
brain abnormalities, severe
coagulopathy or Leigh
syndrome, elevated blood
lactate, seizures, hypotonia.
but Decreased CIV
assembly/activity.

[274,279] 614770

PET117 X Nonsense leading to
unclear protein impact.

Brain and motor
development regression with
survival into adulthood.
Decreased CIV activity/
assembly.

[280] 614771

SCO1 X Predominantly
missense or frameshift
may lead to decreased
protein levels.

Liver failure, encephalopathy,
hypotonia, metabolic
acidosis, may present
cardiac hypertrophy or
respiratory distress.

[266,267] 603644

Continued
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accumulation together with another subcomplex composed of Cox5a and Cox6 (human COX4I1 and
COX5A), thus preventing the assembly of the mature complex IV [273]. Consistently, the patients reported to
harbour PET100 mutations show undetectable [279] or residual mature complex IV [274], with the former dis-
playing a more severe phenotype and neonatal death [279]. In the case of pPet117, yeast studies have shown
that it stabilises Cox15 oligomers and might function in heme A synthesis and/or transfer to pCox1, and is
also required for complex IV assembly [275]. In contrast with this, mammalian studies have shown that
PET117 interacts with PET100, MR-1S and other subunits of the COX1 and COX2 modules [215], suggesting
that mammalian PET117 could have a distinct function to its yeast counterpart. Despite unknown effect of
PET117 mutation on protein levels, the patients reported with a homozygous nonsense mutation display
decreased complex IV assembly and a milder phenotype [280] when compared with PET100 patients
[274,279].

Assembly of the COX3 module
The COX3 module is the last module to be added to the now complete COX1 and COX2 modules in the
nascent complex IV assembly (Figure 5). This module consists of the core subunit COX3 and the nuclear-
encoded subunits COX6A, COX6B and COX7A. Even though complex IV displays the highest assembly factor
to subunit ratio amongst other OXPHOS complexes, it was surprising that no assembly factors have been
found to be required for building the COX3 module. Although COX3 is not directly involved in electron trans-
port, it is thought to play a regulatory role in enzyme function [211,281]. HIGD2A was previously thought to
act as an assembly factor for the complexes I, III, IV supercomplex [282] but recently shown to be required for
the assembly of the COX3 module [214]. While HIGD2A appears to be needed for the early steps of COX3
biogenesis, it is unclear if it is involved in COX3 translation, membrane integration or its integration with the
nascent complex IV assembly. Following coalescence of the COX1, COX2 and COX3 modules, NDUFA4, for-
merly thought to be a complex I subunit [212], is likely the last subunit to be incorporated to form the mature
complex IV [210].
Similar to other mitochondrially encoded genes, mutations in MT-CO3 (COX3) cause a variety of pheno-

types and onsets including Leigh-like syndrome, myopathy, lactic acidosis, MELAS, LHON and recurrent myo-
globinuria with survival into adulthood reported [172,283–286] (Table 11). Interestingly, the phenotype of
recurrent myoglobinuria is also found in patients harbouring mutations in COX1 (MT-CO1) [225] and COX2
(MT-CO2) [252]. In the case of COX6A1 and COX6A2, mutations have been reported to cause different clin-
ical presentations. While a homozygous deletion in COX6A1 was shown to cause a neuromuscular disease
called Charcot–Marie–Tooth disease [287], mutations in COX6A2 lead to a muscle-specific presentation of
myopathy and cardiomyopathy [288]. As COX6A2 is exclusively expressed in heart and skeletal muscle [289],
the mutations reported in COX6A2 were shown to only affect complex IV activity in differentiated muscle and
not in undifferentiated myoblasts [288]. For the only hydrophilic extramembrane subunit of complex IV facing
the IMS, COX6B1 [290], pathogenic variants have been shown to cause severe infantile encephalomyopathy,
cardiomyopathy and lactic acidosis. The last subunit to be assembled into complex IV, NDUFA4, has been
reported to cause Leigh syndrome, congenital lactic acidosis and variable presentation of dystonia due to a
homozygous intronic variant. The intronic variant leads to undetectable NDUFA4 protein levels via western
blot analysis and was shown to not impair the assembly of the other 13 complex IV subunits [291].

Table 10. Defects affecting assembly of COX2 module Part 2 of 2

Gene S.
A.
F.

Types of genetic
variants and protein
impact

Clinical presentations and
relevant information Ref. OMIM

SCO2 X Mostly missense but
also nonsense and
duplication leading to
unclear or reduced
protein levels.

Fatal infantile hypertrophic
cardiomyopathy,
encephalopathy, elevated
blood lactate, respiratory
distress.

[268–270] 604272

S., subunit; A.F., assembly factor.
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Although the exact mechanism in which COA7 is involved in complex IV assembly remains unclear, muta-
tions in COA7 have been shown to cause leukoencephalopathy or spinocerebellar ataxia and axonal neuropathy
with variable onset and survival into late adulthood is reported (Table 12). A patient reported with undetect-
able COA7 levels via western blot analysis also showed decreased levels of COX2 and COX3 subunits, and
decreased assembly of complex IV [292], providing insights into the stage of assembly of which COA7 may be
involved.

Complex V assembly
Complex V, also known as FoF1-ATPase, is the last enzyme in the OXPHOS system, utilising the proton gradient
generated by complexes I, III and IV to power ATP synthesis. Complex V is composed of a membrane-embedded
Fo section connected by an external stalk to a matrix soluble F1 section containing the ATPase domains [293].
Like complexes I, III and IV, complex V is under dual genetic control, with two of the membrane subunits
encoded on mtDNA (ATP6, MT-ATP6; ATP8, MT-ATP8) and the remaining 16 encoded on nDNA [294].
Much of what is known for complex V is extrapolated from studies in fungal models, though in recent years
there is an increasing amount of literature documenting the assembly in mammals. The nomenclature for nuclear
complex V genes has also undergone a recent overhaul [23], now all being prefixed ATP5 (e.g. ATP5F1A).
Typically, the corresponding proteins are represented by single Greek and Latin letters (e.g. α or α-subunit for
ATP synthase subunit alpha, which is the recommended name for the protein product of ATP5F1A) though
there are some inconsistencies. As for other complexes, we have chosen to refer to the subunits and assembly
factors by their gene name using the aforementioned formatting (bold typeface for subunit, regular typeface for
assembly factor) though have included the commonly used protein symbol on the first instance.

Table 11. Defects affecting assembly of COX3 module

Gene S.
A.
F.

Types of genetic
variants and protein
impact

Clinical presentations and
relevant information Ref. OMIM

MT-CO3
(COX3)

X Missense, nonsense,
insertion, deletion
leading to unclear or
decreased protein
levels depending on
variant and mutation
load.

Variable phenotype, including
Leigh-like syndrome,
myopathy, lactic acidosis,
MELAS, LHON, recurrent
myoglobinuria with cases of
survival into adulthood.

[172,283–
286]

516050

COX6A1 X Deletion leading to
decreased protein
levels.

Recessive axonal type of
Charcot-Marie-Tooth with
survival into adulthood.

[287] 602072

COX6A2 X Missense leading to
decreased protein
levels.

Congenital myopathy,
cardiomyopathy, isolated CIV
deficiency in muscle and
absent from undifferentiated
myoblast.

[288] 602009

COX6B1 X Missense leading to
decreased protein
levels.

Severe infantile
encephalomyopathy,
cardiomyopathy, lactic
acidosis. CIV deficiency
detected in muscle and mildly
in fibroblasts.

[429,430] 124089

NDUFA4 X Intronic leading to
undetectable protein
levels.

Leigh syndrome, congenital
lactic acidosis, may present
dystonia with survival into
adulthood.

[291] 603833

S., subunit; A.F., assembly factor; LHON, Leber’s hereditary optic neuropathy; MELAS, mitochondrial encephalopathy, lactic acidosis and stroke-like
episodes.
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Assembly of the F1 catalytic module and central stalk
The assembly of complex V starts with the oligomerisation of three ATP5F1A (α-subunit) and three
ATP5F1B (β-subunit) subunits into an alternating hexamer, in a series of assembly steps mediated by the
assembly factors ATPAF1 and ATPAF2 respectively (Figure 6) [295]. These proteins likely act as placeholders
to prevent the formation of homomeric complexes [296,297] and their loss in fungal models leads to aggrega-
tion of the subunits into large insoluble complexes [298]. In general, there are few reported cases for patients
harbouring mutations affecting assembly or function of this module (Table 13). For ATP5F1A there are two
known variants [299,300] with cases for both presenting with severe encephalopathy or microcephaly, followed
by early infantile death. Tissue and fibroblast material from affected patients had reduced but not absent levels
of ATP5F1A protein as well as lower levels of other subunits, suggesting stability of the F1 module is

Table 12. Defects affecting unknown steps of complex IV assembly or function

Gene
(alias) S.

A.
F.

Types of genetic
variants and protein
impact

Clinical presentations and
relevant information Ref. OMIM

COA7 X Predominantly missense
but also intronic and
deletion causing protein
frameshift and
undetectable protein
levels

Variable phenotypes and onset
with survival into late adulthood
presenting leukoencephalopathy
or spinocerebellar ataxia with
axonal neuropathy

[292,431] 615623

S., subunit; A.F., assembly factor.

Figure 6. Schematic depicting the complex V (F1F0-ATPase) assembly pathway showing known mitochondrial disease

genes in red, mtDNA-encoded proteins underlined and assembly factors in italics.

To aid correlation with disease genes, subunits have been labelled according to their gene name. The commonly used protein

names are in parenthesis as follows: three copies of the ATP5F1A (α-subunit) and ATP5F1B (β-subunit) are assembled with the

aid of the chaperones ATPAF1 and ATPAF2 with later binding of the subunits ATP5F1C1 (γ-subunit), ATP5F1D (δ-subunit) and

ATP5F1E (ε-subunit). The membrane ring composed of ATP5MC1 (c-subunits; also encoded by ATP5MC2 and ATP5MC2)

subunits is assembled and joins the pre-complex V prior to the addition of the subunits ATP5PB (b-subunit), ATP5PD

(d-subunit), ATP5PF (F6-subunit) and ATP5PO (OSCP). The assembly pathway is followed by integration of ATP5ME

(e-subunit), ATP5MF (f-subunit) and ATP5MG (g-subunit) and then by the mtDNA-encoded ATP6 (subunit 6) and ATP8 (subunit

8). The last subunits ATP5MPL (MP68) and ATP5MD (DAPIT) are added to complete the assembly of complex V. IMM, inner

mitochondrial membrane; Matrix, mitochondrial matrix.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND). 4109

Biochemical Journal (2020) 477 4085–4132
https://doi.org/10.1042/BCJ20190767

D
ow

nloaded from
 http://port.silverchair.com

/biochem
j/article-pdf/477/21/4085/896952/bcj-2019-0767c.pdf by guest on 09 April 2024

https://creativecommons.org/licenses/by-nc-nd/4.0/


compromised [299]. For ATPAF2, there is a single known example [301]. In line with the requirement for this
protein in assembly of the F1 module, the patient presented with similar symptoms to those with mutations in
ATP5F1A, degenerative encephalopathy, severe developmental delay and death in early childhood (Table 13).
The next step in the assembly pathway is the incorporation of the subunits belonging to the central stalk,
ATP5F1C (γ-subunit), ATP5F1D (δ-subunit) and ATP5F1E (ε-subunit). Functional studies have shown that
loss of any of these subunits leads to similar defects in complex V assembly, lower levels of mature complex
and turnover of subunits for the F1 module [302]. ATP5F1C is the key structural molecule connecting the F1
catalytic module to the F0 module and through structural similarities of its coiled–coiled tail with the
C-terminal regions of ATPAF1 and ATPAF2, likely displaces the assembly factors during module biogenesis
[303,304]. There are no known patients for ATP5F1C, although a few cases have been reported for ATP5F1D
and ATP5F1E [305,306]. Although patients present with similar, relatively mild phenotypes in line with expec-
tations based on functional studies (Table 13), the molecular underpinnings are different. In the case of
ATP5F1D, the patient had normal levels of the mutant protein, whereas other subunits of the F1 module were
destabilised [305]. In the case of ATP5F1E, the patient had reduced levels of protein, though retained a fully
assembled complex (including the mutant protein) albeit at lower levels than controls [306]. Both patients had
similar net effects on total levels of assembled Complex V and function (Table 13).

Assembly of the c-ring
The membrane-embedded c-ring and the central stalk are components of the rotor part of the Complex V and
therefore essential for ATP synthesis. In humans, the c-ring consists of eight c-subunits encoded by
ATP5MC1, ATP5MC2 and ATP5MC3 (Figure 6). Interestingly, all three genes encode the same mature
protein, the proteins only differing in the sequence of their cleaved mitochondrial targeting signals [307,308].
There are no reported cases of mitochondrial disease linked to mutations in these genes, however, many cases
and >5 different variants have been linked to defects in the assembly factor TMEM70 (Table 14) which has
been linked with its biogenesis. TMEM70 has been suggested to be required for assembly of the c-subunits
into the c-ring [80]. Although this has been argued in the literature [75], it is clear from these studies that
TMEM70 is required for the joining of the c-ring to the F1 module, and its absence leads to a severe assembly

Table 13. Defects in the F1 catalytic module and central stalk

Gene
(protein1) S.

A.
F.

Types of
genetic
variants and
protein impact

Clinical presentations and
relevant information Ref. OMIM

ATP5F1A
(α-subunit)

X Missense
leading to
unclear protein
impact.

Fatal neonatal encephalopathy, lung
hypoplasia or hypertension, may
present seizures, heart failure.
Decreased CV assembly/activity.

[299,300] 164360

ATPAF2
(Atp12)

X Single known
missense
leading to
unclear protein
impact.

Degenerative encephalopathy,
severe developmental delay, death
in early childhood. Decreased CV
assembly/activity.

[301] 608918

ATP5F1D
(δ-subunit)

X Single known
missense
leading to
normal protein
levels.

Hyperammonemia, lactic acidosis
or ketoacidosis, may present
cardiomyopathy, delayed speech
with survival into childhood.
Decreased CV assembly/activity.

[305] 603150

ATP5F1E
(ε-subunit)

X Single known
missense
leading to
reduced protein
levels.

Neonatal onset lactic acidosis, mild
mental retardation, severe peripheral
neuropathy with survival into
adulthood. Reduced levels of fully
assembled CV.

[306] 606153

1Commonly used protein name; S., subunit; A.F., assembly factor.
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defect. As a disease gene, TMEM70 is further complicated by variable presentations, depending on the variant
patients either present with isolated or combined Complex V or Complex I defects, as well as severe cardiac
and neuronal phenotypes (Table 14) [81–84]. Although the precise involvement in Complex I assembly is even
less clear, recent studies in gene-edited cells completely lacking TMEM70 protein [75] are consistent with sug-
gesting it has a dual role in assembly of both complexes.

Assembly of the peripheral stalk and F0 module
The peripheral stalk assembles with the F1 subcomplex in a two-step manner. The first four subunits to be
incorporated are ATP5PB (b-subunit), ATP5PD (d-subunit), ATP5PF (F6-subunit), ATP5PO (OSCP) fol-
lowed by the membrane-associated subunits ATP5ME (e-subunit), ATP5MF (f-subunit) and ATP5MG
(g-subunit) [294,309,310] (Figure 6). In the absence of the c-ring, an intermediate complex V is assembled
containing the F1 catalytic module, the peripheral stalk and the membrane subunits ATP5ME, ATP5MF and
ATP5MG [311].
Once the previously formed subcomplex containing the F1 module and peripheral stalk join with the c-ring,

this provides the scaffold necessary for the incorporation of the two mitochondrially-encoded subunits ATP6
(subunit 6) and ATP8 (subunit 8) (Figure 6) [309]. Mutations in both lead to disease (Table 15). More than

Table 14. Defects affecting the c-ring

Gene S. A.F.
Types of genetic variants and
protein impact

Clinical presentations and relevant
information Ref. OMIM

TMEM70 X Multiple. Intronic, insertion,
deletion, duplication, nonsense,
missense leading to unclear or
absent protein levels.

Variable phenotype including hypertrophic
cardiomyopathy, lactic acidosis,
hyperammonemia, persistent pulmonary
hypertension, encephalocardiomyopathy,
neonatal hypotonia or hypertonia, facial
dysmosphism, bilateral cataracts,
leukoencephalopathy. Presentations vary from
normal to defective isolated (CI or CIII) or
combined (CI + CIII) OXPHOS activities in muscle
or fibroblasts.

[81,82,84,432] 612418

S., subunit; A.F., assembly factor.

Table 15. Defects in the Fo module

Gene
(protein1) S. A.F.

Types of genetic variants
and protein impact

Clinical presentations and relevant
information Ref. OMIM

MT-ATP6
(subunit 6)

X Several missense variants with
protein levels dependant on
variant and mutant mtDNA
load.

Most commonly presented as Leigh syndrome,
NARP, spinocerebellar ataxia but also
Charcot-Marie-Tooth, hypertrophic
cardiomyopathy, lactic acidosis. Higher
heteroplasmic levels correlate with earlier-onset
phenotypes. Often but not always show ATP
synthesis rate.

Reviewed in
[312]

516060

MT-ATP8
(subunit 8)

X Missense or nonsense leading
to unclear protein impact.

Hypertrophic cardiomyopathy and neuropathy
with survival into adolescence. Decreased CV
assembly/activity. Alternately has presented with
reversible cognitive dysfunctions with seizures
and brain pseudoatrophy.

[313–
316,433]

516070

ATP5MD
(DAPIT)

X Single known intronic variant
leading to undetectable protein
levels.

Leigh syndrome, developmental regression after
febrile illness. Survival into childhood. Decreased
proportion of CV dimer.

[317] 615204

1Commonly used protein name; S., subunit; A.F., assembly factor; NARP, neuropathy, ataxia and retinitis pigmentosa.
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200 ATP6 cases have been reported with 19 different underlying mutations and a large variability in mutant
mtDNA load (reviewed in [312]). Phenotypes are highly variable and both severe infantile Leigh syndrome as
well adult onset disease has been reported (Table 15), and as such there is no clear assembly phenotype under-
pinning mutations in this gene. There are comparatively few reported patients for ATP8, however, like for
ATP8 these cases report with a different phenotype likely underpinned by differences in the variant and
mutant load. Phenotypes include cardiomyopathy and neuropathy [313] as well as seizures and neuropsycholo-
gic decline [314] as well as defects in complex V activity (Table 15). In the case of the former, the fibroblasts
from the patient accumulated subcomplexes of unassembled complex V, including a free catalytically active F1
domain, suggesting the protein may be structurally important [313]. Interestingly, ATP6 and ATP8 are tran-
scribed as a polycistronic mRNA and there are a few cases known to likely affect both proteins [315,316].
Patients present with severe early onset cardiomyopathy or neurological symptoms, although there have has
been one case of a kindred with adult onset cerebellar ataxia and peripheral neuropathy (Table 15). Aside from
defects in complex V function, the molecular impacts in these cases are unknown.
Finally, the subunit ATP5MPL (MP68), which is required for ATP6 and ATP8 stability is incorporated, fol-

lowed by ATP5MD (DAPIT) [309]. A single variant of the latter is known to cause Leigh syndrome with child-
hood onset [317]. Fibroblasts from patients had no detectable protein and reduced ATP synthesis. Fully
assembled complex V has been shown to assemble into dimers [318,319] and, more recently, in tetramers
[293]. Interestingly, fibroblasts from ATP5MD patients had markedly reduced dimerisation [317], suggesting
the protein is involved in this process.

Mitochondrial translation and the mitoribosome
Mitochondrial protein synthesis is a complex process that has its own components such as a
mitochondria-specific genetic code, an exclusive set of tRNA and tRNA synthetases and its own ribosome
known as the mitoribosome [320]. The composition of ribosomes has considerably changed over the course of
evolution, specially the RNA to protein ratio which has reversed from 1 : 2 protein : RNA in bacteria and cyto-
solic ribosomes to 2 : 1 protein : RNA in the mammalian mitoribosome. This explains why almost half of the
mitoribosome proteins are mitochondrion-specific and absent from the bacterial ancestor [4]. Like other ribo-
somes, the mammalian mitoribosome is composed of two subunits, the small (mtSSU) and the large (mtLSU).
The mRNA engages with the mtSSU while the mtLSU can anchor itself to the IMM and catalyse translation
[321]. The mitoribosome has a total sedimentation coefficient of 55S, composed of the 28S for the isolated
mtSSU and the 39S for the mtLSU [322]. The mtSSU consists of the 12S rRNA encoded by the mtDNA, and
30 MRP mitoribosomal proteins encoded by the nDNA [323]. The mtLSU consists of a tRNA valine (tRNAval)
[2] and a 16S rRNA, both encoded by the mtDNA, and 52 nuclear-encoded mitoribosomal proteins. The pepti-
dyl transferase centre (PTC) catalyses the formation of the peptide bonds of nascent polypeptides [324] and is
located in the internal part of the mitoribosome formed exclusively by the 12S and 16S rRNAs [325,326]. The
polypeptide exit tunnel (PET) starts at the PTC and ends at the polypeptide exit site (PES) where the translated
polypeptide leaves the mitoribosome [327]. The polypeptide tunnel is an important region that is targeted in
bacteria as a binding site for antibiotics [321]. The PET is surrounded by ring composed of bacterial conserved
proteins bL17m (encoded by the gene MRPL17), uL22m (MRPL22), uL23m (MRPL23), uL24m (MRPL24),
uL29m (MRPL47) and the mitochondrial specific mL45 (MRPL45) which promotes the tethering of the mitor-
ibosome to the IMM [321]. The translocation of mitochondrial proteins is mediated by OXA1, which binds
newly synthesised polypeptides [162,163] and the mitoribosome [328,329]. The nomenclature for mitoriboso-
mal proteins has recently been overhauled for consistency between cytosolic and mitochondrial ribosomes
found across different organisms [330]. To assist readers linking phenotype to function we have chosen to refer
to the protein using their HUGO assigned gene name and have listed the revised protein name in parenthesis
at first mention.

Assembly of the mtSSU
Even though the mitoribosome has unarguable importance, its assembly pathway has not been studied in as
much detail as the assembly of OXPHOS complexes [331]. Recent research has begun to solve the timing of
incorporation of mitoribosome protein using pulse and pulse-chase stable isotope labelling with amino acids in
cell culture (SILAC) proteomics approaches [331,332], suggesting that the mtSSU displays an early and a late
class of incorporation of mitoribosomal proteins, while the mtLSU has an additional intermediate class
(Figure 7).
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The mitoribosome biogenesis has been suggested to start at or near the mitochondrial nucleoid and present
subclusters of assembly proteins for each incorporation class or ‘module’ in the terminology used for the
OXPHOS complexes [331]. The 12S rRNA is stabilised by the RNA chaperone ERAL1 [333,334] and metal-
dependent endoribonuclease YBEY [335], and methylated by two proteins, the adenine dimethyltransferase
TFB1M [336] and the cytosine methyltransferase NSUN4 [337]. The early mitochondrial proteins participating in
mtSSU assembly are mainly localised at the top and bottom of the 12S rRNA core and seem to be grouped into
three different clusters [331]. One cluster contains MRPS5 (uS5m), MRPS16 (bS16m), MRPS22 (mS22),
MRPS27 (mS27), MRPS34 (mS34) and MRPS18B (mS40). A second assembly cluster contains MRPS7
(uS7m), MRPS9 (uS9m), MRPS29 (mS29), MRPS31 (mS31), MRPS35 (mS35) and MRPS39 (mS39). A third
cluster of SSU early binding proteins consists of MRPS2 (uS2m), MRPS23 (mS23) and MRPS28 (bS1m). The
remaining proteins involved in the early assembly of the mtSSU are MRPS11 (uS11m), MRPS12 (uS12m) and
MRPS17 (uS17m) appear to incorporate in an independent manner, with recent studies suggesting that YBEY
may incorporate MRPS11 (uS11m) to the nascent mtSSU [335]. The early assembly of mitoribosomal proteins
seem to be facilitated by the GTPase NOA1/C4orf14, which was shown to interact with several early assembled
mtSSU proteins and the mitochondrial nucleoid [338]. In addition to that, METTL15 was shown to methylate
the 12S rRNA at position C839 and be required for the biogenesis of mtSSU with its absence affecting both early
assembled proteins MRPS12 (uS12m), MRPS17 (uS17m) and late assembled protein MRPS15 (uS15m), as well
as MRPS38 (mS38) [339] which has not yet been assigned an incorporation class [331].
For the later incorporated mtSSU proteins, two assembly clusters seem to be present. One cluster consists of

MRPS10 (uS10m), MRPS14 (uS14m), MRPS24 (uS3m) and MRPS33 (mS33) located at the top of the 12S
rRNA, and another assembly cluster comprised of MRPS15 (uS15m), MRPS25 (mS25) and MRPS26 (mS26)
locating at the bottom of the 12S rRNA with the remaining proteins incorporating in an independent manner
[331].
To date, mutations in eleven components and in one assembly factor of the mtSSU have been identified,

causing a range of phenotypes, onset and variable survival (Table 16). Interestingly, majority of the disease
genes participate in the early stages of the mtSSU assembly (Figure 7) and patients tend to have a combined
OXPHOS deficiency depending on tissue type and mutation [340–345]. Several cases of mutations in

Figure 7. Schematic model depicting the mitoribosome assembly pathway based on data from [331].To aid correlation

with disease genes, subunits have been labelled according to their gene name (outlined in 332). The incorporation stage of

MRPS6 (bS6M), MRPS18C (bS18M), MRPS37 (mS37), MRPS38 (mS38), MRPL36 (bL36m) and MRPL52 (ml52) remains

unclear. Known mitochondrial disease genes in red, mtDNA-encoded rRNAs and tRNA underlined, assembly factors in italics.

The mtSSU proteins are incorporated at early or late stage in the assembly pathway while the mtLSU proteins are incorporated

at early, intermediate or late stages. Mitoribosome small subunit, mtSSU; mitoribosome large subunit, mtLSU.
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MT-RNR1 (12S rRNA) have been reported to cause hearing loss induced by aminoglycoside exposure
(Table 16) with one family also presenting cardiomyopathy [346]. While mutations in ERAL1, the RNA chap-
erone shown to stabilise 12S rRNA [333,334], have also been shown to cause sensorineural deafness, it has not
been linked to aminoglycoside exposure as have mutations in MT-RNR1 [347].
Both MRPS2 and MRPS7 encode proteins assembled early in the mtSSU (uS2m and uS7m, respectively)

and mutations in these genes have been reported to cause sensorineural hearing impairment and hypogly-
caemia but with survival into adulthood [344,345,348] (Table 16). On the other hand, mutations in MRPS16
(bS16m) and MRPS22 (mS22) commonly lead to clinical presentations of fatal lactic acidosis and tubulopathy,
with MRPS22 mutations also leading to hypertrophic cardiomyopathy, Leigh-like brain lesions and delayed
sexual development [342,349–351]. Interestingly, a homozygous missense mutation in MRPS23 leads to hypo-
glycaemia and hepatic disease [66], sharing partial phenotypic similarities with other genes encoding early
assembled proteins, MRPS2, MRPS7, MRPS16 and MRPS22 (Table 16) (Figure 7). Comparably, mutations in
MRPS28 (bS1m) were shown to present before birth as intrauterine growth retardation (IUGR) and progress
with multisystemic involvement including sensorineural deafness, brain abnormalities, hyperlactatemia and
failure to thrive with survival into adulthood [352,353]. The last two genes linked to mitochondrial disease par-
ticipating in the early assembly of the mtSSU are MRPS34 and PTCD3. Mutations in both genes have been
shown to cause Leigh or Leigh-like syndrome with variable presentations of hyperlactatemia, optic atrophy,
hearing loss, microcephaly and variable OXPHOS defects and survival depending on tissue type and mutation
[341,354] (Table 16).
While the majority of mutations in the mtSSU lead to decreased protein levels (Table 16), a missense homo-

zygous mutation was identified in MRPS14 (uS14m) leading to increased levels of corresponding protein, and
clinical presentation of lactic acidosis, hypertrophic cardiomyopathy and hypotonia [340]. The unaffected
assembly of the mitoribosome suggests that the incorporation of the mutant protein causes impaired mitochon-
drial translation which was predicted to disrupt the mitoribosome mRNA channel [340]. The other late
assembled mtSSU protein linked to disease, MRPS25 (mS25), assembles in a different cluster to MRPS14
(uS14m) [331] and has been linked to a different phenotype including encephalopathy, short stature, muscle
fatigue, dystonia, mild elevation of plasma lactate [343].

Assembly of the mtLSU
The assembly of the mtLSU seems to present an early, an intermediate and a late class of incorporation of pro-
teins (Figure 7) with several subclusters of proteins present at each stage [331]. Assembly factors involved in
the biogenesis of the mtLSU have been identified mostly at late stages. MALSU1 is a member of the DUF143
family of proteins of conserved ribosomal silencing factors and is required for mtLSU biogenesis and transla-
tion [355–357] (Figure 7). Recently, the structure of an mtLSU intermediate containing MALSU1 was solved
[358] revealing the involvement of two other proteins, NDUFAB1, a subunit of complex I with an essential
secondary role in mitochondrial function (discussed above) [22], and L0R8F8, the product of a bicistronic tran-
script that also encodes MID51, a mitochondrial protein involved in morphology [85]. While the function of
these new assembly factors is not yet known, they have been suggested to act as caps to prevent premature asso-
ciation of the nascent mtLSU with the mtSSU [358]. At least five other assembly factors have been charac-
terised to be involved in late mtLSU assembly and the formation of the 55S monosome. Three of these are
quality control GTPases proposed to prevent premature monosome formation: GTPBP5 (MTG2) [359],
GTPBP7/MTG1 [360] and GTPBP10 [361,362], and two others form a heterodimeric complex comprised of
NSUN4 and MTERF4 assembly factors which facilitates the monosome formation and enables mtDNA transla-
tion [337,363,364].
Once the 55S monosome is assembled, the tRNAval is nestled between two groups of proteins: the early

assembled MRPL40 (mL40), MRPL46 (mL46) and MRPL48 (mL48) proteins in one side and the intermediate
assembled proteins MRPL18 (mL18), MRPL38 (mL38) and MRPL27 (bL27m) on the other side [4,331].
Although several components required for the assembly of the human mitoribosome have been identified over the
years, the lack of assembly factors characterised for the different incorporation clusters and independently incorpo-
rated proteins for both mtSSU and mtLSU might suggest that some assembly factors are yet to be discovered.
Even though the mtLSU contains more structural proteins than the mtSSU, there are only four nuclear

disease genes associated with the mtLSU, as well as 2 mtDNA-encoded rRNAs, with majority of these partici-
pating in the early assembly steps (Figure 7). The majority of mutations associated with defects in the mtLSU
are missense mutations leading to a variable phenotype and OXPHOS defect, depending on mutation and
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Table 16. Defects in the assembly of the mtSSU

Gene (RNA/
protein
name1) S.

A.
F.

Types of genetic variants
and protein impact

Clinical presentations and relevant
information Ref. OMIM

MT-RNR1
(12S rRNA)

X Transition, transversion and
deletion/insertion.

Aminoglycoside-induced hearing loss,
incomplete penetrance reported, may
include cardiomyopathy.

[346,434,435], and
reviewed in [436]

561000

ERAL1 X Missense leading to
decreased protein levels.

Perrault syndrome expressed as
sensorineural hearing loss and ovarian
dysgenesis with survival into late adulthood.

[347] 607435

MRPS2
(uS2m)

X Missense leading to
decreased protein levels.

Sensorineural hearing impairment, mild
developmental delay and hypoglycaemia.
Variable OXPHOS deficiency depending on
the tissue type. Survival into childhood

[344] 611971

MRPS7
(uS7m)

X Missense leading to
decreased protein levels.

Congenital sensorineural hearing
impairment, lactic acidosis, hypoglycaemia.
Variable OXPHOS deficiency depending on
the tissue type. Survival into childhood.

[345,348] 611974

MRPS14
(uS14m)

X Missense leading to
increased protein levels.

Lactic acidosis, hypertrophic
cardiomyopathy, hypotonia with survival into
childhood. Unaffected mitoribosome
assembly but decreased assembly of CI,
CIII, CIV and CV suggesting incorporation of
the mutant protein causes impaired
mitochondrial translation.

[340] 611978

MRPS16
(bS16m)

X Nonsense leading to unclear
protein impact but
decreased mitochondrial
translation.

Fatal lactic acidosis, tubulopathy, hypotonia.
Variable OXPHOS deficiency depending on
the tissue type.

[342] 609204

MRPS22
(mS22)

X Missense or duplication
causing frameshift leading to
unclear or decreased protein
levels.

Variable phenotypes including fatal lactic
acidosis, hypertrophic cardiomyopathy,
tubulopathy, dysmorphic features,
hypotonia, Leigh-like lesions,
hypergonadotropic hypogonadism. Variable
OXPHOS deficiency depending on the
tissue type.

[349–351] 605810

MRPS23
(mS23)

X Missense leading to unclear
protein impact.

Hepatic disease and hypoglycaemia.
Combined CI and CIV deficiencies in
fibroblasts.

[66] 611985

MRPS25
(mS25)

X Missense leading to
decreased protein levels.

Multiple presentations including
encephalopathy, short stature, muscle
fatigue, dystonia, mild elevation of plasma
lactate with survival into adulthood.

[343] 611987

MRPS28
(bS1m)

X Missense and deletion
causing frameshift and early
termination leading to
decreased protein levels.

IUGR, cerebellar atrophy, microcephaly,
hyperlactatemia, developmental delay,
sensorineural deafness, failure to thrive with
survival into adulthood. CIV deficiency in
muscle, fibroblasts and liver.

[352,353] 611990

MRPS34
(mS34)

X Intronic, nonsense, missense
leading to decreased protein
levels.

Leigh or Leigh-like syndrome, mild or
hyperlactatemia, may present microcephaly,
optic atrophy. Variable OXPHOS defect and
survival depending on tissue type and
mutation.

[341] 611994

PTCD3/
MRPS39
(mS39)

X Intronic and insertion causing
frameshift leading to
decreased protein levels.

Severe Leigh syndrome, optic atrophy,
hearing loss. Decreased CI and CIV in
fibroblasts.

[354] 614918

1Commonly used protein name; S., subunit; A.F., assembly factor; IUGR, intrauterine growth restriction.
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tissue type analysed (Table 17). Mutations identified in the 16SrRNA (MT-RNR2) have been reported to cause
hypertrophic cardiomyopathy and myopathy with survival into adulthood [365,366], while mutations in the
tRNAval (MT-TV) appear to cause a broader spectrum of phenotypes including muscle weakness, hearing and
visual loss, MELAS, Leigh syndrome and hypertrophic cardiomyopathy [367–372] (Table 17). It is not clear if
mutations in tRNAval lead to combined defects in mitoribosome assembly and defective polypeptide elongation,
although it should be noted that mitoribosomes are able to incorporate tRNAphe when the levels of tRNAval are
severely decreased [373]. Despite this implying that the phenotypes are due to defective elongation, the adapta-
tive switch in tRNA composition still leads to impaired mitochondrial translation [374] hinting at a combined
defect. Severe phenotypes leading to early death have been associated with MRPL3 (uL3m) and MRPL12

Table 17. Defects in the assembly of the mtLSU

Gene (RNA/
protein
name1) S.

A.
F.

Types of genetic
variants and
protein impact

Clinical presentations and
relevant information Ref. OMIM

MT-RNR2
(16S rRNA)

X Transition leading
to unclear RNA
impact.

Myopathy, hypertrophic
cardiomyopathy. Survival into
adulthood reported. Decreased
ATP production.

[365,366] 561010

MT-TV
(tRNAval)

X Transition leading
to unclear or
decreased tRNAval

levels.

Variable phenotype and onset
depending on mutation and
mutant load with survival into
adulthood reported.
Predominantly presenting ataxia,
hearing and/or visual loss,
bilateral cataracts or migraines
and muscle weakness, MELAS
severe Leigh or Leigh-like
syndrome, hypertrophic
cardiomyopathy.

[367–
372]

590105

MRPL3
(uL3m)

X Missense or
deletion leading to
unclear or
decreased protein
levels.

Early onset severe
cardiomyopathy, psychomotor
retardation, failure to thrive, lactic
acidosis. Variable OXPHOS
defect depending on tissue type
and mutation.

[437,438] 607118

MRPL12
(bL12m)

X Missense leading
to decreased
protein levels.

Antenatal hypotrophy, tonic
seizures, ataxia, hyperlactatemia,
failure to thrive. Variable
OXPHOS defect depending on
tissue type and mutation.

[439] 602375

MRPL24
(uL24m)

X Missense leading
to decreased
protein levels.

Cerebellar atrophy,
choreoathetosis of limbs and
face, Wolff–Parkinson–White
syndrome, increased lactate in
blood with survival into
adolescence. Combined CI and
CIV defect in muscle.

[377] 611836

MRPL44
(mL44)

X Missense leading
to unclear or
decreased protein
levels.

Predominantly hypertrophic
cardiomyopathy, hepatopathy,
but also muscle weakness,
granular pigmentation of retina,
metabolic acidosis. Survival into
early adulthood reported.
Variable OXPHOS defect
depending on tissue type and
mutation.

[378,379] 611849

1Commonly used protein name; S., subunit; A.F., assembly factor; MELAS, mitochondrial encephalopathy, lactic acidosis and stroke-like episodes.
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(bL12m) suggesting these proteins play an essential for mitochondrial translation. In fact, uL3m, encoded by
MRPL3 displays extensive binding contact with the 16S rRNA and is one of the earliest assembled proteins,
providing an anchor to MRPL39 (mL39) followed by MRPL45 (mL45) [331], the latter known to tether the
mitoribosome at the IMM for translation [321]. Recent structural studies also revealed that MRPL12 (bL12m)
plays an important role in interacting with mitochondrial elongation factor (EF-G1mt) [375] and promoting
tRNA translocation on the mitoribosome during translation [376]. On the other hand, mutations in MRPL24
(uL24m) and MRPL44 (mL44) have been associated with severe to mild phenotypes with survival into adoles-
cence and early adulthood [377–379] (Table 17). MRPL24 is a late assembled protein that lacks extensive
contact with early assembled proteins and is involved in the formation of the PET [331]. Despite its involve-
ment with the PET, a teenager was recently reported harbouring a homozygous missense variant leading to
cerebellar atrophy, choreoathetosis, increased lactate in blood and tachycardia (Wolff–Parkinson–White syn-
drome) [377]. Finally, four patients have been reported harbouring missense mutations in the gene encoding
early assembled protein MRPL44 (mL44). The patients commonly presented with hypertrophic cardiomyop-
athy with majority presenting stabilisation of their phenotype over the years [378,379].

Conclusion
In this review, we have attempted to catalogue the breadth of genetic and clinical phenotypes associated with
impaired assembly of mitochondrial OXPHOS complexes and the mitoribosome. Along with highlighting the
intricacy of this system, we hope to have demonstrated the high heterogeneity in clinical presentations that
challenges the diagnosis of new patients and the validation of novel disease genes linked to dysfunction in this
critical process.
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