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Rodent monoclonal antibodies with specificity towards important biological targets are
developed for therapeutic use by a process of humanisation. This process involves the
creation of molecules, which retain the specificity of the rodent antibody but contain pre-
dominantly human coding sequence. Here, we show that some humanised heavy chains
(HCs) can fold, form dimers and be secreted even in the absence of a light chain (LC).
Quality control of recombinant antibody assembly in vivo is thought to rely upon folding
of the HC CH1 domain. This domain acts as a switch for secretion, only folding upon
interaction with the LC CL domain. We show that the secreted heavy-chain dimers
contain folded CH1 domains and contribute to the heterogeneity of antibody species
secreted during the expression of therapeutic antibodies. This subversion of the normal
quality control process is dependent on the HC variable domain, is prevalent with engi-
neered antibodies and can occur when only the Fab fragments are expressed. This dis-
covery will have an impact on the efficient production of both humanised antibodies and
the design of novel antibody formats.

Introduction
The ability to humanise rodent antibodies efficiently along with improvements in recombinant expres-
sion has led to the development of several high-value and effective therapeutics [1]. However, efforts
to produce novel antibody formats such as bi- or tri-specific molecules have met with difficulties in
terms of low titres and poor yields, resulting in longer production runs and the requirement for exten-
sive purification [2]. The heterogeneity in expressed protein is likely to be caused by a lack of efficient
folding and assembly of the desired antibody and the subsequent secretion of alternate assemblies.
Given the potential for antibodies and their derivatives as therapeutics, any improvements in optimis-
ing the production process in terms of yield and quality will have an impact on their utility and
affordability.
The correct folding and assembly of antibodies requires an elegant cellular quality control process

[3]. Crucially, heavy chains (HCs) are retained in the cell as dimeric intermediates until two light
chains (LCs) assemble with the HC dimer to form a tetramer, which is then released from this reten-
tion and secreted from the cell [4]. The HC dimer is retained due to a lack of folding of the CH1
domain in the absence of the cognate LC, resulting in a high-affinity interaction with the intracellular
chaperone, immunoglobulin HC-binding protein (BiP) [5,6]. This interaction is reversed upon LC
assembly with the CL domain acting as a template to allow correct folding of the CH1 domain [7,8].
This cellular mechanism ensures that only correctly folded and assembled molecules are secreted from
an antibody-producing cell. The quality control system also functions in Chinese hamster ovary
(CHO) cells used for commercial antibody production with BiP retaining unassembled HC dimers
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[9]. However, the fidelity of this retention has not been analysed for engineered antibodies as it has been
assumed that the retention is efficient, at least during the expression of commonly expressed IgG formats.
While the retention mechanism seems to hold for many natural antibodies, HC dimers can be secreted in

LC-deficient mice if they lack the CH1 domain [6,10]. Camelids also express HCs that lack a CH1 domain,
allowing the secretion of functional HC dimers [11]. In addition, some transcripts found in mammalian
pro-B-cells encode HCs that can be expressed on the cell surface in the absence of any surrogate or conven-
tional LC [12]. These HCs contain a CH1 domain, which folds in the absence of a LC, enabling them to escape
the endoplasmic reticulum (ER) quality control mechanism. Interestingly, these HCs are not found in pre- or
mature B-cells, indicating the presence of a negative selection for cells expressing HCs that can be secreted in
the absence of a LC. Importantly, these HCs differ only in their variable domain, indicating that the require-
ment for LC-dependent folding of the CH1 domain is an intrinsic property of the VH domain that is selected
for during B-cell development.
In the present study, we show that some engineered HCs can also be secreted as dimers. The CH1 domain

within these HC constructs can fold in the absence of the cognate LC, thereby subverting the cellular quality
control process. The results suggest that the humanisation process can inadvertently create HC constructs that
would normally be selected against during B-cell development.

Experimental procedures
Cell lines and DNA constructs
CHO adherent cells (CHO) L761H were grown in Dulbecco’s Modified Eagle Medium (DMEM) containing
10% foetal calf serum. CHO-S suspension cells (Life Technologies) were grown in CD CHO chemically defined
medium. All HCs contained either the human IgG1 or IgG4 CH1,2,3 domains fused to either mouse or huma-
nised VH domains with specificity for A33 [13], TNF-α [14], CD20 [15], CD25 (Zenapax) [16], CD25
(Simulect) [17] and CD11a [18]. The variable domain from an in-house humanised mouse antibody (277) was
also used [19]. Variable domains were synthesised by DNA 2.0. All IgG4 HCs contain an S225P mutation (i.e.
–ESKYGPPCPSCP– to –ESKYGPPCPPCP–), which reduces the amount of HC : LC dimers formed [20].
Additional mutations introduced by site-directed mutagenesis included C127S in the A33 Fab fragment CH1
domain and P151A in the A33 HC CH1 domain as indicated. The Fab HC constructs were prepared by PCR
using primers complementary to the 50 sequence and to the junction between the CH1 domain and the hinge
region. The 30-primer was also designed to add a V5-tag and a stop codon. The final construct is depicted in
Figure 4B.

Transient transfections
CHO-S cells were transfected for western blot analysis, and CHO-L761H were transfected for the pulse label-
ling experiments. The transfection reagent used was either polyethylenimine (PEI) [21] or NovaCHOice [22]
(Novagen) as indicated. For PEI transfections, the ratio of DNA : PEI was 1 : 2.5. DNA was added to serum-free
medium (CHO-L761H) or CD CHO (CHO-S) and incubated for 5 min. PEI was then added, mixed and incu-
bated for a further 10 min. The DNA and PEI mixture was added to cells in complete medium or CD CHO
medium. After 24 h, the medium was removed and replaced with complete medium or CD CHO. The trans-
fected cells and medium were analysed 48 h post transfection.
For NovoCHOice transfections, 20 mg of DNA and 20 ml of reagent were mixed in serum-free medium or

CD CHO and incubated for 10 min. The mixture was then added to cells in complete medium or CD CHO
and incubated for 48 h prior to analysis.

Western blot analysis
Transfected cells and medium were separated by centrifugation. N-ethyl maleimide (NEM) was added to the
medium to a final concentration of 20 mM, and cells were incubated in phosphate-buffered saline containing
NEM (20 mM) for 10 min to trap the disulphide status of secreted or intracellular proteins. Cell lysates were
prepared using lysis buffer [50 mM Tris–HCl buffer (pH 7.5), containing 150 mM NaCl, 5 mM EDTA, 1%
(v/v) Triton X-100 and 20 mM NEM]. Cell lysates or medium was centrifuged at 9500×g for 10 min to pellet
the cell debris. The supernatant from the cell lysis or the medium was pre-cleared using 10% Sepharose beads
for 30 min before affinity purification with 1% protein A-Sepharose beads overnight. Isolation of the A33 Fab
product containing a V5-epitope tag from medium or cell lysate was carried out using anti-V5-agarose affinity
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gel beads (Sigma). Protein A or V5-agarose beads were washed with buffer A [50 mM Tris–HCl (pH 8), 1%
Triton X-100, 150 mM NaCl, 2 mM EDTA, 0.5 mM phenylmethylsulfonyl fluoride] before adding SDS–PAGE
sample buffer [50 mM Tris–HCl (pH 6.8), containing 2% (w/v) SDS, 0.1% (w/v) bromophenol blue and 10%
(v/v) glycerol]. Samples were reduced with 10 mM dithiothrietol (DTT) where indicated prior to gel electro-
phoresis. Proteins were separated by SDS–PAGE on gradient (4–20%), 7.5% or 12.5% polyacrylamide gel as
indicated. The proteins were transferred to nitrocellulose membranes (Li-COR). Membranes were treated for
1 h at room temperature in 5% (w/v) milk and incubated with a fluorescent protein A [23] or mouse anti-V5
(1/10 000) (Invitrogen: R96025) or mouse anti-human IgG HC (1/1000) (Abcam: AB7500) for 1 h. If a
primary antibody was used, then the membrane was developed using fluorescent protein A. Fluorescent protein
was detected using an Odyssey Li-COR Sa imaging system.

Pulse-chase assay
Transfected CHO-L761H cells for pulse labelling were starved in minus cysteine and minus methionine (−cys
−met) DMEM for 30 min. The medium was replaced with fresh –cys−met with the addition of a radiolabelled
methionine and cysteine mixture (35S) for 30 min at a concentration of 110 mCi/ml. Cells were washed in PBS
and subsequently incubated in complete DMEM containing 0.5 mM cycloheximide for varying chase times as
indicated. Cell lysates were prepared as described above and protein samples were immunoisolated using mouse
anti-κ-LC (1/1000) (Sigma: K4377) and mouse anti-human IgG antibodies and incubated overnight with 1%
protein A-Sepharose. The beads were washed with buffer A and eluted in SDS–PAGE sample buffer. Protein
samples were separated by SDS–PAGE on a gradient (4–20%) polyacrylamide gel. The gel was fixed using a
solution of 10% (v/v) methanol and 10% (v/v) acetic acid for 20 min, and then dried prior to exposure to a
phosphorimager plate and developed on a Fuji FLA-7000 phosphorimager.

2D Gel electrophoresis
A pulse-chase assay was carried out as described with a chase time of 3 h. The medium and cells were treated
with NEM and cell lysate, and medium was prepared as described above. Antibody chains were isolated with
anti-κ-LC and anti-HC-IgG antibodies along with protein A-Sepharose as described above. A 4–20% gradient
gel was run as the first dimension. A sample lane was then cut (∼3 mm wide) and incubated in 50 mM DTT
for 10 min to reduce the proteins in the gel. An identical sample lane was fixed in 10% (v/v) acetic acid/10%
(v/v) methanol. The gel lane incubated in 50 mM DTT was placed horizontally along the top of a second,
thicker gel (1.5 mm, 12.5%) and sealed with 1% (w/v) agarose. The gel was then run at 20 mA and fixed in
10% (v/v) acetic acid/10% (v/v) methanol. The gel along with the fixed sample lane from the first dimension
was dried and exposed to a phosphorimage plate overnight.

Endoglucosidase H and peptide :N-glycosidase F treatment
CHO-S cells transfected with A33 HC IgG4 were split into three samples, and the medium and cells were sepa-
rated by centrifugation. Cell lysates and medium were prepared and HCs were purified using protein
A-Sepharose as described above. Protein A-Sepharose beads were washed three times with buffer A and then
resuspended in 50 ml of denaturing buffer (0.5% SDS and 0.04 M DTT). Each sample was boiled for 10 min
and centrifuged at 16 000×g for 1 min. Samples were treated with endoglycosidase H (1000 U, New England
BioLabs) or peptide :N-glycosidase (PNGase F) (1000 U, New England BioLabs) in 50 mM sodium citrate
buffer (pH 5.5) or 50 mM sodium phosphate buffer (pH 7.5), respectively [24]. All samples were incubated at
37°C overnight. Samples were separated by SDS–PAGE on a gradient (4–20%) polyacrylamide gel. The gel was
silver-stained to visualise the proteins.

Size-exclusion HPLC
Samples for size-exclusion (SE) chromatography were purified from culture medium from transfected CHO-S
cells using protein A-Sepharose. Samples (∼20 mg) were loaded onto a TSKgel G3000SW, 10 mm, 7.5 mm
ID × 300 mm column (Tosoh) and developed with an isocratic gradient of 0.2 M sodium phosphate (pH 7.0) at
1 ml/min for 17 min. Detection was by absorbance at 280 nm. Apparent molecular masses were calculated
using the sample peak retention time and the interpolated retention times for Bio-Rad gel filtration markers
(Cat. No. 151-1901).
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Results
IgG LC-independent secretion of HCs
The assembly of an antibody molecule is initiated by the formation of a HC dimer as a consequence of an
interaction between the CH3 domains [25]. The dimers formed are then stabilised by the formation of an inter-
chain disulphide within the hinge region between the CH1 and CH2 domains. Two LCs then associate with the
HC dimer to form a tetramer, which is stabilised by further interchain disulphides between the H and L chains
[3]. To illustrate the various intermediates formed during this pathway, we transiently co-expressed HC and LC
coding for a humanised mouse monoclonal antibody (A33) [13] in either an IgG1 or IgG4 format. The IgG4
construct used for these experiments contains a mutation within the hinge region (S225P), which has been
shown to reduce the heterogeneity of secreted IgG4 intermediates [26], specifically HC : LC dimers [20]. The
HC-coding region consists of human CH1, CH2, CH3 and mouse VH domains, whereas the LC constructs
consist of human CL and mouse VL domains. Western blot analysis of the intracellular material using a fluores-
cent protein A illustrated three prominent products, previously characterised as fully assembled IgG, HC
dimers and some trimers consisting of one LC and two HCs [20] (Figure 1A,B). Only fully assembled IgG or
HC dimers were observed in the secreted material — note that protein A does not bind to all intermediates

Figure 1. HC dimer secretion in the presence of LC.

CHO-S (A and B) or CHO-L761H (C–E) cells were co-transfected with expression constructs coding for the IgG1 (A) or IgG4

(B–E) A33 HC and LC. Cells transfected with the empty vector are as indicated (EV). (A and B) Immunoblot analysis of the

intracellular (L) and secreted (M) antibody products separated on a 10% polyacrylamide gel. Fluorescent protein A was used to

detect antibody products containing the Fc dimer of the HC. The identity of the products are as indicated. (C and D) Time

course of expression and secretion of the various antibody intermediates present in the lysate (C) or medium (D) determined by

pulse-chase analysis. The antibody species were immunoisolated using anti-LC and anti-HC with protein A-Sepharose and

analysed on a gradient gel (4–20%) under non-reducing conditions with a single reducing lane as indicated (red). (E) The LC

and HC compositions of the products in the medium were analysed by 2D gel electrophoresis with the first non-reducing

dimension and a second reducing dimension as indicated. Samples were prepared by pulse labelling cells and chasing for 3 h.

The positions of the reduced HCs and LCs in the second dimension are as indicated. (F) An identical experiment as in E was

carried out with the 277 HC construct to illustrate the formation of HC dimers secreted into the medium.
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such as LC dimers. Interestingly, the secreted HC dimer had a faster mobility than the non-secreted dimer,
indicating the presence of intrachain disulphide(s) that alter the hydrodynamic volume of the denatured
protein and subsequently their electrophoretic mobility. As the disulphides within each of the separate HC
domains apart from the CH1 domain form prior to the dimerisation event, it is likely that this shift in mobility
indicates the formation of the CH1 intrachain disulphide.
The secretion of HC dimers was further confirmed by pulse labelling cells co-transfected with the IgG4 HC

and LC followed by a chase for up to 5 h (Figure 1C,D). Products were immunoisolated with antibodies to the
LC and HC. Fully assembled and interchain disulphide bonded IgG4 as well as several intermediates were
secreted into the medium during the 5 h. Each intermediate was characterised for the presence of HC with or
without a LC by carrying out non-reducing/reducing two-dimensional electrophoresis (Figure 1E). The product
migrating at ∼100 kDa contained only HCs confirming its identity as an HC dimer. In addition, we carried out
a similar experiment with a different HC construct (277), which has a variable region different from A33
(Figure 1F). The presence of only HC in the product migrating at 100 kDa indicates that the formation of HC
dimers is not restricted to the A33 construct.
The presence of HC dimers stabilised by interchain disulphides in the secreted material could indicate a lack

of assembly with the LC or simply that the LC–HC interchain disulphides had not formed. If the latter were
the case, then non-covalent interactions between the HC and the LC could be sufficient to allow folding of the
CH1 domain and release from ER retention. To test these possibilities, we first expressed HC constructs in the
absence of a LC and determined whether the HC dimers formed were secreted. For both the A33 IgG1 and
IgG4 constructs, we identified HC dimers stabilised by disulphides in the culture medium indicating secretion
(Figure 2A,B). There was a difference in mobility of the secreted HC dimers compared with the intracellular
material, indicating the formation of intrachain disulphides in the secreted protein. The secreted and intracellu-
lar HC had the same mobility when separated under reducing conditions (Figure 2C). We also affinity-purified
the secreted material, from either HC/LC co-transfections or transfections with HC alone, with protein
A-Sepharose and separated the purified protein by SE chromatography carried out under native conditions
(Figure 2D). As expected, the predominant species from the co-transfection was fully assembled IgG with an
elution time indicative of a 191 kDa tetramer. A second peak was observed with an elution time indicative of a
101 kDa HC dimer. The purified protein from the HC-only transfections had an identical elution time to this
second peak. These results confirm that A33 HC dimers are secreted either when HCs are expressed alone or
when co-transfected with a LC, indicating that their presence in the denatured samples was not due to a lack of
interchain disulphides.
The presence of HC dimers in the cell culture medium might also be a consequence of cell lysis, releasing

the otherwise retained intracellular protein. To evaluate this possibility, we affinity-isolated intracellular and
secreted proteins using protein A-Sepharose and then subjected the resulting samples to PNGase or endoH
digestion. The proteins were then separated by SDS–PAGE and visualised by silver staining (Figure 2E). As the
HC is glycosylated, treatment with endoH should result in cleavage of the oligosaccharide side chain with a
resulting increase in electrophoretic mobility if the protein had been retained in the ER. The passage of glyco-
proteins through the Golgi apparatus results in modification of the oligosaccharide such that it becomes resist-
ant to endoH digestion [27]. Hence, endoH resistance demonstrates passage of the protein through the
secretory pathway. PNGase cleaves all oligosaccharide side chains irrespective of whether the glycoprotein has
passed through the Golgi or not. The isolated intracellular HC was as expected sensitive to digestion with both
endoH and PNGase (lanes 1–3). However, the HC in the medium was resistant to digestion with endoH and
sensitive to PNGase. These results confirm that the HC in the medium has passed through the secretory
pathway and is not present as a result of cell lysis. Hence, we have shown that, for this particular humanised
antibody, there is a lack of the normal quality control mechanism that should prevent the secretion of HC
dimers.

The LC-independent secretion of HCs is variable region-dependent
To determine whether other engineered HCs can be secreted in the absence of an LC, we created a series of
constructs containing the human IgG4 constant domains each with different variable domains. Each HC was
transfected individually into CHO-S cells, and the cell lysate or medium was probed for the presence of HC
dimers by western blotting (Figure 3A). The variable domains code for antibodies raised in mice that either
have not been altered (c and e) or have a varying number of different point mutations to humanise the mouse
variable domain (a, b, d and f). Expression of HC a, d and e resulted in some HC dimer secretion, with HC b,
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c and f dimers being efficiently retained in the cell. Each of the secreted HC dimers had a faster mobility than
the cellular protein, indicating that some additional intrachain disulphide bond(s) had formed. The levels of
expression of each of the HCs were equivalent, suggesting that the differential secretion of the HC dimers was
not due to saturation of the ER quality control system. These results show that the variable domain determines
the extent of HC dimer secretion.
To evaluate further the role of the variable region in HC dimer secretion, we assessed an additional A33 con-

struct that had been through a process of further engineering to humanise the mouse variable domain. The
sequence contains 11 amino acid changes compared with the original mouse sequence (Figure 3B). These
changes led to a reduced level of secretion of HC dimers (Figure 3C), but did not prevent secretion. Taken
together, the results show that the variable domain sequence influences the level of LC-independent HC secre-
tion and that subtle changes can influence the extent of secretion.

Folding of the CH1 domain in the absence of LC
Previous results and those presented here would suggest that the variable domain can influence CH1 domain
folding either negatively, in the case of antibodies selected during B-cell development, or positively, following
antibody engineering during the humanisation process. The formation of an intrachain disulphide within the
CH1 domain would suggest that the CH1 domain has folded in the secreted HC dimers. To determine whether
preventing CH1 folding would restore the retention of the A33 HC by the cellular quality control system, we
mutated a proline within this domain which has previously been shown to be required for correct folding [7].

Figure 2. LC-independent HC dimer secretion.

CHO-S cells were transfected with expression constructs coding for the HC IgG1 (A), HC IgG4 (B–E) or co-transfected with the

LC and HC IgG4 (D) of A33. Cells transfected with the empty vector are as indicated (EV). (A and B) Immunoblot analysis of the

intracellular (L) and secreted (M) HC products separated on a 10% polyacrylamide gel under non-reducing conditions.

Fluorescent protein A was used to detect antibody products containing the Fc dimer of the HC. The mobilities of the HC

dimers are as indicated [HC]2. (C) Immunoblot analysis of the intracellular (L) and secreted (M) HC products separated on a

10% polyacrylamide gel under reducing conditions. Anti-IgG HC was used as a primary antibody and a fluorescent protein A

as a secondary for detection. (D) Elution profile from SE chromatography of secreted products purified using protein

A-Sepharose following co-transfection of an LC and HC (black line) or transfection with an HC alone (grey line). Approximate

molecular mass of major species are as indicated. (E) Silver stain analysis of affinity-purified HC from the lysate (lanes 1–3) or

medium (lanes 4–6) after digestion with endoH and PNGase F analysed on a 12.5% reducing polyacrylamide gel.
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In contrast with the wild-type protein, the P151A mutant was efficiently retained within the cell when trans-
fected alone (Figure 4A). HC dimers were still able to form as evidenced by the mobility of the intracellular
protein separated under non-reducing conditions. However, no intrachain disulphide formation was evident in
the intracellular material. These results suggest that, in the absence of CH1 domain folding, the A33 HC is effi-
ciently retained in the cell. The fact that we see secretion of wild-type A33 HC dimers suggests that the subver-
sion of ER retention is due to folding of the CH1 domain.

Variable domain-dependent folding of the CH1 domain can occur with Fab
fragments
The CH3 domain initiates the assembly of the HC dimers which form prior to CH1 folding and assembly
of the [HC]2[LC]2 tetramer [3]. To determine if the CH3-mediated dimerisation event is required for the
secretion of the A33 HCs, we made a HC-Fab construct (VH and CH1 domains without the hinge region)
containing a V5-epitope tag (Figure 4B). Following transfection, the predominant species present within
the cell lysate was found to be the Fab HC monomer (Figure 4C,D, lane 1). Fab HC dimers were present
in the medium, demonstrating the secretion of Fab HCs in the absence of a LC (Figure 4C, lane 2). These
dimers were stabilised by the formation of an interchain disulphide as evidenced by the difference in
electrophoretic mobility of the proteins separated under reducing or non-reducing conditions. This result
demonstrates that the A33 HC-Fab chains can form dimers in the absence of the CH3 domain. To deter-
mine whether the interchain disulphide was formed between the CH1 domains, we mutated the serine to
cysteine (C127) that normally forms a disulphide between the CH1 and the CL domains. This mutation
prevented the formation of an interchain disulphide bonded dimer but did not prevent secretion of the
Fab HC (Figure 4C,D, lane 4). The formation of the interchain disulphide in the secreted Fab HCs via the
CH1 domain cysteines indicates that the folded CH1 domains interact directly within the dimer. Taken
together, our results demonstrate that the variable domain can influence the folding of the CH1 domain,
so that it can fold in the absence of its cognate LC.

Figure 3. LC-independent HC dimer secretion is dependent of the VH domain of the HC.

CHO-S cells were transfected with expression constructs coding for the HC IgG4 containing differing VH domains. (A) Immunoblot analysis of the

intracellular (L) and secreted (M) HC products separated on a 7.5% polyacrylamide gel under non-reducing conditions. Fluorescent protein A was

used to detect antibody products containing the Fc dimer of the HC. The HCs used included an in-house antibody (277) (a) and constructs with

variable domains that have specificity for TNF-α (b), CD20 (c), CD25 (Zenapax) (d) CD25 (Simulect) (e) or CD11a (f ). (B) Sequence comparison of the

mouse and humanised VH domain sequence highlighting the 11 amino acid differences. (C) Immunoblot analysis of intracellular (L) and secreted (M)

HC dimers expressed following transfection with the humanised or chimeric A33 HC. Analysis was under non-reducing conditions on a 7.5%

polyacrylamide gel using a fluorescent protein A for detection.
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Discussion
Mammalian cells have evolved elegant mechanisms to ensure that only correctly folded proteins are transported
from the ER to later stages of the secretory pathway [28]. One such mechanism ensures that only assembled
antibody molecules are secreted and involves the retention of HC dimer intermediates within the ER by the
interaction of an unfolded CH1 domain with the ER-resident protein BiP [5]. Here, we demonstrate that this
mechanism is subverted when some HCs with engineered variable regions are expressed. The results highlight
that variable domains that can subvert the ER quality control process are selected against in B-cell development
during the pro- to pre-B-cell transition [12]. How the variable domain is able to influence the ER quality
control system is yet to be established, but our results suggest that stabilisation of the CH1 domain must be
involved. Folding of the CH1 domain can occur in these HCs without a LC, suggesting that interactions with
the folded VH domain facilitate CH1 folding and the formation of its intrachain disulphide.
Understanding the characteristics of the variable regions that stabilise the CH1 domain could influence the

selection of variable domains during the humanisation process and the development of antibody therapeutics.
However, the number of variable domains analysed in the present study is too small to identify any such
characteristics. There was a lessening of the level of LC-independent secretion of HC upon humanisation of the
A33 variable domain, but we also saw efficient retention of a HC construct which has an unaltered mouse
sequence (HC (c) in Figure 3A). Previously, a pool of 18 immunoglobulin m HCs that were isolated from
pro-B-cells were secreted from COS7 cells in the absence of a LC [12]. Sequence analysis of the variable
domains revealed few common features that were different from the HCs that are dependent on a LC for their
secretion. One characteristic that was prevalent among domains was an enrichment of positively charged
amino acid side chains in the CDR3 region. However, this was not a common feature of all the HC pool.
Indeed, there is no preference for such positively charged side chains in the CDR3 region of the variable
domains that we find can cause HC dimer secretion (data not shown). Resolution of this issue will require a
much larger pool size or structural details of the secreted HC dimers illuminating the interaction interface
between the VH and CH1 domains.
The ability of the HC-Fab construct to form dimers and be secreted indicates an intrinsic ability of the VH

or CH1 domains to interact, even in the absence of CH3-mediated dimerisation. It is known that LCs also can
form dimers that can be secreted in the absence of an HC [29]. Export competence is variable region-
dependent, arguing for an initial association of the VL domains with a subsequent formation of an interchain
disulphide and secretion. The interchain disulphide forms between carboxyl-terminal cysteine residues that
would normally form a disulphide between the LC and HC. In the case of the HC-Fab construct, we show that
the dimers ultimately associate via their CH1 domains as an interchain disulphide forms between cysteines

Figure 4. Dimerisation of the A33 HC does not require the CH3 domain but does require folding of the CH1 domain.

CHO-S cells were transfected with expression constructs coding for the HC IgG4 of A33 and CH1 mutant P151A (A), the Fab

HC IgG4 of A33 and a CH1 mutant C127S (C and D). (A) Immunoblot analysis of the intracellular (L) and secreted (M) products

separated on a 7.5% polyacrylamide gel. Fluorescent protein A was used to detect HC products containing the Fc dimer.

(B) Schematic representation of the Fab HC construct highlighting the intramolecular disulphide bond and the free cysteine

which would normally form an intermolecular disulphide bond with the CL domain. (C and D) Immunoblot analysis of Fab HC

(lanes 1–2) and Fab HC C127S mutant (lanes 3–4) under non-reducing and reducing conditions separated on a 12.5%

polyacrylamide gel. Detection of immunoblots was with an anti-V5 primary antibody and fluorescent protein A.

© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).3186

Biochemical Journal (2017) 474 3179–3188
DOI: 10.1042/BCJ20170342

D
ow

nloaded from
 http://port.silverchair.com

/biochem
j/article-pdf/474/18/3179/689817/bcj-2017-0342.pdf by guest on 19 April 2024

https://creativecommons.org/licenses/by/4.0/


located within this domain. This does not preclude an initial association of the VH domain. When the A33 HC
is expressed in the presence of a LC, the most abundant species secreted is the fully assembled antibody tetra-
mer. This suggests that, while HC dimers can form via association between the VH and CH1 domains, the pre-
ferred interaction is with the LC.
Our results go some way to explain heterogeneity in assembly and secretion of authentic and novel antibody

formats. Altering the combination and order of variable and constant domains is highly likely to have an
impact on the propensity for stabilisation of the CH1 domain, resulting in subversion of the ER quality control
system. An evaluation of the consequence of novel antibody format on the stringency of ER retention of unas-
sembled intermediates would be an appropriate step as part of the design process. In addition, selecting against
HCs that demonstrate LC-independent secretion as part of the humanisation process would be a valuable
empirical approach to increase antibody yields and reduce the heterogeneity of the secreted product.

Abbreviations
BiP, binding protein; CHO, Chinese hamster ovary; DMEM, Dulbecco’s Modified Eagle Medium;
DTT, dithiothrietol; ER, endoplasmic reticulum; HCs, heavy chains; LCs, light chains; NEM, N-ethyl maleimide;
PEI, polyethylenimine; SE, size exclusion.

Author Contribution
N.J.B., K.C., D.P.H. and P.E.S. designed the experiments and wrote the paper. C.L.S. and S.H. performed the
experiments.

Funding
The work was funded by the Biotechnology and Biological Sciences Research Council grant number [BB/
K501864/1].

Acknowledgements
We thank Marie Anne Pringle for support during this work.

Competing Interests
The Authors declare that there are no competing interests associated with the manuscript.

References
1 Breedveld, F.C. (2000) Therapeutic monoclonal antibodies. Lancet 355, 735–740 doi:10.1016/S0140-6736(00)01034-5
2 Spiess, C., Zhai, Q. and Carter, P.J. (2015) Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol. Immunol. 67(2 Pt A),

95–106 doi:10.1016/j.molimm.2015.01.003
3 Feige, M.J., Hendershot, L.M. and Buchner, J. (2010) How antibodies fold. Trends Biochem. Sci. 35, 189–198 doi:10.1016/j.tibs.2009.11.005
4 Mains, P.E. and Sibley, C.H. (1983) The requirement of light chain for the surface deposition of the heavy chain of immunoglobulin M. J. Biol. Chem.

258, 5027–5033 PMID:6403541
5 Bole, D.G., Hendershot, L.M. and Kearney, J.F. (1986) Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy

chains in nonsecreting and secreting hybridomas. J. Cell Biol. 102, 1558–1566 doi:10.1083/jcb.102.5.1558
6 Hendershot, L., Bole, D., Köhler, G. and Kearney, J.F. (1987) Assembly and secretion of heavy chains that do not associate posttranslationally with

immunoglobulin heavy chain-binding protein. J. Cell Biol. 104, 761–767 doi:10.1083/jcb.104.3.761
7 Feige, M.J., Groscurth, S., Marcinowski, M., Shimizu, Y., Kessler, H., Hendershot, L.M. et al. (2009) An unfolded CH1 domain controls the assembly

and secretion of IgG antibodies. Mol. Cell 34, 569–579 doi:10.1016/j.molcel.2009.04.028
8 Hendershot, L.M. (1990) Immunoglobulin heavy chain and binding protein complexes are dissociated in vivo by light chain addition. J. Cell Biol. 111,

829–837 doi:10.1083/jcb.111.3.829
9 Borth, N., Mattanovich, D., Kunert, R. and Katinger, H. (2005) Effect of increased expression of protein disulfide isomerase and heavy chain binding

protein on antibody secretion in a recombinant CHO cell line. Biotechnol. Prog. 21, 106–111 doi:10.1021/bp0498241
10 Zou, X., Osborn, M.J., Bolland, D.J., Smith, J.A., Corcos, D., Hamon, M. et al. (2007) Heavy chain-only antibodies are spontaneously produced in light

chain-deficient mice. J. Exp. Med. 204, 3271–3283 doi:10.1084/jem.20071155
11 Nguyen, V.K., Zou, X., Lauwereys, M., Brys, L., Bruggemann, M. and Muyldermans, S. (2003) Heavy-chain only antibodies derived from dromedary are

secreted and displayed by mouse B cells. Immunology 109, 93–101 doi:10.1046/j.1365-2567.2003.01633.x
12 Minegishi, Y. and Conley, M.E. (2001) Negative selection at the pre-BCR checkpoint elicited by human μ heavy chains with unusual CDR3 regions.

Immunity 14, 631–641 doi:10.1016/S1074-7613(01)00131-5
13 Heath, J.K., White, S.J., Johnstone, C.N., Catimel, B., Simpson, R.J., Moritz, R.L. et al. (1997) The human A33 antigen is a transmembrane

glycoprotein and a novel member of the immunoglobulin superfamily. Proc. Natl Acad. Sci. U.S.A. 94, 469–474 doi:10.1073/pnas.94.2.469
14 Hu, S., Liang, S., Guo, H., Zhang, D., Li, H., Wang, X. et al. (2013) Comparison of the inhibition mechanisms of Adalimumab and infliximab in treating

tumor necrosis factor α-associated diseases from a molecular view. J. Biol. Chem. 288, 27059–27067 doi:10.1074/jbc.M113.491530

© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 3187

Biochemical Journal (2017) 474 3179–3188
DOI: 10.1042/BCJ20170342

D
ow

nloaded from
 http://port.silverchair.com

/biochem
j/article-pdf/474/18/3179/689817/bcj-2017-0342.pdf by guest on 19 April 2024

http://dx.doi.org/doi:10.1016/S0140-6736(00)01034-5
http://dx.doi.org/doi:10.1016/S0140-6736(00)01034-5
http://dx.doi.org/doi:10.1016/S0140-6736(00)01034-5
http://dx.doi.org/doi:10.1016/j.molimm.2015.01.003
http://dx.doi.org/doi:10.1016/j.tibs.2009.11.005
http://www.ncbi.nlm.nih.gov/pubmed/6403541
http://dx.doi.org/doi:10.1083/jcb.102.5.1558
http://dx.doi.org/doi:10.1083/jcb.104.3.761
http://dx.doi.org/doi:10.1016/j.molcel.2009.04.028
http://dx.doi.org/doi:10.1083/jcb.111.3.829
http://dx.doi.org/doi:10.1021/bp0498241
http://dx.doi.org/doi:10.1084/jem.20071155
http://dx.doi.org/doi:10.1046/j.1365-2567.2003.01633.x
http://dx.doi.org/doi:10.1046/j.1365-2567.2003.01633.x
http://dx.doi.org/doi:10.1016/S1074-7613(01)00131-5
http://dx.doi.org/doi:10.1016/S1074-7613(01)00131-5
http://dx.doi.org/doi:10.1016/S1074-7613(01)00131-5
http://dx.doi.org/doi:10.1073/pnas.94.2.469
http://dx.doi.org/doi:10.1074/jbc.M113.491530
https://creativecommons.org/licenses/by/4.0/


15 Iwamoto, N., Takanashi, M., Hamada, A. and Shimada, T. (2016) Validated LC/MS bioanalysis of rituximab CDR peptides using nano-surface and
molecular-orientation limited (nSMOL) proteolysis. Biol. Pharm. Bull. 39, 1187–1194 doi:10.1248/bpb.b16-00230

16 Yang, H., Wang, J., Du, J., Zhong, C., Zhang, D., Guo, H. et al. (2010) Structural basis of immunosuppression by the therapeutic antibody daclizumab.
Cell Res. 20, 1361–1371 doi:10.1038/cr.2010.130

17 Du, J., Yang, H., Zhang, D., Wang, J., Guo, H., Peng, B. et al. (2010) Structural basis for the blockage of IL-2 signaling by therapeutic antibody
basiliximab. J. Immunol. 184, 1361–1368 doi:10.4049/jimmunol.0903178

18 Werther, W.A., Gonzalez, T.N., O’Connor, S.J., McCabe, S., Chan, B., Hotaling, T. et al. (1996) Humanization of an anti-lymphocyte function-associated
antigen (LFA)-1 monoclonal antibody and reengineering of the humanized antibody for binding to rhesus LFA-1. J. Immunol. 157, 4986–4995
PMID:8943405

19 Mason, M., Sweeney, B., Cain, K., Stephens, P. and Sharfstein, S.T. (2012) Identifying bottlenecks in transient and stable production of recombinant
monoclonal-antibody sequence variants in Chinese hamster ovary cells. Biotechnol. Prog. 28, 846–855 doi:10.1002/btpr.1542

20 Peters, S.J., Smales, C.M., Henry, A.J., Stephens, P.E., West, S. and Humphreys, D.P. (2012) Engineering an improved IgG4 molecule with reduced
disulfide bond heterogeneity and increased Fab domain thermal stability. J. Biol. Chem. 287, 24525–24533 doi:10.1074/jbc.M112.369744

21 Durocher, Y., Perret, S. and Kamen, A. (2002) High-level and high-throughput recombinant protein production by transient transfection of
suspension-growing human 293-EBNA1 cells. Nucleic Acids Res. 30, E9 doi:10.1093/nar/30.2.e9

22 Slanina, H., Mündlein, S., Hebling, S. and Schubert-Unkmeir, A. (2014) Role of epidermal growth factor receptor signaling in the interaction of Neisseria
meningitidis with endothelial cells. Infect. Immun. 82, 1243–1255 doi:10.1128/IAI.01346-13

23 Schellenberger, E.A., Weissleder, R. and Josephson, L. (2004) Optimal modification of annexin V with fluorescent dyes. ChemBioChem. 5, 271–274
doi:10.1002/cbic.200300741

24 Freeze, H.H. and Kranz, C. (2010) Endoglycosidase and glycoamidase release of N-linked glycans. Current Protocols in Protein Science doi:10.1002/
0471140864.ps1204s62

25 Thies, M.J.W., Talamo, F., Mayer, M., Bell, S., Ruoppolo, M., Marino, G. et al. (2002) Folding and oxidation of the antibody domain CH3. J. Mol. Biol.
319, 1267–1277 doi:10.1016/S0022-2836(02)00375-3

26 Angal, S., King, D.J., Bodmer, M.W., Turner, A., Lawson, A.D.G., Roberts, G. et al. (1993) A single amino acid substitution abolishes the heterogeneity
of chimeric mouse/human (IgG4) antibody. Mol. Immunol. 30, 105–108 doi:10.1016/0161-5890(93)90432-B

27 Hubbard, S.C. and Ivatt, R.J. (1981) Synthesis and processing of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 50, 555–583 doi:10.1146/
annurev.bi.50.070181.003011

28 Ellgaard, L., Molinari, M. and Helenius, A. (1999) Setting the standards: quality control in the secretory pathway. Science 286, 1882–1888 doi:10.
1126/science.286.5446.1882

29 Leitzgen, K., Knittler, M.R. and Haas, I.G. (1997) Assembly of immunoglobulin light chains as a prerequisite for secretion. A model for
oligomerization-dependent subunit folding. J. Biol. Chem. 272, 3117–3123 doi:10.1074/jbc.272.5.3117

© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).3188

Biochemical Journal (2017) 474 3179–3188
DOI: 10.1042/BCJ20170342

D
ow

nloaded from
 http://port.silverchair.com

/biochem
j/article-pdf/474/18/3179/689817/bcj-2017-0342.pdf by guest on 19 April 2024

http://dx.doi.org/doi:10.1248/bpb.b16-00230
http://dx.doi.org/doi:10.1248/bpb.b16-00230
http://dx.doi.org/doi:10.1038/cr.2010.130
http://dx.doi.org/doi:10.4049/jimmunol.0903178
http://www.ncbi.nlm.nih.gov/pubmed/8943405
http://dx.doi.org/doi:10.1002/btpr.1542
http://dx.doi.org/doi:10.1074/jbc.M112.369744
http://dx.doi.org/doi:10.1093/nar/30.2.e9
http://dx.doi.org/doi:10.1128/IAI.01346-13
http://dx.doi.org/doi:10.1128/IAI.01346-13
http://dx.doi.org/doi:10.1002/cbic.200300741
http://dx.doi.org/doi:10.1002/0471140864.ps1204s62
http://dx.doi.org/doi:10.1002/0471140864.ps1204s62
http://dx.doi.org/doi:10.1016/S0022-2836(02)00375-3
http://dx.doi.org/doi:10.1016/S0022-2836(02)00375-3
http://dx.doi.org/doi:10.1016/S0022-2836(02)00375-3
http://dx.doi.org/doi:10.1016/0161-5890(93)90432-B
http://dx.doi.org/doi:10.1016/0161-5890(93)90432-B
http://dx.doi.org/doi:10.1016/0161-5890(93)90432-B
http://dx.doi.org/doi:10.1146/annurev.bi.50.070181.003011
http://dx.doi.org/doi:10.1146/annurev.bi.50.070181.003011
http://dx.doi.org/doi:10.1126/science.286.5446.1882
http://dx.doi.org/doi:10.1126/science.286.5446.1882
http://dx.doi.org/doi:10.1074/jbc.272.5.3117
https://creativecommons.org/licenses/by/4.0/

	IgG light chain-independent secretion of heavy chain dimers: consequence for therapeutic antibody production and design
	Abstract
	Introduction
	Experimental procedures
	Cell lines and DNA constructs
	Transient transfections
	Western blot analysis
	Pulse-chase assay
	2D Gel electrophoresis
	Endoglucosidase H and peptide : N-glycosidase F treatment
	Size-exclusion HPLC

	Results
	IgG LC-independent secretion of HCs
	The LC-independent secretion of HCs is variable region-dependent
	Folding of the CH1 domain in the absence of LC
	Variable domain-dependent folding of the CH1 domain can occur with Fab fragments

	Discussion
	Author Contribution
	Funding
	Competing Interests
	References


