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Biochemical alterations found in the brains of Parkinson’s disease (PD) patients indicate
that cellular stress is a major driver of dopaminergic neuronal loss. Oxidative stress, mito-
chondrial dysfunction, and ER stress lead to impairment of the homeostatic regulation of
protein quality control pathways with a consequent increase in protein misfolding and
aggregation and failure of the protein degradation machinery. Ubiquitin signalling plays a
central role in protein quality control; however, prior to genetic advances, the detailed
mechanisms of how impairment in the ubiquitin system was linked to PD remained mys-
terious. The discovery of mutations in the α-synuclein gene, which encodes the main
protein misfolded in PD aggregates, together with mutations in genes encoding ubiquitin
regulatory molecules, including PTEN-induced kinase 1 (PINK1), Parkin, and FBX07, has
provided an opportunity to dissect out the molecular basis of ubiquitin signalling disrup-
tion in PD, and this knowledge will be critical for developing novel therapeutic strategies
in PD that target the ubiquitin system.

Introduction
Approximately a century ago, Friedrich Lewy made a key discovery towards the understanding of
Parkinson’s disease (PD) by identifying and describing large cytoplasmic proteinacious inclusions in
brains of patients who had died with the disease [1]. These inclusions, subsequently termed Lewy
bodies, were distinct both in their morphology and location from inclusions found in other neurode-
generative diseases, e.g. extracellular amyloid plaques of Alzheimer’s and intranuclear inclusions of
Huntington’s disease [2]. Furthermore, their preferential location in those regions most affected in
Parkinson’s including within surviving dopaminergic neurons of the pars compacta firmly established
Lewy bodies as one of the key neural substrates of PD. Whether Lewy bodies are harmful to neurons
or a protective response remains controversial. However, seminal pathological studies in the 1980s
found that the majority contained a small protein, ubiquitin [3], which had been discovered in the
preceding decade [4] and shown to be a critical modifier that tagged proteins for degradation [5].
Therefore, the identification of ubiquitin in Lewy bodies provided strong evidence for the role of
altered ubiquitin signalling and disrupted protein quality control in PD. However, the molecular
insights into how ubiquitin controlled these processes including the key enzymes involved in mediat-
ing ubiquitylation, the identification of key ubiquitylated substrates that reside in inclusions, and the
key components controlling the reverse pathway remained unknown.

The ubiquitin system and Parkinson’s genetics
Advances in genetics have begun to unravel the molecular basis of Parkinson’s through the discovery
of nearly 20 genes mutated in rare familial forms of the disease. The proteins encoding these genes
have been implicated in diverse cellular pathways including mitochondrial quality control [Parkin,
PTEN-induced kinase 1 (PINK1), and DJ-1]; protein misfolding, and aggregation (α-synuclein); mem-
brane trafficking and autophagy (α-synuclein, LRRK2, PINK1, and Parkin); and synaptic function and
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vesicle release (α-synuclein, Synaptojanin, and TMEM230) [6]. Strikingly from a molecular standpoint, several
of these genes encode direct components of ubiquitin signalling (Parkin and F-box only protein 7 (Fbxo7)),
regulators of ubiquitin signalling (PINK1), or key target substrates of ubiquitin signalling (α-synuclein). This
has provided a framework to explore how mutations in these genes have an impact on ubiquitylation, revealing
a crucial role for ubiquitylation in regulating protein quality control pathways whose stress-induced dysregula-
tion underlies Parkinson’s linked neurodegeneration.
Ubiquitin, an 8.5 kDa polypeptide, was first isolated from bovine thymus and subsequently found to be

expressed in diverse tissues of mammalian cells, yeast, bacteria, and plants, but for several years its function
was unknown [4]. Borne out of motivation to better understand the nature of protein degradation, pioneering
studies elucidated a multistep ATP-dependent enzymatic cascade by which ubiquitin is conjugated to proteins,
marking them for degradation [7]. The action of three enzymes, namely an Ub-activating enzyme (E1),
Ub-conjugating enzyme (E2), and the Ub-ligating enzyme (E3), catalyses covalent attachment of Ub to a sub-
strate via an isopeptide bond between the ε-amino group of the substrate lysine and the C-terminal Gly residue
of Ub [8]. In addition to the target lysine of substrates, ubiquitin also possesses seven internal lysine residues
[Lys6 (K6), Lys11 (K11), Lys27 (K27), Lys29 (K29), Lys33 (K33), Lys48 (K48), and Lys63 (K63)] and an
N-terminal amino group that add complexity via generation of homotypic and heterotypic chain linkage types.
These bring diversity to the downstream signalling of distinct chain types: for example K11 and K48 chains tag
proteins for degradation via a large protease complex, the 26S proteasome. In contrast, K63 chains confer non-
degradative effects particularly in recruiting proteins to sites of DNA damage or following activation of
Toll-like receptors in the innate immune response [8]. The enzymes that catalyse ubiquitylation are often
termed writers of the ubiquitin system and include two PD-linked E3 ligases, Parkin and Fbxo7 (Figure 1). The
major PD-linked ubiquitylated target to date has been α-synuclein, and the identification of α-synuclein as the
major protein component of Lewy bodies has led to extensive research to address the regulation of α-synuclein
misfolding by ubiquitin and how this influences its degradation and downstream signalling in neurons [1]. In
parallel, the cell contains a host of adaptor proteins that possess domains capable of recognising specific
Ub-chain types. Approximately 20 ubiquitin-binding domains (UBDs) are known and are present in several
hundred proteins. Such readers are capable of decoding the ubiquitin signals and inducing concomitant signal-
ling events [9]. Of relevance to Parkinson’s are several UBD adaptors that are critical to the 26S proteasome-
mediated recognition and degradation of oligomerised α-synuclein, and recently, Optineurin and NDP52 have
been identified to signal downstream of Parkin-catalysed ubiquitylation at mitochondria. Finally, deubiquitinat-
ing enzymes (DUBs) cleave Ub from substrates or chains, thereby enabling recycling of ubiquitin. These erasers
include six subfamilies including the ubiquitin carboxy-terminal hydrolases (UCHs), which is of relevance
since mutations in one member UCH-L1 were reported in 2000 in a pair of siblings with Parkinson’s.
However, whilst there is much known on the biological function of UCH-L1, its genetic link to Parkinson’s
remains to be confirmed. There is growing interest in the role of ubiquitin-specific proteases (USPs) in their
regulation of mitochondrial quality control pathways linked to Parkinson’s (USP30 and USP15) and in the
cleavage of ubiquitin chains conjugated to α-synuclein (USP8). There are as yet no links of the other family
members of DUBs including Machado–Joseph disease protein domain proteases, ovarian tumour (otubain)
proteases (OTU), JAB1/MPN/Mov34 metalloenzyme motif proteases ( JAMM), and the newly discovered motif
interacting with Ub-containing novel DUB family) (MINDY) proteases to Parkinson’s pathways [10].
In addition to these enzymatic ‘erasers’ of ubiquitin signalling, a major consequence of ubiquitylation of pro-

teins is degradation via the 26S proteasome, a multisubunit protease complex. K48-linked chains were initially
found to signal proteins for 26S proteasome-mediated degradation but since then other linkage types can be
recognised by the proteasome including K11 that can trigger degradation of various components of the cell
cycle during cell division. To date, none of the genes encoding the 28 subunits of the proteasome are mutated
in Parkinson’s familial cases. Nevertheless, analysis of human postmortem brains of sporadic Parkinson’s
patients has suggested that proteasomal activity is impaired. In particular, it has been reported that proteasomal
subunits and proteasomal activity are reduced in the substantia nigra but not in other brain regions of patients
with PD [11]. It was further reported that chronic systemic administration of a proteasome inhibitor in rats led
to a Parkinsonian phenotype associated with dopaminergic cell loss and importantly ubiquitin and
α-synuclein-positive inclusions [12]. However, this model was not independently replicated by different labora-
tories and thus has not become an established model in the Parkinson’s field. In contrast mitochondrial toxin-
based models such as MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) are widely used [13]. To address
the role of the 26S proteasome further, a conditional knockout of the proteasome subunit Rpt2/PSMC1,
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Figure 1. Domain schematic of key ubiquitin-related proteins in PD.

Ubiquitin molecules that are either mutated in PD (PINK1, Parkin, and Fbxo7) or are a leading candidate for drug discovery

(USP30) are depicted. PINK1: MTS, mitochondrial-targeting sequence; TMD, transmembrane domain; CTD, C-terminal domain.

Parkin: Ubl, ubiquitin-like domain; RCat, required for catalysis; BRCat, Benign Rcat; Rep, Repressor element of Parkin. F-box07

(Fbx07): Ubl, ubiquitin-like domain; FP, Fbxo7 and PI31-interacting domain; PRR, proline-rich region. Ubiquitin-specific

processing protease 30 (USP30): TMD, transmembrane domain; DUB, deubiquitinase domain.

Figure 2. Ubiquitin pathways combating Parkinsonism.

Multiple proteins and pathways implicated in protein homeostasis are shown. Ub, ubiquitin; USPs, ubiquitin-specific proteases;

E3 ligases are shown in green and USPs in purple.
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encoding an ATPase of the 19S regulatory complex, has been generated in which this essential subunit was
inactivated in the mouse substantia nigra. This led to extensive neurodegeneration of the nigrostriatal pathway
and ubiquitin-positive inclusions; however, this was associated with death at 1 month, preventing assessment of
whether there is a typical motor phenotype in this model [14]. Moreover, the degeneration and inclusions were
found to occur independent of α-synuclein in follow-up work, suggesting that the mechanism of neurodegen-
eration in this model is not relevant to Parkinson’s and indicates that the role of the ubiquitin system in pre-
venting PD may be more complex in this model [14]. Finally, human brain studies cannot distinguish whether
the proteasomal dysfunction seen in Parkinson’s is a primary defect or a secondary consequence. Interestingly,
a causal role for proteasomal dysfunction is emerging more widely from other neurodegenerative disorders
through the identification of X-linked mutations in Ubiquilin2 (UBQLN2) in amyotrophic lateral sclerosis and
the demonstration that UBQLN2 plays a crucial role as a proteasome shuttle factor clearing aggregates via the
proteasome [15].

α-Synuclein — ubiquitin and protein aggregation and
turnover
The discovery of mutations in the α-synuclein gene in families with autosomal-dominant inherited PD repre-
sented a major advance in our understanding of PD, particularly with the demonstration that α-synuclein com-
prises the major component of Lewy body aggregates found within PD brains [1]. Overexpression of
α-synuclein through gene duplications and triplications and disease-associated missense mutations stimulates
the propensity of α-synuclein to aggregate and form fibrils in vitro and in vivo [1]. The regulation of
α-synuclein-mediated fibril formation by post-translational modifications has been the subject of intense inter-
est [16]. In particular, phosphorylation at Tyr39 and Ser129 has been shown to promote α-synuclein aggrega-
tion [17,18]. However, the role of ubiquitylation has been more controversial. Early studies focused on the role
of ubiquitylation in the α-synuclein aggregation process and suggested that the seven in absentia homolog
(SIAH) E3 ligase could target α-synuclein via ubiquitin multi-monoubiquitylation at Lysines 12, 21, and 23
and that the monoubiquitylated form of α-synuclein was more prone to aggregation both in vitro and in vivo
[19]. However, the contribution of ubiquitin to promoting α-synuclein fibrillisation has been questioned since
only a minor fraction of α-synuclein (∼10%) is ubiquitylated within Lewy bodies. Consequently, the role of ubi-
quitylation in regulating the physiological turnover of α-synuclein has become the focus of recent work. Several
E3 ligases, including CHIP and E6-AP, have been suggested to ubiquitylate α-synuclein and mediate its degrad-
ation via the proteasome [20,21]. Whilst both CHIP and E6-AP have been reported to localise in the Lewy
bodies, the mechanism by which they mediate α-synuclein degradation remains unclear, with data obtained
from largely overexpression studies and the critical Lysine residues and ubiquitin chain topologies mediating
degradation uncharacterised. K63-mediated ubiquitylation of α-synuclein (major sites of ubiquitylation at resi-
dues Lys21 and Lys96) via the Nedd4 HECT E3 ligase has been reported to signal for α-synuclein degradation
via the lysosomal pathway (Figure 2) [22]. Furthermore, K63-linked ubiquitin was reported to be more abun-
dant in Lewy body inclusions than K48 using Ub-chain-specific antibodies, although the authors did not specif-
ically assay α-synuclein ubiquitylation [23]. Very little is known on the deubiquitinases (DUBs) that target
α-synuclein, and a recent study has suggested that USP8 preferentially cleaves K63-ub chains attached to
α-synuclein in vitro and knockdown of USP8 in cells accelerated α-synuclein degradation via lysosomes.
Furthermore, USP8 knockdown prevented α-synuclein toxicity in a Drosophila model in vivo [23].
Little is known on the regulation of ubiquitin of the normal function of α-synuclein, which resides mainly in

the synapses of neurons, where it has been postulated to control vesicle fusion in presynaptic terminals [1].
α-synuclein has also been reported to associate with other membrane compartments including the ER, Golgi,
and endosomes to mediate membrane-lysosomal trafficking [1]. Previous studies in postmortem normal brains
suggested that α-synuclein is not present as a ubiquitylated form; however, such analyses are susceptible to
postmortem artefacts via the action of DUBs and proteases. Analysis of rat brain extracts with antibodies that
recognise the Lys-ε-Gly-Gly (di-Gly) remnant of ubiquitylated proteins has suggested that residues Lys34 and
Lys96 of α-synuclein are ubiquitylated [24]. Both these sites are conserved in the human protein and, interest-
ingly, Nedd4 can ubiquitylate Lys96 of human α-synuclein in vitro [22]. Propagation of misfolded α-synuclein
between neurons via exocytosis pathways, exosome production, and vesicle-mediated endocytosis is an area of
intense interest; however, how ubiquitin controls these processes remains largely mysterious. Recently, the
DUB, USP19, was shown to promote misfolded α-synuclein secretion [25]. USP19 possesses intrinsic
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chaperone activity that first recruits α-synuclein to the surface of the endoplasmic reticulum, where it is then
deubiquitylated, encapsulated by late endosomes and finally secreted to the cell exterior [25].

Parkin — autoinhibited E3 ligase and mechanism of
activation
Mutations in the PARK2 gene were discovered in 1998 in patients with autosomal-recessive juvenile
Parkinsonism (AR-JP). They represent the leading genetic cause of early-onset Parkinson’s (onset <45 years),
accounting for 90% of all cases presenting before age 21 and ∼50% of those presenting before age 45. The
patient phenotype is distinct with strong association with dystonia, slow disease course, and L-Dopa sensitivity
both in terms of responsiveness and onset of dyskinesias. Pathologically, there is a striking absence of Lewy
bodies in the majority of reported postmortem brain studies and relatively restricted pathology to the striato-
nigral system unlike the more diffuse progression of pathology seen in sporadic cases. Interestingly, nearly all
cases reported with Lewy bodies bear compound heterozygous Parkin mutations, and it is not clear whether
Parkin activity is biochemically affected in a similar manner to patients harbouring homozygous mutations.
Parkin is an E3 ubiquitin ligase that is a member of the RING-Between-RING (RBR) family. There are ∼12

members of the RBR family in the eukaryal kingdom, and all feature a RING domain similar to those found in
the RING family required for recruiting E2-conjugating enzymes (for recent reviews see [26,27]). In addition
to the RING domain, RBRs have a catalytic cysteine that forms a catalytic intermediate [28], and a domain sep-
arating the RING and the catalytic domain, termed the InBetweenRING, or Benign-Rcat ‘B’ (Figure 1). All
RBRs have additional domains to the RBR module, with Parkin having an N-terminal ubiquitin-like domain,
which shares 30% sequence identity with ubiquitin, and a RING0 domain which is a linear zinc-binding
domain [29]. Parkin is a 52 kDa protein comprising 465 amino acids [30]. Importantly, at least 80 pathogenic
amino acid substitutions that lead to AR-PD are found throughout the primary sequence of Parkin, clustering
in domains, but also in the linkers between domains [31]. The RBRs are usually autoinhibited via intramolecu-
lar domain–domain interactions and require activation [32–41]. In the case of Parkin, activation is achieved via
two phosphorylation signals catalysed by PINK1. Serine65 (Ser65) of both the Ubl domain of parkin [42] and
ubiquitin itself are phosphorylated by PINK1 [43–45]. Phosphorylated Parkin binds tightly to phosphorylated
ubiquitin [34,46], and this triggers a conformational rearrangement that allows Parkin ubiquitin ligase activity
[34,36,47]. The pathogenic mutations found in Parkin are not only interspersed throughout the primary
sequence, but also throughout the structure of Parkin. Many mutations result in destabilisation of the various
domains [35,40,48], leading to loss of ubiquitin ligase activity. Some mutations lead to inappropriate activation
of Parkin, causing Parkin self-ubiquitylation and subsequent turnover by the proteasome [32,49]. Other
mutants disrupt the ability of Parkin to perform the transthiolation necessary for activity [50]. In the 17 years,
since the identification of Parkin as a ubiquitin ligase [51,52], many potential substrates of Parkin have been
identified and reviewed [53–57]. Since ubiquitylation often acts as a signal for proteasomal degradation, there
was an early expectation that Parkin substrates would accumulate in the absence of functional Parkin. However,
in the multiple animal models of Parkin deficiency that have been generated, very few show increased levels of
putative Parkin substrates (for a comprehensive review of mouse models, see ref. [58]). One notable exception
is the accumulation of the aminoacyl-tRNA synthetase cofactor, AIMP2, which accumulates in brain tissue of
Parkin–PD patients [59]. However, there is yet to be a comprehensive analysis of the levels of Parkin substrates
in confirmed Parkin–PD cases.
Many of the candidate substrates of Parkin activity are found at the mitochondrial outer membrane and are

involved in the maintenance of mitochondrial homeostasis. Indeed, our current understanding of both PINK1
and Parkin function is to drive the clearance of damaged mitochondria via mitophagy (recently reviewed in ref.
[60]). PINK1 activity is required for recruitment of Parkin to damaged mitochondria [61–66]. Recent studies
support a model whereby phosphorylation of ubiquitin, catalysed by PINK1 (Figure 2), is the signal for
autophagy at the mitochondria, and that Parkin serves to amplify this signal [67].

PINK1 — (phospho) ubiquitin, Parkin, and mitochondrial
turnover
Mutations in PINK1 were identified initially in Sicilian patients with AR-PD [68]. Clinically patients
exhibit a phenotype similar to Parkin patients with early age of onset, prominent dystonia, and sensitivity
to L-Dopa. To date, three postmortem case studies have been reported with two noting the absence of
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nigral Lewy body pathology (homozygous C388R [69] and homozygous L347P [70]) and one finding
Lewy body pathology (compound heterozygous for exon 7 deletion/50 splice site mutation in exon 7 [71]).
PINK1 encodes a 581-amino acid Ser/Thr protein kinase that possesses an N-terminal mitochondrial-
targeting sequence and a kinase domain that is unusual due to the presence of several loop insertions and
a C-terminal domain with no known homology to any other protein. Nearly 25 homozygous or com-
pound heterozygous mutations have been reported for PINK1 with the vast majority lying within the
kinase domain and affecting key residues critical for kinase function, e.g. the A217D mutation that occurs
within the ATP-co-ordinating LAIK motif and causing childhood onset of PD [72]. Genetic and biochem-
ical studies suggest that the majority of mutations are loss of function including truncating mutations that
abrogate the C-terminus. Recently, a heterozygous mutation, G411S, was proposed as a risk factor for PD
and acts in a dominant negative fashion as suggested from structural modelling by hampering putative
PINK1 dimerisation [73]. Under basal conditions, PINK1 undergoes proteolysis by the PARL protease
anchored to the inner membrane by Stomatin-like protein 2 (SPL2), which together with the protease
YMEL1 forms the recently described SPY complex [74]. Cleavage of PINK1 generates a C-terminal frag-
ment starting at residue Phe104 that signals for its degradation via the N-end rule pathway [75]. Upon
mitochondrial depolarisation that can be induced by uncoupling agents [e.g. carbonyl cyanide
m-chlorophenyl hydrazine (CCCP)], PINK1 becomes stabilised and activated and phosphorylates ubiqui-
tin at the outer mitochondrial membrane via residue Ser65 [43–45]. The generation of Phospho-ubiquitin
(p-Ub) stimulates recruitment of the Parkin, whereupon binding to p-Ub, it becomes efficiently phos-
phorylated at its N-terminal Ubl domain at Ser65 (equivalent to the Ubiquitin site) to become fully acti-
vated via a feed-forward mechanism. The consequent ubiquitylation of substrates by Parkin creates a
feedback amplification loop whereby ubiquitin chains are further phosphorylated by PINK1 to boost the
p-Ub at the mitochondrial surface (estimated to represent ∼20% of total mitochondrial ubiquitin), and
this stimulates further Parkin recruitment and activation [46,76,77]. The mechanism of PINK1 activation
is attributed to protein stabilisation and dimerisation and additional modifications may play a role includ-
ing phosphorylation [78,79]. PINK1 resides in an ∼700 kDa complex associated with translocase of outer
membrane members (TOM) that appear critical for its import [80]. Recent studies highlight a role for
p-Ub in the recruitment of ubiquitin adaptors including Optineurin for induction of mitophagy via acti-
vation and phosphorylation of TBK1 although the mechanism by which TBK1 is activated and the iden-
tity of its upstream kinase are unknown [67,81]. Intriguingly, Optineurin is a recognised effector of the
Rab8A GTPase [82], and phosphoproteomic analysis has revealed that Rab8A and related Rab GTPases
8B and 13 are phosphorylated at residue Ser111 indirectly in response to PINK1 activation via an
unknown intermediate kinase [83]. In future work, it would be interesting to assess whether TBK1 can
directly phosphorylate Rabs or, conversely, whether Rabs are required for optimal TBK1-mediated phos-
phorylation of Optineurin. There are probably additional downstream functions of p-Ub and studies
in vitro suggest that p-Ub can influence interactions with DUBs [84]. Whilst the phosphatase that depho-
sphorylates p-Ub remains unknown, two DUBs have been identified that deubiquitylate Parkin-directed
substrates, USP30 and USP15, and USP8 has also been reported to reverse Parkin autoubiquitylation.
Upon mitochondrial depolarisation, the ultimate fate of PINK1 and Parkin activation is degradation of

mitochondria via mitophagy. In recent years, other forms of mitochondrial quality control have emerged
including PINK1-dependent regulation of mitochondrial-derived vesicles (MDVs) that are cargo-specific in
response to mitochondrial damage [85]. The MDV pathway appears to employ distinct downstream
machinery since the SNARE protein, syntaxin-17, is required for delivery of MDVs to the late endosome–
lysosome but is not required for mitolysosome formation and mitophagy [86]. MDVs have also been
linked to physiological regulation of antigen presentation [87]. To date, it remains unknown whether per-
turbation of PINK1 and Parkin leads to defects in mitochondrial quality control in Parkinson’s derived
cells or tissues. However, the development of state-of-the-art cellular models and in vivo reporters will
soon enable this question to be addressed. Recently, advances in cellular reprograming have led to the
development of iPS-derived midbrain dopamine neurones from Parkinson’s patients harbouring PINK1
and Parkin mutations, and these cells demonstrate aberrant α-synuclein cytosolic accumulation and mito-
chondrial defects, making them an ideal in vitro system to probe the role of mitophagy in PD [88].
Furthermore, the development of two in vivo mouse reporters of mitophagy will aid in validating the role
of mitophagy in relevant PD mouse models [89,90].
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Fbxo7 — ubiquitin and new frontiers
A second member of the E3 ubiquitin ligases, Fbxo7, is also mutated in early-onset Parkisonism [91–97]. In
contrast with Parkin, which functions as a single-polypeptide E3 ligase, Fbxo7 is a component of a multisubu-
nit E3 ligase of the Cullin-RING ligase family (CRL). CRLs are a large class of multisubunit E3 ubiquitin
ligases that feature a scaffolding protein, termed a cullin, and associate with a RING-box protein (reviewed in
refs [98,99]). The archetypal CRL is the SCF-type ligase family, which comprises Cullin1, Skp1, the RING
protein Rbx1, and an F-box. Skp1 associates with substrate adaptor proteins that contain F-boxes (Skp1–
Cullin1–Fbox), which recruits substrates to the CRL for ubiquitylation.
Until recently, Fbxo7 had only four identified substrates. The first of these is HURP (hepatoma up-regulated

protein) [100]. HURP is found at high levels in hepatocellular carcinomas and is required during mitotic
spindle assembly for correct alignment of chromosomes [101]. As such, it is subject to turnover and is regu-
lated by both Fbxo7 [102] and the anaphase-promoting complex [103]. Additional substrates include the cellu-
lar inhibitor of apoptosis (cIAP1) [104] and TNF-α receptor-associated factor 2 (TRAF2) [105]. cIAP1 and
TRAF2 are both components of the NF-κB signalling pathway, which is the main driver of the inflammatory
response. Interestingly, both of these substrates are E3 ligases themselves, a keen example of the role ubiquityla-
tion plays in the regulation of NF-κB signalling (reviewed in ref. [106]). Fbxo7-mediated ubiquitylation of each
of these prevents their association with the receptor-interacting protein 1 and inhibits NF-κB signalling [105].
However, as well as exerting an inhibitory effect on NF-κB signalling, Fbxo7 also targets a fourth substrate for
ubiquitylation, Neurotrophin receptor-interacting homologue (NRAGE) [107]. NRAGE is also a component of
the NF-κB signalling pathway, but in contrast with the effects via cIAP1 and TRAF2 ubiquitylation, modifica-
tion of NRAGE leads to the formation of NRAGE–TAK1–TAB1 complexes, which in turn promote enhanced
NF-κB signalling [107]. A very recent study has greatly expanded the list of potential Fbxo7 substrates. By
using a protein array-based screen to identify possible targets of Fbxo7 activity, Teixeira et al. [108] found that
Fbxo7 is capable of ubiquitinating over 330 proteins. Importantly, two of the candidates have potential roles in
PD, with a kinase that targets α-synuclein (glycogen synthase kinase-3 beta) and a key mitochondrial protein,
Tomm20 (Translocase of outer mitochondrial membrane 20) [108].
Fbxo7 is a 522-amino acid, 58.5-kDa protein, belonging to the F-box family. The F-box proteins can be sub-

classified according to the type of protein–protein interaction domain they harbour. Fbxl proteins contain a
leucine-rich repeat; Fbxw proteins have a WD40 repeat, whilst Fbxo proteins have other domains. In the case
of Fbxo7, it has an N-terminal Ubl domain, a C-terminal proline-rich repeat, a CDK6-binding region, and an
FP domain, in addition to the characteristic F-box (Figure 1). The Fbox is the substrate adaptor that binds to
Skp1 to allow integration into the SCF complex. Currently, there are no known mutations within the F-box
that are associated with disease. However, there is one homozygous mutation C-terminal to the F-box (R278G)
that has reduced binding to Skp1, with no obvious effect on NF-κB signalling [109]. The FP domain is a con-
served globular domain [110] found in both Fbxo7 and the Proteasome Inhibitor 31 (PI31) protein.
Intriguingly, this domain is a dimerisation domain and blocks proteasome function [111,112]. There are no
known pathogenic mutations yet associated with this domain.
The Ubl domain is very distant from ubiquitin, sharing only 22% sequence identity with ubiquitin, and is

found at the very N-terminus of Fbxo7. The Ubl domain was initially thought to be important for substrate
recruitment, although isoform 2, which lacks the Ubl domain, can still interact with substrates [104,113,114].
Previously, it has been shown that Fbxo7 interacts with Parkin, via the Ubl domain of Fbxo7 [113], and can
also interact with PINK1. The interaction between Parkin and Fbxo7 is proposed to facilitate mitophagy by
enabling Parkin recruitment to the mitochondria, and overexpression of human Fbxo7 can compensate for the
loss of Parkin in a Drosophila model. However, PINK1 deficiency is not rescued. The Ubl domain contains one
compound heterozygote mutation T22M, which still maintains Parkin interaction [92,113,115], although the
overexpressed mutant has decreased stability and altered cellular localisation compared with wild type [115].
Intriguingly, the Ubl domain also houses a second mutation that is potentially protective, Y52C, although the
mechanism by which this may be achieved is not yet clear [116]. Finally, the C-terminal proline-rich region
(PRR) is required for substrate interaction [100,104]. Interestingly, a pathogenic R498X truncation can no
longer recruit Parkin to mitochondria, has lower protein expression, but no clear effect on NF-κB signalling
[113,115]. This mutant also displays altered subcellular localisation [115]. The similarities in the behaviour of
Ubl and PRR mutants raise the possibility of functional interplay between these domains. Finally, Fbxo7 also
contains a region for binding to cyclin-dependent kinase 6 (CDK6) and scaffolds cyclin D/CDK6 assembly,
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thus regulating the cell cycle [117]. In particular, Fbxo7 plays a role in cell-cycle regulation during erythropoi-
esis, by binding to and stabilising p27 levels, thus arresting cell-cycle exit [118]. This role appears unrelated to
canonical F-box function and serves to demonstrate how much there is to understand about the functions and
mechanisms of Fbxo7 in PD and in other contexts of cellular stress.
There are additional polymorphisms found in Fbxo7 that may or may not play a role in disease pathology

(comprehensively reviewed in refs [119,120]). A very recent study has provided some long-awaited insights into
Fbxo7 function in neurones [121]. Fbxo7-knockout mice display early-onset motor deficits and reduced muscle
strength, and die within 4 weeks after birth. Importantly, conditional Fbxo7 knockout in the neurons of older
mice also show progressive motor impairment, in sharp contrast with the murine knockout models of Parkin.
Intriguingly, Vingill and colleagues have also identified a substrate of Fbxo7’s E3 ligase activity, the proteasomal
subunit PSMA2, which interacts with the Ubl domain of Fbxo7, thereby providing further physical association
between Fbxo7 and the proteasome [121–123]. Finally, loss of Fbxo7 affects the assembly of proteasomes,
leading to reduced proteasome activity [121]. This fits well with previous work that shows that proteasomal
depletion in mouse neurons leads to neurodegeneration (Bedford et al. [14]).

Future perspective — technologies and drug discovery
Certainly, the evidence is accumulating that misregulation of the ubiquitin proteasome system is causally
linked to Parkinsonian disorders. Whilst α-synuclein misfolding and aggregation is central to the develop-
ment of sporadic PD, it is still unknown whether ubiquitin pathways controlled by PINK1, Parkin, and
Fbxo7 are linked to sporadic disease. Evidence from mice models indicate a genetic interaction between
PINK1/Parkin- and α-synuclein-induced neurodegeneration in vivo, but the mechanisms are unclear, particu-
larly with regard to mitochondrial substrate ubiquitylation and α-synuclein [124]. Evidence from Drosophila
studies suggests that convergence may occur at the level of the mitochondrial dynamics [125], whilst mam-
malian studies indicate that Rab GTPases may be the nexus of PINK1 and α-synuclein signalling [83,126].
Furthermore, a clinico-pathological analysis suggests that p-Ub is increased with ageing in human brains and
localised within Lewy bodies [127]. An important next step would be to monitor for Parkin and Fbxo7 activ-
ities and altered substrate ubiquitylation in PD patient-derived tissues and cells, and recent technical advances
now make this possible. Mass spectrometry ubiquitin technologies using aquapeptides that monitor quantita-
tive changes in substrate ubiquitylation have been particularly showcased for the Parkin pathway and provide
a robust unbiased readout of the ubiquitin landscape [128]. More recently, activity-based probes for measur-
ing transthioylation activities of RBR E3 ligases such as Parkin will enable facile assessment of Parkin activity
in PD patient tissues and cells [50]. Anti-ubiquityl antibodies have been successfully developed and deployed
in the chromatin field to measure histone ubiquitylation [129], and it would be exciting to develop such
reagents against Parkin and Fbxo7 substrates as well as against ubiquitylated forms of α-synuclein as potential
biomarkers of Parkinson’s. Therapeutically there is significant interest in targeting DUBs, and in particular,
the development of USP30 inhibitors has moved apace given the primary localisation of USP30 within the
mitochondria. USP8 inhibitors may also have therapeutic utility in promoting synuclein endolysosomal deg-
radation and preventing protein aggregation. There has also been some work on activating the pathway with
PINK1 activators via a pseudo-substrate approach reported to have therapeutic utility [130]. Similarly, there is
much interest in developing small-molecule activators of Parkin, which has been boosted by structural ana-
lysis of Parkin. Overall, exploiting genetic advances to better understand the role of ubiquitylation has pro-
vided an initial framework of understanding and the fact that ∼40% of young-onset Parkinson’s remains
genetically unexplained suggests that genetics is likely to further contribute to our understanding of ubiquitin
signalling in PD.
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