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The parathyroid hormone receptor 1 (PTH1R) is a member of family B of G-protein-
coupled receptors (GPCRs), predominantly expressed in bone and kidney where it
modulates extracellular Ca2+ homeostasis and bone turnover. It is well established that
phosphorylation of GPCRs constitutes a key event in regulating receptor function by
promoting arrestin recruitment and coupling to G-protein-independent signaling path-
ways. Mapping phosphorylation sites on PTH1R would provide insights into how
phosphorylation at specific sites regulates cell signaling responses and also open the
possibility of developing therapeutic agents that could target specific receptor functions.
Here, we have used mass spectrometry to identify nine sites of phosphorylation in the
C-terminal tail of PTH1R. Mutational analysis revealed identified two clusters of serine
and threonine residues (Ser489–Ser495 and Ser501–Thr506) specifically responsible for
the majority of PTH(1–34)-induced receptor phosphorylation. Mutation of these residues
to alanine did not affect negatively on the ability of the receptor to couple to G-proteins
or activate extracellular-signal-regulated kinase 1/2. Using fluorescence resonance
energy transfer and bioluminescence resonance energy transfer to monitor PTH(1–34)-
induced interaction of PTH1R with arrestin3, we show that the first cluster Ser489–
Ser495 and the second cluster Ser501–Thr506 operated in concert to mediate both the
efficacy and potency of ligand-induced arrestin3 recruitment. We further demonstrate that
Ser503 and Thr504 in the second cluster are responsible for 70% of arrestin3 recruitment
and are key determinants for interaction of arrestin with the receptor. Our data are con-
sistent with the hypothesis that the pattern of C-terminal tail phosphorylation on PTH1R
may determine the signaling outcome following receptor activation.

Introduction
The parathyroid hormone receptor 1 (PTH1R) is a member of family B of G-protein-coupled receptors
(GPCRs), which includes the glucagon receptor and the calcitonin receptor [1]. The main function of
PTH1R is in bone and kidney where it mediates extracellular Ca2+ homeostasis and bone turnover
[2,3]. In addition to these functions, PTH1R has been identified in the intestinal mucosa and in several
carcinomas and adenocarcinomas [4]; however, its role here is currently less well understood. The
endogenous ligand for the PTH1R is parathyroid hormone (PTH), which is released from the parathy-
roid gland and is composed of 84 amino acids, of which the first 34 amino acids mediate its biological
activity [5]. In bone, PTH mediates both anabolic and catabolic processes. Clinical studies have demon-
strated that intermittent administration of PTH(1–34) mediates osteoanabolic effects through increased
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proliferation and differentiation of osteoblasts [6], and PTH or its biological N-terminal fragment PTH(1–34) is
currently in use as a therapy for osteoporosis. Continuous treatment with PTH(1–34), however, is associated
with increased bone resorption through osteoblast-mediated activation of osteoclasts. PTH, PTH-related peptide
and cytokines, such as interleukin (IL)-6 or IL-11, lead to receptor-mediated expression of receptor activator of
nuclear factor κ-B ligand (also known as tumor necrosis factor-related activation-induced cytokine), which in
turn promotes maturation and activation of bone-degrading osteoclasts [7].
The cellular signaling profile of PTH1R is complex but well understood [8]. Activation of PTH1R with low

concentrations of agonist results in a rapid increase in cyclic adenosine monophosphate (cAMP) mediated
through coupling to Gs and activation of adenylate cyclase [9], whereas agonist concentrations in the micromo-
lar range mediate phospholipase C (PLC) activation and IP3 accumulation and the release of calcium from
intracellular stores. This is considered to be particularly relevant when local PTH concentrations are high, as is
the case in the epiphyseal plate during longitudinal growth of long bones [10]. The switch from Gs to Gq sig-
naling is believed to be achieved through binding of the Na+/H+ exchanger regulatory factor 2 (NHERF2),
which simultaneously associates with PLC and a PDZ domain in the PTH1R C-terminus [11]. In addition, acti-
vation of the Gα12/13-phospholipase D/RhoA and mitogen-activated protein kinase (MAPK) pathways through
PTH1R have been reported [12,13].
Like the majority of class A and class B GPCRs, the PTH1R becomes rapidly phosphorylated in the

C-terminal tail in an agonist-dependent manner [14–16]. It has been demonstrated that Ser473, Ser475 and
Ser491 in the PTH1R C-terminus are substrates for cAMP-dependent protein kinase A (PKA). Protein kinase
C (PKC) phosphorylation was also observed in the C-terminal tail of PTH1R, but the sites involved could not
be precisely localized [15]. Pharmacological inhibition of PKA or mutation of putative PKA phosphorylation
sites does not appear to affect substantially agonist-regulated receptor phosphorylation [15], and it seems there-
fore likely that that the majority of agonist-regulated receptor phosphorylation in the C-terminal tail of PTH1R
is mediated by other kinases such as GRKs [14–16]. It is known that PTH1R activation results in robust
recruitment of arrestin and that the interaction of arrestin with the involves C-terminal tail phosphorylation.
However, it has previously been reported that a PTH1R C-terminally truncated after residue 474 was still able
to recruit arrestin in a ligand-dependent manner, albeit to a lesser extent than wild-type (WT) [17]. Interaction
of arrestin3 with the PTH1R is reportedly facilitated by overexpression of NHERF by forming a ternary
complex with arrestin3 and the PTH1R [18]. Previously published data suggest that, in addition to its canonical
role in receptor desensitization, PTH1R–arrestin interaction can promote sustained cAMP formation in a
manner dependent on extracellular-signal-regulated kinase 1/2 (ERK1/2) [19,20].
It is now clear that the function of arrestin is more than simply to serve as an accessory protein for receptor

endocytosis and as such has been shown to play an important role in complex cellular signaling pathways and
physiological functions [21]. Although it is clear that GPCR phosphorylation regulates arrestin recruitment, the
precise mechanisms which couple PTH1R phosphorylation with arrestin signaling are currently not known. It
has been suggested that the pattern of receptor phosphorylation may represent a ‘barcode’ that may, to some
extent, direct arrestin-dependent signaling in response to the phosphorylation profile of the receptor [22] To
date, the PTH1R phosphorylation profile or the possibility that PTH1R signaling through arrestin may be
directed in a phosphorylation-dependent manner has not been investigated.
In the current study, we have mapped the phosphorylation sites in the C-tail of PTH1R using mass spec-

trometry and by employing a series of PTH1R C-tail mutants. Furthermore, we have characterized the func-
tional impact of these sites with respect to arrestin recruitment and the temporal stability of arrestin–receptor
complexes. Our comprehensive analysis reveals multiple phosphorylation sites in the PTH1R C-tail and the
existence of two phosphorylation clusters that are crucial for high-affinity arrestin binding. Our data provide
evidence for the existence of a mechanism by which PTH1R phosphorylation could modulate the affinity and
stability of arrestin–receptor complexes and thereby affect on PTH1R signaling.

Materials and methods
Unless otherwise stated, all biochemical and reagents were from Sigma (Taufkirchen, Germany).

Plasmids and mutagenesis
The HA–PTH1R [23] was subcloned into pcDNA3 (ThermoFisher, Karlsruhe, Germany). The yellow fluorescent
protein (YFP)-labeled PTHR was constructed by replacing the stop codon by an XbaI restriction site using a cyto-
megalovirus (CMV) forward primer and the reverse 50-TCTAGACATGACTGTCTCCCACTCTTC-30 primer. The
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PCR product was inserted before the coding sequence for eYFP. Mutations were inserted into the PTH1R using
the QuikChange® protocol (Stratagene, Santa Clara, CA, USA). To construct the truncated PTH1R, a CMV
forward primer was used combined with a reverse primer (50-AAAAAATCTAGATGCCAGTGTCCAGCG-30)
inserting a stop codon and an XbaI restriction site after Ala480. All constructs were verified by sequencing.
Arrestin3–cyan fluorescent protein (CFP) has been described previously [24].

Enzyme-linked immunosorbent assay (ELISA) for quantification of receptor
expression on the cell surface
Relative receptor expression levels were determined as described previously [25]. Briefly, human embryonic
kidney (HEK)293 cells transfected with the indicated HA–PTHR constructs were fixed in 4% paraformaldehyde
(PFA), blocked with 1% fetal bovine serum (FBS) in PBS and incubated with a horseradish peroxidase
(HRP)-labeled anti-HA antibody (Roche, Boulogne-Billancourt, France) at 1:2000 dilution for 30 min. An HRP
substrate was added and chemoluminescence was measured on a plate reader (Infinite® 200, Tecan, Lyon, France).

Transient expression in HEK293T cells or stable expression in HEK293 cells
HEK293T cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10%
FBS, penicillin (50 mg/ml) and streptomycin (50 mg/ml). Stable and transient transfections were performed
using Effectene® (Qiagen, Hilden, Germany) or Lipofectamine 2000® (Thermo Fisher) following the manufac-
turer’s protocol. An HEK293 cell line stably transfected with the human HA–PTH1R was generated by stand-
ard procedures using G418 (500 mg/ml) for selection.

PTH1R purification and mass spectrometry
HEK293 cells stably expressing the HA–PTH1R were grown to 80% confluency in 150 mm dishes. For receptor
purification, cells from 30 dishes were resuspended in Krebs/HEPES buffer containing 0.1% BSA and stimulated
with 1 mM PTH(1–34) (Bachem, Bubendorf, Switzerland) for 8 min. Membranes were then prepared and solu-
bilized as described recently [26]. Briefly, solubilized receptors were immunoprecipitated using anti-HA affinity
matrix and separated by SDS/PAGE. After Coomassie blue staining, receptors were excised from the gel,
washed with 100 mM triethylammonium bicarbonate followed by reduction of disulfide bonds with 10 mM
dithiothreitol and alkylation of cysteines using 100 mM iodoacetamide. Purified receptors were digested with
1 mg of sequencing grade trypsin (Promega, Southampton, UK) overnight at 37°C. Tryptic phosphopeptides
were enriched using immobilized metal affinity chromatography using PHOS-select™ affinity resin. Eluted pro-
teins were analyzed by LC–tandem mass spectrometry (MS/MS) using an LTQ Orbitrap mass spectrometer
(Thermo Fisher Scientific, Rockford, IL, USA) as described recently [26].

[32P]orthophosphate labeling and PTH1R immunoprecipitation
[32P]Orthophosphate labeling, agonist incubation, receptor solubilization, immunoprecipitation and autoradiog-
raphy were performed as described recently [27]. Briefly, HEK293 cells stably expressing HA–PTH1Rs were grown
in six-well plates. Cells were preincubated for 60 min in phosphate-free Krebs buffer containing 100 mCi/ml [32P]
orthophosphate (PerkinElmer, Billerica, MA, USA) before being stimulated for 5 min with 1 mM PTH(1–34).
Cells were immediately lysed by the addition of 0.5 ml of buffer containing 20 mM Tris, 150 mM NaCl, 3 mM
EDTA, 1% Nonidet P-40 and 0.25% sodium deoxycholate, pH 7.4. Receptors were immunoprecipitated using
anti-HA affinity matrix (Roche, Mannheim, Germany). Immunoprecipitated proteins were resolved using gel elec-
trophoresis on 8% SDS gels and visualized by autoradiography. A portion of the immunoprecipitated material was
retained, resolved using gel electrophoresis on 8% SDS gels, transferred onto a PVDF membrane and immuno-
blotted with anti-HA antibody (Roche, Mannheim, Germany) for the detection of total receptors.

PTH1R–arrestin3 interaction assays
A bioluminescence resonance energy transfer (BRET) assay was used to monitor interactions between PTH1R
and arrestin3. C-terminally YFP-tagged PTH1R WT or PTH1R mutants as described above were co-transfected
with arrestin3–Renilla luciferase (Rluc) at a ratio of 4:1 using Lipofectamine 2000 (Life Technologies,
Invitrogen, Gran Island, NY, USA) according to the manufacturer’s instructions After 24 h, cells were subcul-
tured into poly-D-lysine-coated white 96-well microplates and incubated for a further 24 h prior to the assay.
Cells were then washed with Hanks balanced salt solution and incubated in this buffer for 30 min prior to
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conducting the assay. To begin the assay, the Rluc substrate coelenterazine h (Life Technologies, Invitrogen,
Gran Island, NY, USA) was added to a final concentration of 2.5 mM and incubated for 10 min at 37°C before
PTH(1–34) was added. Following a further 5 min incubation, luminescence emissions at 535 and 475 nm were
measured using a CLARIOstar (BMGLabtech, Offenburg, Germany), and the BRET signal was presented as the
535/475 ratio multiplied by 1000 to yield the arbitrary milli-BRET units.

Microscopic fluorescence resonance energy transfer measurements and data
evaluation
Dynamics of arrestin–receptor interaction were performed on an inverted fluorescence microscope (IX71,
Olympus, Hamburg, Germany). Single cells plated on poly-D-lysine-coated glass coverslips were observed using
a ×100 oil-immersion objective (UPlanSApo 100×/1.40 oil, Olympus). YFP was excited with a laser at 491 nm;
CFP was excited at 405 nm. An optosplit II (Cairn Research, Faversham, UK) was used to split YFP and CFP
(T495lpxr, Chroma, Olching, Germany). To minimize photobleaching, the illumination frequency was set to
0.2 Hz. For CFP detection, an ET470/40× filter and, for YFP detection, an ET535/30 filter (Chroma) were used.
The signal was amplified by a charge-coupled device (CCD) camera (ImagEM, Hamamatsu, Herrsching,
Germany). Fluorescence resonance energy transfer (FRET) was calculated by FYFP/FCFP, and traces were cor-
rected for spillover of CFP into the YFP channel as well as for YFP direct excitation. Individual FRET record-
ings were averaged and shown as absolute alterations in FRET normalized to baseline. Quantification of relative
expression levels of fluorescently labeled proteins was performed as described recently [27].

Dual-color fluorescence recovery after photobleaching microscopy
Fluorescence recovery after photobleaching (FRAP) was performed as described previously [27,28] with minor
modifications. HEK293T cells transiently expressing arrestin3–CFP and N-terminally HA-tagged PTHRs
labeled with YFP at the C-terminus were treated with a monoclonal anti-HA antibody (HA.11 16B12,
BioLegend) followed by 30 min incubation with a polyclonal anti-mouse antibody at 37°C before being stimu-
lated with 100 nM PTH(1–34) in 0.1% BSA/Tyrode’s buffer. The scan speed was set to 100 Hz, the image
format was 256 × 256 pixels and the zoom factor was set to 6.0.

ERK1/2 activation and cAMP measurements by homogeneous time-resolved
fluorescence (HTRF)
As previously reported [25,29], measurement of ERK1/2 activation and cAMP accumulation in HEK293 cells
was performed using the Cellul’Erk immunoassay kit and the cAMP Dynamics 2 competitive immunoassay kit
(Cisbio Bioassay). For ERK1/2 activation, HEK293 cells were transiently transfected with HA-tagged PTH1R
WT, the PD1, PD2 or the PD3 mutant along with arrestin3 using Lipofectamine® 2000 according to the manu-
facturer’s protocol. Cells were serum-starved for at least 18 h prior to stimulation with 500 nM PTH(1–34) in
serum-free DMEM containing 0.1% BSA. The cell lysates were transferred to 384-well plates, and both an Eu3+-
cryptate-labeled anti-ERK monoclonal and a d2-labeled anti-phospho-ERK monoclonal antibody were added.
The readout was performed after 2 h using a PHERAstar plate reader (BMG Labtech, Champigny s/Marne,
France). For cAMP measurements, HEK293 cells were transfected with HA–PTH1R WT or the PD3 mutant as
described above. Prior to lysis, cells were stimulated for 15 min with the indicated concentration of PTH(1–34)
in DMEM containing 0.1% BSA and 100 mM isobutylmethylxanthine (IBMX). The cell lysates were transferred
to 384-well plates, and cAMP-cryptate antibodies and d2-labeled cAMP were added. After 1 h of incubation,
measurements were performed using a PHERAstar plate reader.

Data analysis
Concentration–response relationships were analyzed by three-parameter non-linear regression using GraphPad
Prism 5.0 software (San Diego, CA, USA). For statistical tests, where only two datasets were being compared,
unpaired Student’s t-test (two-tailed) was used, where P < 0.05 was deemed statistically significant. Where more
than two datasets were compared, one- or two-way analysis of variance (ANOVA) tests were used with P < 0.05
being accepted as significantly different. ANOVA tests were followed by Bonferroni’s post hoc test, Dunnett’s
multiple comparison test or Dunn’s multiple comparison test. All statistical analyses were performed using
GraphPad Prism 5.0 or GraphPad 4.0 software. For BRET titration-binding experiments, a one-site binding
equation was fitted.
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Results
Identification of phosphorylation sites in PTH1R
The human PTH1R showed a robust increase in agonist-mediated phosphorylation with a 3.0 ± 1.3-fold
increase following stimulation with 500 nM PTH(1–34) when monitored using [32P]orthophosphate labeling
(Figure 1A). To identify the precise phosphorylation sites within the PTH1R, a mass spectrometry-based study
was conducted on tryptic peptides generated from immuno-purified PTH1R following stimulation with 1 mM
PTH(1–34). LC–MS/MS analysis of enriched PTH1R tryptic phosphopeptides identified ten phosphorylation
sites in total; of these, nine were located in the C-terminal tail (S473, S491, S492, S493, T503, S504, S519, T547
and T551; Figure 1B,C; Table 1). These sites were largely arranged within two distinct clusters. These consisted
of ‘cluster 1’ containing phosphorylation sites within region S489–S495 and ‘cluster 2’ that contained sites
within S501–T506 (Figures 1C and 2A).
The mass spectrometry methods used provided excellent coverage of the PTH1R C-terminus with 22 of 26

potential phosphorylation sites being identified within tryptic peptides (Figure 1D). It is therefore likely that
most of the phosphorylation events associated with the C-terminal tail of the PTH1R were identified in the
present study. In contrast, there was only 30% coverage of the short cytoplasmic third intracellular loop. No
phosphorylation sites were identified in this region, but because of the low coverage of this region three poten-
tial phosphorylation sites (two threonine and one serine) were not observed and it is not possible therefore to
conclude that there is no phosphorylation within the third intracellular loop. Interestingly, LC–MS/MS sequen-
cing revealed phosphorylation of Ser73 in the extracellular N-terminus of the PTH1R (Figure 1B).
Phosphorylation of a GPCR within an extracellular domain has not previously been reported.

Differential contribution of serine/threonine clusters to total PTH1R
phosphorylation
Since the distribution of phosphorylation sites within the proximal C-terminus of PTH1R appeared to be
arranged in two distinct clusters, mutant receptors were engineered where serine or threonine amino acids
within each of the clusters were mutated to alanine residues (Figure 2A). Mutating all of the serine/threonine
(S/T) residues to alanine within cluster 1 generated a mutant termed PD1, whereas replacing the S/T residues
in cluster 2 generated the mutant PD2. Combining mutations of clusters 1 and 2 generated mutant PD3
(Figure 2A). Importantly, the cell-surface expression of WT PTH1R and mutant receptors (PD1–3) appeared
similar (Figure 3A). [32P]Orthophosphate labeling of HEK293T cells transiently expressing PD1, PD2 or PD3
followed by receptor immunoprecipitation revealed that the S/T residues within clusters 1 and 2 did not con-
tribute equally to receptor phosphorylation (Figure 2B). Thus, upon stimulation with 1 mM PTH(1–34), 32P
incorporation into mutant PD1 was significantly reduced by 61.6 ± 3.99% compared with WT. In contrast,
32P incorporation into PD2 was reduced by only 24.9 ± 5.1% compared with WT. Mutation of both clusters in
mutant PD3 reduced agonist-mediated phosphorylation by 84.9 ± 4.3% compared with WT, almost completely
eliminating agonist-mediated receptor phosphorylation. These results demonstrate that although the mass spec-
trometry data indicate that there are additional phosphorylation sites in the C-terminal tail that are outside of
cluster 1 and cluster 2 (Figure 1B,D), the majority of agonist-mediated phosphorylation occurs within these
two clusters.
To further investigate the effect of the C-tail mutations on PTH1R receptor function, concentration–response

studies for PTH(1–34)-induced cAMP accumulation were carried out with the WT PTH1R and the more
extensively mutated PD3 mutant. We observed a similar sensitivity to PTH(1–34) for the WT and for the PD3
mutant (pEC50 values of 10.88 ± 0.08 and 11.3 ± 0.1, respectively) with no significant change in the Hill slope
of the agonist curve and similar maximal cAMP responses (Figure 3B,C and Table 2). Although we observed
that the PD3 mutant displayed a higher constitutive activity compared with the WT receptor (Figure 3C), these
data indicate that the extensively mutated PD3 is not compromised in its ability to couple with G-proteins.

Functional impact of PTH1R C-tail phosphorylation sites on arrestin
recruitment
Previous studies have shown that the opossum PTH1R interacts robustly with arrestin2 and arrestin3 in a
ligand-dependent manner [17,30]. Our recent studies on the M3-muscarinic receptor [31], GHSR1a [32] and
GPR120 [26], had indicated that distinct phosphorylation sites, or patterns of receptor phosphorylation, could
mediate differential signaling outcomes, including differences in receptor–arrestin interaction. Hence, we
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examined whether phosphorylation at clusters 1 and 2 of the PTH1R contributed equally to receptor/arrestin
interaction. The interaction between YFP-tagged PTH1R C-tail mutants and arrestin3 was characterized using
FRET in single living HEK293T cells transiently transfected with CFP-tagged arrestin3 (Figure 4A). In this

Figure 1. Mass spectrometry identifies phosphorylation sites in PTH1R.

(A) HEK293T cells were transiently transfected with HA-tagged PTH1R and labeled with [32P]orthophosphate followed by

immunoprecipitation. HEK293 cells stably transfected with PTH1R–HA were used to immunoprecipitate PTH1R, which was

then digested with trypsin and analyzed by mass spectrometry. For 32P labeling and mass spectrometry studies, cells were

stimulated with 500 nM PTH(1–34) for 8 min. Left panel: autoradiograph and Western blot (anti-HA antibody) loading control.

Right panel: levels of 32P were quantified by densitometry and are presented as fold increases in phosphorylation relative to

non-stimulated controls. Data are representative of three independent experiments ± SEM. (B) Schematic representation of

PTH1R. Locations of phosphorylation sites identified by MS/MS are indicated in red, and red boxes indicate the positions of

phosphorylation site clusters 1 and 2. (C) Representative MS/MS spectra and associated fragmentation tables for two PTH1R

phosphopeptides are shown. (D) Primary amino acid sequence of PTH1R indicating in red the amino acids identified as being

phosphorylated and underlined in black are the regions of PTH1R covered by the analysis.
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Figure 2. Mutational analysis of PTH1R reveals regions of agonist-regulated receptor phosphorylation.

(A) Amino acid sequences of the C-terminal tail regions of the PTH1R mutants used in the present study. Positions of

serine and threonine residues that have been changes to alanine are indicated in red and underlined. (B) Upper panel:

[32P]orthophosphate labeling studies were performed on HEK293T cells transiently expressing HA-tagged PTH1R WT, PD1,

PD2 or PD3 mutants. Cells were stimulated with 1 mM PTH(1–34) for 8 min before immunoprecipitation and exposure for

autoradiography. Lower panel: Western blots using anti-HA antibodies were performed to demonstrate equal gel loading.

(C) Autoradiographs from (B) were quantified using densitometry and presented as 32P incorporation relative to PTH1R WT

controls. Representative of four independent experiments ± SD. ***P < 0.001 determined by ANOVA followed by Tukey’s

multiple comparison test.
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system, the WT PTH1R showed a robust increase of 24.8 ± 12.7% in FRET after stimulation with 100 nM PTH
(1–34) (Figure 4B). Subsequent analysis of PTH1R PD1, PD2 and PD3 revealed that PD1 mutant interaction
with arrestin was reduced by 42.1 ± 10.7% in comparison with the WT receptor (Figure 4B), indicating that
phosphorylation within cluster 1 did make a contribution to arrestin recruitment. Interestingly, mutation of
phosphorylation sites in the mutant PD2 had a greater impact on arrestin interaction, decreasing the recruit-
ment of arrestin by up to 60% despite having only a relatively small impact on receptor phosphorylation com-
pared with PD1. Hence, it would seem that although cluster 1 contributing most to agonist-regulated receptor
phosphorylation, it is phosphorylation sites located within cluster 2 that contribute more to the regulation of
arrestin recruitment.
Mutant PD3 in which both cluster 1 and cluster 2 phosphorylation sites are mutated showed an additional

decrease in arrestin recruitment. Removal of nine additional potential phosphorylation sites in PTH1R in a mutant
termed PD5 showed no further reduction in the recruitment of arrestin compared with PD3, indicating that phos-
phorylation of residues outside clusters 1 and 2 did not make a significant contribution to arrestin3 recruitment.

Importance of Thr503 and Ser504 in cluster 2 for arrestin recruitment
To characterize the key residues within cluster 2 responsible for determining arrestin binding, a mutant in
which only one serine and one threonine within the cluster are mutated to alanine (PTH1R T503A, S504A)
was generated. The FRET change from this mutant was found to be 7.0 ± 14.2%, which corresponds to a 72%

Figure 3. Mutations within the C-terminal tail of PTH1R do not adversely affect receptor expression or G-protein

coupling.

(A) Cell-surface expression of the indicated receptors was assayed by transiently transfecting the HA-tagged receptors into

HEK293T cells. Cell-surface ELISAs were performed using an HRP-conjugated anti-HA antibody to detect cell-surface receptor

expression in non-permeabilized cells. Data are normalized to PTH1R WT expression levels. Mean values of three independent

experiments ± SEM are shown. (B) HEK293T cells were transfected with PTH1R WT or mutant PD3 and arrestin3, and

concentration–response curves were generated for PTH(1–34) to stimulate cAMP production. Mean values from three

independent experiments normalized to the maximum response for each construct are shown. (C) Raw FRET values from data

generated in (B).
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signal loss of the amplitude achieved with the WT PTH1R (Figure 4B,C). Hence, these data identify Thr503
and Ser504 within the second cluster as key determinants of arrestin binding. Differences in agonist-induced
FRET amplitudes could potentially be due to alterations in the acceptor/donor expression if the donor expres-
sion exceeds acceptor expression. Expression levels were therefore determined, and it was confirmed that, in all
measurements, the proteins carrying the acceptor fluorophore were overexpressed compared with the donor
fluorophore-tagged proteins (Figure 4D).

Confirmation of the contribution of clusters 1 and 2 to arrestin interaction with
PTH1R using a BRET-based recruitment assay
To further evaluate the effects of C-tail phosphorylation sites on the interaction of arrestin with the PTH1R,
a BRET–arrestin interaction assay was employed (Figure 5A). Donor/acceptor titration experiments were per-
formed in which HEK293 cells were transfected with a fixed amount of arrestin3–Rluc (the BRET donor)
and increasing amounts of WT PTH1R or C-tail mutants fused to eYFP (BRET acceptors). Both WT
PTH1R and mutants showed a robust increase in PTH(1–34)-induced BRET, which appeared to be saturated
at donor/acceptor ratios greater than 0.6 (Figure 5B). From these experiments, the donor/acceptor ratio at
which half-maximum BRET was observed can be calculated. Single exponential fits were made to the curves,
and from these, the BRETmax and BRET50 values were determined. The BRET50 values for PD2 and PD3
were both higher than those for WT PTH1R, suggesting a reduction in the affinity between arrestin and the
receptor. Interestingly, the BRET50 value for PD1 was similar to that for PTH1R WT, suggesting a similar
affinity for this interaction despite a reduction in the maximum binding (Figure 5B). Concentration–
response curves were generated for arrestin3 recruitment by PTH1R and mutants in response to increasing
concentrations of PTH(1–34) (Figure 5C). The maximum binding for PD1 was reduced to 80.8 ± 4.4% com-
pared with the WT PTH1R. In contrast, PD2 was reduced to 66.9 ± 5.2% compared with WT and PD3 was
reduced to 46.6 ± 5.0% (Figure 5C,D). There was also a small decrease in potency for PD2 (pEC50 = 6.55 ±

Table 2 Potency (pEC50) and Hill slope values of PTH
(1–34) at PTH1R WT and PTH1R PD3 mutant receptors in
cAMP assays
Values represent the means ± SEM from three independent
experiments.

PTH1R WT PTH1R PD3

pEC50 ± SEM 10.88 ± 0.08317 11.3 ± 0.1090

Hill slope ± SEM 0.6083 ± 0.06337 0.7885 ± 0.1382

Table 1 Unique PTH1R phosphopeptides identified by mass spectrometry
Phosphorylated amino acids are underlined, also shown are the peptide locations, the Mascot ion score and the number of times
the peptide was observed. Asterisks denote amino acid residues upon which the precise position of phosphorylation could not be
determined.

Peptide sequence Localization
Mascot ion
score

Delta
(ppm)

Numbers of
observations

GWTSApSTSGKPR 68–79 53.8 0.22 1

pSWSRWTLALDKR 473–485 35.8 −2.2 1

SGpSSSYSYGPMVSHTSVTNVGPR 489–511 45.8 6.2 >30

SGS*pS*pSYSYGPMVSHTSVTNVGPR 489–511 60.0 −1.9 >20

SGSSSYSYGPMVSHpTpSVTNVGPR 489–511 38.1 −2.8 5

VGLGLPLpSPR 511–521 61.4 −2.2 >20

PGTPALEpTLETTPPAMAAPK 540–559 44.5 −1.4 1

PGTPALETLETpTPPAMAAPK 540–559 52.9 −1.7 5
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0.009) and PD3 (pEC50 = 6.75 ± 0.01) compared with WT (pEC50 = 7.16 ± 0.03). Analysis of additional
mutants in which both phosphorylation site clusters remain intact and other adjacent residues are mutated,
termed PD6, or in which PD1 and PD2 are removed and nine additional mutations are introduced, termed
PD5, indicated that mutation of sites outside clusters 1 and 2 have a minimal additional impact on arrestin3
recruitment (Figure 5E). Taken together, these data confirm the importance of clusters 1 and 2 in the
recruitment of arrestin to PTH1R and also indicate that cluster 2 may contribute more to arrestin recruit-
ment and affinity than cluster 1.

Figure 4. FRET approach to monitor PTH1R–arrestin3 interactions.

(A) Schematic representation of PTH1R and arrestin3 during FRET assays. (B) HEK293T cells were transiently transfected with

PTH1R, PD1, PD2, PD3, PD5 or T503A, S504A constructs that were C-terminally labeled with eYFP, and arrestin3–CFP was

also transfected. Agonist-dependent FRET changes were monitored following stimulation with 100 nM PTH(1–34) for the times

indicated. Individual recordings were averaged (mean ± SEM — PTH1R n = 11, PTH1R PD1 n = 10, PTH1R PD2 n = 10, PTH1R

PD3 n = 18, PTH1R PD5 n = 12 and PTH1R T503A, S504A n = 12). For clearer visualization, mean curves are displayed with

SEM of ΔFYFP/FCFP in one direction. (C) Determination of absolute FRET changes in each measurement. Statistics were

performed by the Kruskal–Wallis test followed by Dunn’s multiple comparison test. **P < 0.01; ***P < 0.001. (D) Relative

expression levels of PTH1R eYFP and arrestin3–CFP. The red line indicates a 1:1 stoichiometry of YFP/CFP as determined by a

reference construct. Excess acceptor fluorophore-labeled receptors were confirmed in all experiments.
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Figure 5. BRET approach to monitor PTH1R–arrestin3 interaction.

(A) Schematic representation of PTH1R and arrestin3 constructs used during BRET measurements. (B) HEK293 cells were

transiently transfected with constant amounts of arrestin3–Rluc and increasing amounts of PTH1R, PD1, PD2 or PD3

constructs C-terminally labeled with eYFP. Net BRET induced by stimulation with 1 μM PTH(1–34) for each construct is

expressed as a function of the donor/acceptor ratio. BRETmax and BRET50 values are shown for each construct.

(C) Concentration–response curves were generated for PTH(1–34) to promote PTH1R interaction with arrestin3. (D) Maximum

BRET responses for each construct are displayed as a percentage of the response from PTH1R WT, and values are

representative of three independent experiments ± SEM. Differences between maximal signal for the individual mutants were

significant as indicated, *P < 0.05. (E and F) Concentration–response curves for PTH(1–34) to promote the recruitment of

arrestin3 to PTH1R C-terminal tail mutants PD4, PD6 and PTH1R Δ-C are displayed.
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Phosphorylation within clusters 1 and 2 contributes to, but is not essential for,
arrestin recruitment to PTHR1
Mutation of serine and threonine residues within clusters 1 and 2, to generate mutant PD3, resulted in a
mutant PTH1R, which showed substantial decreases in both basal and agonist-mediated phosphorylation and a
substantial reduction in its ability to recruit arrestin3. However, arrestin3 binding was not completely elimi-
nated when measured by either FRET or BRET methods. To investigate whether additional determinants of
arrestin recruitment remained within the C-terminal tail of PTH1R, a mutant receptor was generated in which
the entire C-terminal tail was removed leaving the receptor truncated shortly after the putative end of helix
VIII. This receptor mutant was found to both express and traffic to the plasma membrane, although expression
levels appeared to be reduced compared with the WT PTH1R when assayed by cell-surface (ELISA)
(Figure 3A). Interestingly, this PTH1R mutant was still able to recruit arrestin3 in an agonist-dependent
manner albeit with much reduced efficacy (20% compared with WT PTH1R; Figure 5F), suggesting that there
are determinants outside the C-tail, including clusters 1 and 2, which are able to contribute to arrestin3
recruitment.

Phosphorylation within cluster 2 is important for the high-affinity interaction of
arrestin with PTH1 receptors
The FRET and BRET experiments shown above demonstrate that phosphorylation sites within the region
cluster 2 are important determinants for arrestin recruitment to PTH1R (Figure 4). As PTH(1–34) dissociates
very slowly from activated PTH1Rs, it is difficult to determine whether arrestin recruitment to PTH1R or
receptor mutants is dependent on its dissociation from activated receptors. Thus, to study whether the removal
of phospho-acceptor clusters in the PTH1R C-tail changes the temporal stability of activated arrestin–receptor
complexes at the plasma membrane, we used an assay based on dual-color FRAP. This technique has previ-
ously been used to monitor the steady-state affinity of arrestin3 to agonist-bound receptors in single living cells
[27]. In these experiments, HA-tagged PTH1R–YFP receptors were cross-linked at the plasma membrane and,
therefore, the lateral mobility of arrestin–receptor complexes was reduced. After photobleaching, the extent and
the kinetics of arrestin3 recovery represent the release of arrestin3 from immobilized activated receptors fol-
lowed by subsequent rebinding of free arrestin3. To exclude the possibility that the observed differences in
arrestin mobility resulted from insufficiently cross-linked receptors, we ensured that basal receptor mobility was
≤30% (it was 20% on average). WT PTH1R stimulated with PTH(1–34) showed arrestin recovery, which was
reduced to levels similar to that of the receptor after antibody cross-linking (Figure 6B), indicating low levels of
mobility and a high-affinity interaction. In contrast with FRET experiments in which the receptor mutant PD1
reduced the FRET amplitude by 45% (Figure 4), but in good agreement with the BRET experiments
(Figure 5B), the influence of PD1 on arrestin affinity in the FRAP experiments appeared limited as the speed
and extent of arrestin3 recovery was comparable between the WT PTH1R and the PD1 mutant (Table 3). In
contrast, phosphorylation sites within cluster 2 appeared to play an important role not only for arrestin recruit-
ment but also for arrestin affinity as the mobile arrestin fraction at the PD2 mutant was significantly higher
than that at the WT receptor (Figure 6C and Table 3). No additional increase in the arrestin3 exchange rate
was observed in the PD3 mutant (Figure 6D and Table 3), suggesting that the residues between Ser501 and
Thr506 are key determinants for the high-affinity arrestin interaction with PTH1R.
To further investigate the roles of residues within PD2, the PTH1R T503A, S504A mutant was analyzed.

Interestingly, and in agreement with FRET data, this mutant displayed reduced arrestin affinity (Figure 6E); the
mobile arrestin fraction was increased 2-fold compared with the WT receptor and the exchange rate was com-
parable with that of the PD2 or PD3 mutants (Table 3), again suggesting that these two residues are key deter-
minants for arrestin recruitment and high-affinity binding.

PTH1R C-terminal phosphorylation sites regulate agonist-dependent
co-internalization of arrestin with PTH1Rs
In FRAP experiments, the arrestin exchange rate at the immobilized PTHR was low, suggesting a very strong
interaction between arrestin3 and the agonist-activated WT PTH1R. PTH1R is known to co-internalize with
arrestin upon agonist stimulation, and it has been previously suggested that the PTH1R C-terminus contains
determinants of receptor internalization that are distinct from receptor phosphorylation [17]. Using HEK293T
cells transiently transfected with CFP-tagged arrestin3 and eYFP-tagged PTH1R, we have investigated the
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Figure 6. FRAP approach to monitor arrestin affinity toward activated receptors.

(A) Schematic representation of immobilized PTH1R–arrestin3 complexes during FRAP experiments. (B–E) HEK293T cells were

transiently transfected with receptors that were both N-terminally HA-tagged and C-terminally YFP-tagged and with arrestin3–

CFP. Cells were preincubated for 30 min with a monoclonal anti-HA antibody, followed by 30 min of incubation with a

polyclonal anti-mouse antibody at 37°C before being stimulated with 100 nM PTH(1–34). Mobility of CFP-labeled arrestin3 and

YFP-labeled receptors was monitored simultaneously after photobleaching of a small spot and the equatorial plane of the

plasma membrane. Left panel: mean percentage arrestin3–CFP recovery ± SEM at the PD1 receptor (n = 24; WT control n = 15),

the PD2 mutant (n = 20; WT control n= 21), the PD3 mutant (n = 21; WT control n = 21) or the T503A, S504A mutant (n = 17; WT

control n = 15). Right panel: recovery of YFP-labeled receptors ± SEM. Statistics are described in Table 3.
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impact of PTH1R C-terminal mutants on receptor internalization and arrestin trafficking. In resting cells,
arrestin3 was localized within the cytoplasm and PTH1R was evenly distributed at the plasma membrane
(Figure 7A, top panel). Stimulation with PTH(1–34) induced a translocation of arrestin from the cytosol to the
plasma membrane in cells expressing WT PTH1R within 8–10 min. After 40 min of agonist exposure, PTH1R
redistributed from the plasma membrane to become co-localized with arrestin3 in endocytic vesicles
(Figure 7A, lower left). The high-affinity interaction observed between PTH1R PD1 and arrestin in FRAP
experiments was also reflected in the translocation of arrestin and co-localization with the PD1 receptor, which
after 40 min of stimulation appeared to be similar to WT PTH1R (Figure 7B). The co-localization of arrestin3
with the PD2 and the PD3 mutant was considerably reduced compared with the WT or the PD1 receptor
mutant (Figure 7C,D, lower panels; Figure 7E), indicating very limited redistribution of these PTH1R mutants
from their plasma membrane location particularly in the case of PTH1R PD3.
The activation of ERK1/2 is receptor-specific and cell-type-dependent. Using HTRF analysis in HEK293

cells, we have evaluated the effect of PTH1R, PD1, PD2 and PD3 on PTH(1–34)-induced ERK1/2 activation.
Consistent with previous studies, PTH(1–34) stimulation of the WT receptor resulted in ERK1/2 phosphoryl-
ation, which peaked at 5 min [33–35] and did not fully reach the baseline even after 90 min (Figure 7F;
Table 4). This was also the case for PTH1R PD1 whose ERK1/2 activation profile was not significantly different
from WT. In contrast, the phosphorylation-deficient mutant PD2 exhibited an ERK1/2 activation profile, which
was significantly exaggerated compared with WT PTH1R after 5 min of stimulation but no different at subse-
quent time points. The PD3 mutant exhibited an ERK1/2 activation profile that was both significantly

Table 3 Kinetics of arrestin3 interaction with PTH1R WT and receptor mutants measured by FRAP
Values represent the means ± SEM from three independent experiments. The kinetic parameter kslow was obtained by
biexponential curve fitting. t0.5 values were obtained by calculating ln(2)/k.

FRAP Arr-3 recovery ± SEM (%) kslow ± SEM (s−1) Slow half-life (s)

PTH1R WT 19.07 ± 0.68–23.94 ± 0.86 0.0167 ± 0.010–0.014 ± 0.002 40.7–49.5

PTH1R PD1 30.9 ± 2.5 0.019 ± 0.0025 36.5

PTH1R PD2 51.2 ± 0.71 0.031 ± 0.0036 22.4

PTH1R PD3 44.9 ± 0.67 0.033 ± 0.0043 21

PTH1R T503A, S504A 47.7 ± 2.2 0.025 ± 0.0111 27.7

Table 4 Statistical values for PTH(1–34)-induced
pERK1/2 activation in PTH1R WT, PD1, PD2 and
PD3 mutants

Dunnett’s multiple comparison test P-value

WT vs. PD1 5 min >0.05

WT vs. PD2 5 min <0.05

WT vs. PD3 5 min <0.01

WT vs. PD1 30 min >0.05

WT vs. PD2 30 min <0.05

WT vs. PD3 30 min <0.01

WT vs. PD1 60 min >0.05

WT vs. PD2 60 min >0.05

WT vs. PD3 60 min >0.05

WT vs. PD1 90 min >0.05

WT vs. PD2 90 min >0.05

WT vs. PD3 90 min <0.01
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Figure 7. C-terminal phosphorylation sites determine arrestin3 co-internalization with activated PTH1R.

(A–D) HEK293T cells were transiently transfected with the PTH1R or PD1, PD2 or PD3 mutants and arrestin3–CFP. Cells were

not stimulated or treated for 10 or 40 min with 1 mM PTH(1–34) in 0.1% BSA/Tyrode’s buffer at 37°C. Cells were subsequently

fixed in 4% PFA and analyzed by confocal microscopy. The scale bar represents 10 mm. The extent of arrestin translocation,

arrestin3–receptor colocalization and PTH1R internalization is substantially reduced in the PD3 mutant compared with WT.

(E) Quantification of colocalization of PTH1R–YFP with arrestin3–CFP was performed using Pearson’s correlation coefficient.

Analysis was performed on samples following 40 min of stimulation with PTH(1–34). Mean data are presented ± SEM; n≥ 34

cells, ANOVA followed by Dunnett’s multiple comparison test, differences between conditions are significant as indicated;

*P < 0.05, **P < 0.01. (F) Activation of pERK1/2 was assessed in HEK293T cells expressing PTH1R or PD1, PD2 or PD3

mutants using an HTRF assay. Cells were starved overnight and stimulated with 500 nM PTH(1–34) in 0.1% BSA for the time

shown. Data are representative of three independent experiments and are presented as the mean response ± SEM. Time points

at which mutant PTH1R responses are significantly different from WT are indicated. Full statistics are described in Table 4.
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exaggerated and prolonged compared with WT PTH1R, indicating that ERK1/2 phosphorylation was inversely
correlated with ligand-dependent phosphorylation in cluster 2 of the PTH1R.

Discussion
For many GPCRs, activation leads to rapid receptor phosphorylation, which in turn promotes the recruitment
of arrestin leading to receptor internalization and the initiation of G-protein-independent signaling pathways
[36]. Here, we focus on the PTH1R, which responds to the 84-amino-acid peptide hormone PTH and is essen-
tial to the physiology of calcium homeostasis and bone remodeling. In line with previous reports on the
opossum PTH1R [14–16,37,38], we found the human PTH1R to be robustly phosphorylated in response to
agonist stimulation. Using mass spectrometry phospho-proteomics, we have identified nine sites in the
C-terminal tail between Ser473 and Thr551 (Table 1) and have subsequently characterized the role of these
phosphorylation sites in arrestin recruitment, receptor internalization and ERK signaling.
Previous studies have described the phosphorylation profile of the opossum PTH1R receptor that has high

sequence homology with human PTH1R. This receptor was found to be exclusively phosphorylated on
C-terminal serine residues, and mutation of six serine residues (Ser483, Ser485, Ser486, Ser489, Ser495 and
Ser498) to alanine abolished agonist-mediated phosphorylation altogether [37]. Here, our analysis has revealed
phosphorylated residues distal to Ser498 and our findings agree, at least in part, with radiosequencing experi-
ments performed on the rat PTH receptor which indicated that Ser491, Ser492, Ser493, Ser495, Ser501 and
Ser504 were phosphorylated in response to stimulation with PTH [16]. Three of the phosphorylation sites that
we identified in the PTH1R C-terminal tail have not been previously reported: Thr503, Ser519 and Thr547. Of
these, Ser519 was repeatedly observed by MS/MS analysis, indicating that this site may be highly phosphory-
lated. Another, unexpected, phosphorylation site was identified in the extracellular N-terminus of the PTH1R
at position Ser73. It remains to be determined whether this phosphorylation event occurs during PTH1R syn-
thesis or whether phosphorylation of the N-terminus by extracellular kinases represents a novel mode of func-
tional receptor regulation.
Targeted removal of the C-terminal phosphorylation sites revealed that the majority of agonist-regulated phos-

phorylation occurred within two clusters of residues: Ser489–Ser495 and Ser501–Thr506. Mutation of phosphor-
ylation sites between Ser501 and Thr506 reduced agonist-regulated 32P incorporation by ∼25%, whereas mutation
of the sites between Ser489 and Ser495 reduced it by nearly two-thirds. Analysis by FRET and BRET revealed
that the contribution of these clusters to arrestin recruitment was not equal with cluster 2 having a greater impact
on arrestin recruitment despite having a relatively small impact on agonist-induced phosphorylation. Our data
indicate that arrestin3 is able to differentially recognize and interact with PTH1R variants displaying different
phosphorylation profiles, but despite this the two phosphorylation clusters also act in concert to promote the for-
mation of stable arrestin–receptor complexes. The sequential removal of phosphorylation clusters 1 and 2 pro-
duced a graded reduction in recruitment resulting in a receptor mutant (PD3), which recruited arrestin poorly
compared with WT PTH1R and reduced receptor internalization and co-trafficking of receptor–arrestin com-
plexes in response to stimulation with PTH(1–34). Surprisingly, this receptor mutant resembled the WT receptor
in its ability to stimulate the production of cAMP through coupling to Gs proteins. The mutant PD3 did,
however, display increased levels of constitutive activity compared with WT. The use of heterologous overexpres-
sion, which results in high receptor expression levels, might explain why in this system desensitization was not
observed and an increase in PTH(1–34)-induced cAMP formation in the PD3 mutant, which might be expected
due to its reduced interaction with arrestin, was not measured. We extended our study further by investigating
the impact of PTH1R phosphorylation on the activation of the ERK1/2. Arrestins have been proposed to mediate
a slow phase of GPCR-mediated ERK1/2 activation [39]. A phosphorylation- and arrestin-binding-deficient recep-
tor should, therefore, show reduced ERK1/2 activation. However, mutant PD2 displayed a significantly enhanced
and prolonged ERK1/2 activation, an effect which was further enhanced in mutant PD3, indicating that the ERK
response observed here is not a consequence of arrestin recruitment. This is in line with a previous study in
which mutated PTH1R phosphorylation sites were shown to prolong ERK1/2 activation in LLCP-K1 cells inde-
pendently from internalization [33]. Similarly, shRNA silencing of arrestins has been shown to enhance ERK1/2
activation mediated by the α2A-adrenergic receptor and the sphingosine 1-phosphate receptor [40] and siRNA
knockdown of both GRK and arrestin enhanced ERK1/2 activation by the M3-muscarinic acetylcholine receptor
[41]. Taken together, these findings suggest that targeted removal of receptor phosphorylation sites results in a
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PTH1R which is uncoupled from arrestin recruitment and could therefore be considered biased towards the
G-protein arm of GPCR signaling.
Further mutational analysis of phosphorylation sites located outside of clusters 1 and 2 at the proximal and

distal end of the PTH1R C-tail revealed that these sites, either in isolation or in combination with mutations in
clusters 1 and 2, had no impact on arrestin recruitment, suggesting that with regard to receptor phosphoryl-
ation, the important regulatory sites are located within these two clusters. More detailed mutational analysis of
cluster 2 using FRET and FRAP identified a single threonine (Thr503) and a single serine (Ser504), which
served as key determinants in modulating arrestin recruitment and the affinity of arrestin–receptor complexes.
These findings are in agreement with previous studies of the opossum or the rat PTH1R [30,42] where phos-
phorylation sites in this region were reported to be important regulators of arrestin translocation, but here the
important contributions specifically of Thr503 and Ser504 were overlooked. To some extent, PTH1R resembles
the β2-adrenergic receptor (β2AR) and other GPCRs in so far as the proximal phosphorylation sites in the
C-tail mediate full arrestin interaction [43]. Yet, whereas a mutant β2AR with a phosphorylation-deficient
C-tail no longer interacts with arrestin, mutation of 18 of 26 potential phosphorylation sites in PTH1R, includ-
ing all of those identified as being phosphorylated by MS/MS, creates a receptor which still interacts with
arrestin in an agonist-dependent manner. This could potentially be due to the contributions of other ‘struc-
tural’ elements such as glutamate or aspartate residues within the C-tail, which could ‘mimic’ receptor phos-
phorylation and contribute to arrestin preactivation and recruitment as has been reported for free fatty acid
receptor 4 (FFAR4) [26]. However, that this is not the case for PTH1R is indicated by experiments on a
C-terminally truncated PTH1R, which still recruited arrestin in an agonist-dependent manner albeit to a much
reduced extent compared with WT. This observation is also in agreement with previous studies on a
C-terminally truncated PTH1R [17]. Studies on the M2-muscarinic receptors and β2ARs have demonstrated
that at least in some cases the dependence on phosphorylation for recruitment of arrestin to GPCRs is not
equal as a phosphorylation-deficient M2-muscarininc receptor interacts with arrestin normally, whereas arrestin
recruitment to a phosphorylation-deficient β2AR was substantially reduced [44]. In this way, PTH1R could be
considered to display an intermediate phenotype as receptor phosphorylation is necessary for establishing
stable high-affinity complexes, but is not essential for promoting receptor:arrestin interaction. FRAP experi-
ments demonstrate that in contrast with the β2AR, the PTH1R forms complexes with arrestin3 that are not dis-
sociable at the time scale of the experiment. However, the marked differences in the kinetics and the extent of
arrestin3 recovery observed with the phosphorylation-deficient mutants revealed that the second cluster, in par-
ticular residues Ser503 and Thr504, are responsible for the majority of the high-affinity interaction between
arrestin and the PTH1R. Hence, the temporal stability of arrestin3–PTH1R complexes are determined by the
localization of specific phosphorylation sites within the PTH1R C-tail.
The standard model of arrestin activation involves not only the phosphate sensor in the core of arrestin but

also the activation sensor that recognizes the activated receptor [24,45]. Recently, detailed structural studies
have reported interactions between the arrestin ‘finger loop’ and elements of the activated receptor core includ-
ing elements within transmembrane helices VII and VIII [46,47]. It is conceivable, therefore, that PTH1R acti-
vation contributes to the preactivation of arrestin, and the phosphorylation and C-terminus-independent
arrestin recruitment observed here is the result of a low-affinity arrestin–receptor interaction possibly mediated
by the arrestin ‘finger loop’.
Previous work from our laboratory and other groups has highlighted the importance of the positioning of

receptor phosphorylation in relation to arrestin recruitment and receptor function. Patterns of receptor phosphor-
ylation have been determined for receptors such as FFAR4, the ghrelin receptor (GHSR1a), chemokine receptor
CXCR4, the β2AR and the M3-muscarinic receptor [26,31,32,48], and it would appear at least in these instances
that receptor phosphorylation represents more than just the addition of bulk negative charge to a certain receptor
domain. Indeed, the position of phosphorylation sites within the receptor C-terminus or intracellular loop regions
appears to be key to regulating arrestin recruitment and receptor function. This certainly appears to be the case
for PTH1R as phosphorylation sites within cluster 1 have a smaller impact on arrestin recruitment, suggesting
that phosphorylation within cluster 1 may perform a modulatory or stabilizing role possibly fine-tuning arrestin–
receptor interactions as has been suggested for other receptors [32]. In contrast, phosphorylation within cluster 2
is responsible for establishing the high-affinity receptor–arrestin interaction. These data would support a notion
that has been suggested for other receptors that a phosphorylation signature or barcode adopted by activated
GPCRs can determine the receptor signaling outcome [22]. Given that different tissue and cell types express dif-
ferent complements of kinases at different levels and that evidence of cell-type-specific regulation of GPCR
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signaling already exists [31], the possible physiological outcomes of this are that PTH1R signaling output might
be tailored by the cell type in which the receptor is expressed.
In summary, a combination of [32P]orthophosphate labeling studies and mass spectrometry has been used to

comprehensively analyze PTH1R phosphorylation. Two clusters of serine and threonine residues have been
identified within the proximal C-terminal tail, which modulates potency, efficacy and affinity of arrestin3
binding. Mutation of these two clusters of phosphorylation sites resulted in a substantial reduction in arrestin
binding when assessed by BRET and FRET methods and resulted in a mutant that displayed hallmarks of a
receptor that is biased away from arrestin signaling and toward G-protein signaling. Complete abolition of
arrestin interaction was, however, not achieved even after truncation of the receptor C-tail immediately after
helix 8, findings which are in strong agreement with published results. It is now clear that a combination of
mutations of C-tail phosphorylation site and further mutations probably within helices VII and VIII would be
necessary to fully abolish PTH1R arrestin recruitment as was the case for the recently reported mutant,
G-protein-biased M3-muscarinic receptor [49]. Work is underway to generate such a PTH1R mutant that
would be a valuable tool for the investigation of the cellular signaling profile with respect to G-proteins and
arrestin; this in turn would inform the search for PTH1R ligands that could direct receptor signaling along one
pathway in preference to another.
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