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Enhanced conformational sampling to visualize a free-energy landscape of
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We introduce various, recently developed, generalized ensemble
methods, which are useful to sample various molecular
configurations emerging in the process of protein–protein or
protein–ligand binding. The methods introduced here are those
that have been or will be applied to biomolecular binding,
where the biomolecules are treated as flexible molecules
expressed by an all-atom model in an explicit solvent.
Sampling produces an ensemble of conformations (snapshots)
that are thermodynamically probable at room temperature. Then,
projection of those conformations to an abstract low-dimensional
space generates a free-energy landscape. As an example, we
show a landscape of homo-dimer formation of an endothelin-
1-like molecule computed using a generalized ensemble method.
The lowest free-energy cluster at room temperature coincided

precisely with the experimentally determined complex structure.
Two minor clusters were also found in the landscape, which
were largely different from the native complex form. Although
those clusters were isolated at room temperature, with rising
temperature a pathway emerged linking the lowest and second-
lowest free-energy clusters, and a further temperature increment
connected all the clusters. This exemplifies that the generalized
ensemble method is a powerful tool for computing the free-
energy landscape, by which one can discuss the thermodynamic
stability of clusters and the temperature dependence of the cluster
networks.

Key words: all-atom model, free energy, generalized ensemble,
molecular binding, molecular dynamics, molecular interaction.

INTRODUCTION

A protein–protein or protein–ligand complex is stabilized or
destabilized by a variety of factors, and detailed atomic
information on the intermolecular interactions provides a crucial
key to understanding the complex formation from a microscopic
point of view; this information could support drug discovery.
Biomolecular complex formation is a process in which the
biomolecules associate, starting from the dissociated state,
and finally a biologically meaningful complex is formed. The
experimentally determined complex structure may be the lowest
free-energy state, which is equivalent to the thermodynamically
most stable complex. However, recent studies have also shown that
various complex forms, other than the most stable complex one,
are generated in the binding process, such as encounter complexes
[1], metastable complexes or fuzzy complexes [2], and these
multiple complex forms may play a biologically/biophysically
meaningful role. These complexes may be formed transiently with
weak interactions, so we pose a question. Is there any method that
can provide atomic information for the multiple complexes? In
other words, is there any method that can assign free energies (i.e.
stabilities) to the multiple complexes?

It is generally difficult to determine temporal complex
structures in which the biomolecules are weakly interacting. Then
an all-atom computer simulation such as molecular dynamics
(MD) is a useful technique for quantifying those complex
structures because the all-atom simulations can trace biomolecular
motions at an atomic resolution at each moment of the complex
formation. Figure 1 presents the processes of complex formation
schematically, where semi-stable structural clusters are illustrated

together with the most stable one. Imagine a simulation during
which association and dissociation of molecules take place. The
number of simulation snapshots assigned to a cluster relates to
its stability (i.e. free energy): the more snapshots there are in a
cluster, the lower the free energy assigned to it. The frequency
of transitions from one cluster to another relates to the rate
constant for the conformational change. Therefore, the simulation
trajectory yields a diagram such as Figure 1.

A quantitatively evaluated diagram is called a free-energy
landscape; it provides key information for discussing the complex
formation in detail. As it is difficult to obtain an ensemble of
snapshots sufficient to generate the free-energy landscape using
conventional sampling methods, several powerful computational
methods have been developed. One way to approach the free-
energy landscape is to use a powerful computer such as ANTON
[3,4] or MDGRAPE [5] to perform simulation over a long period.
The second way is to integrate many simulation trajectories, where
the trajectories generate a wide conformational distribution [6]
or rate constant among conformational clusters [7,8], although
each trajectory may cover only a small fraction of the whole
conformational space. The third way is to use a generalized
ensemble method [9,10]. In the present review, we focus on
various generalized ensemble methods that have been applied or
are applicable to biomolecular binding with an atomic resolution
in an explicit solvent to obtain the free-energy landscape. Table 1
lists the generalized ensemble methods that are introduced in the
present review. We note that these methods are also applicable to
large molecular conformational changes, such as protein folding
or intramolecular conformational transitions, by changing the
computation object.

Abbreviations: ALSD, adaptive λ square dynamics; AUS, adaptive umbrella sampling; DDD, double density dynamics; ET1, endothelin-1; IDP, intrinsically
disordered protein; McMD, MD-based multi-canonical method; MD, molecular dynamics; MSES, multiscale essential sampling; NRSF, N-terminal repressor
domain of neural restrictive silencer factor; PAH, paired amphipathic helix; PMF, potential of mean force.
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Table 1 Variety of enhanced sampling methods

Umbrella sampling type
Adaptive umbrella sampling

Adaptive lambda square dynamics
Metadynamics
Virtual system coupled adaptive umbrella MD

Multicanonical MD
Multicanonical MD (every-run update)

Virtual system coupled multicanonical MD
Force-biased multicanonical MD (every-interval update)
Wang-Landau sampling (every-step update)

Simulated tempering type
Temperature replica exchange (parallel tempering)
Van der Waals radius exchange
Hamiltonian exchange
Coulomb exchange
Replica exchange with Suwa-Todo algorithm (non-detailed balance condition)

Other type
Double density dynamics

Figure 1 Schematic representation of complex formation

Solid-line circles represent populations of conformational clusters. Broken-line arrows represent
possible pathways of conformational transitions. The larger the circle, the higher the population.
The bolder the arrow, the larger the rate constant for the transition.

SAMPLING ENHANCEMENT BY GENERALIZED ENSEMBLE
METHODS

In computational biophysics, development of an effective
conformational sampling method has been one of the central
subjects. When force field parameters are assigned to constituent
atoms of the system [protein(s), ligand(s) and solvents], the
potential energy is computable to the protein system. In the present
review, potential energy is simply called ‘energy’. Different
conformations of the system have different energy. Therefore,
an energy surface (Figure 2a) can in theory be constructed for
the system. The problems are: the energy surface of the protein
system has a large number of energy basins surrounded by energy
barriers, and some of the conformational transitions among the
basins are very slow processes. These difficulties arise as a
result of the following factors: (i) the original conformational
space is 3n-D for a system consisting of n atoms, and n is
usually large; (ii) various types of interactions act among the
constituent atoms; (iii) usually there is no structural symmetry
in the system; and (iv) motions of an atom are influenced
strongly by the surrounding atoms because they are densely
packed.

Figure 2 Schematic representation of energy surface and simulation
trajectories

The x and y axes represent conformation and energy for a two-molecular system, respectively.
The black curved line represents the energy surface, where energy minima and energy barriers are
distributed. Although the conformation of the system is defined originally in a high-dimensional
space, the space shown in this figure is one-dimensional (i.e. x axis). Molecular structures are
also shown schematically. RUB is a region where unbound or slightly touching molecules are
distributed, and RB a region where various complex forms are distributed. Although RUB is divided
into two in this figure, the two may be connected in the original high-dimensional space. (a)
Broken lines represent simulation trajectories at room temperature starting from conformations
at P1 and P2, which are far from the native complex structure (Pnat). The conformation moves
slowly in the space because energy barriers interfere with the motion. (b) Simulation trajectories
(broken lines) at high temperature. The trajectories fluctuate in a high-energy range (shaded
energy range), which involves RUB, and the room temperature range (checkered range) is
not sampled. The volume of RB is considerably narrower than that of RUB in the original
high-dimensional space. (c) Trajectory from multi-canonical simulation, which samples the
high- and low-energy ranges evenly.

When performing a molecular simulation at room temperature
(denoted as T room), the conformation of the protein is usually
trapped in energy basins near the initial conformation of
the simulation (Figure 2a). Note that most proteins exert
their biological functions at room temperature, and many
biological experiments have been performed at this temperature.
To sample a wide conformational area, overcoming energy
barriers and reaching the native complex structure (i.e.
experimentally determined complex structure at T room), a long
simulation is then needed when the simulation starts from a
dissociated conformation. A simple method of sampling various
conformations without being trapped is a high-temperature
simulation (Figure 2b). This method, however, generates
conformations accessible only at the high temperature. Inversely,
when the high-temperature simulation starts from the native
complex structure, this complex dissociates eventually, and the
transition probability that the dissociated molecules rebind again
to the native complex is negligibly small. A requirement imposed
on the sampling method is that the resultant ensemble should
consist of conformations that are probable at T room in equilibrium

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC
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Figure 3 Conversion of distribution function to PMF in 1D case

One-dimensional parameter is denoted as s. (a) Distribution Pcano (s, T ), and (b) PMF F (s,
T ): F (s, T ) = –RT [ln Pcano(s, T )]. High probability is assigned to Sp1 and Sp2, where F (s, T )
is low. Contrarily, the low-probability is assigned to Sb, where F (s, T ) is high.

(conformations in the checked energy range in Figure 2b), even
when the simulation starts from a dissociated conformation.
We denote this ensemble as Q(T room). The free-energy landscape
is derived from Q(T room).

The high-dimensional space needed to express the protein
conformation is beyond our comprehension. Then, contraction
of the high-dimensional space into a low-dimensional space is
essential. Some parameters, such as relative molecular orientation
of one molecule to another, separation distance between two
molecules or root mean square deviation from a reference complex
structure, are useful for constructing the low-dimensional space
for viewing the conformational distribution. Suppose that two
parameters, denoted as s1 and s2, are selected for the coordinate
axes of the contracted space (here it is a 2D space). Then a set of
parameters [s1,s2] is calculated for all the conformations stored in
Q(T room), and a probability distribution function Pcano(s1,s2,T room)
is computed. A ‘potential of mean force’ (PMF), F(s1,s2,T room), is
formally defined as:

F(s1, s2, Troom) = −RTroom ln [Pcano(s1, s2, Troom)] (1)

where R is the gas constant. Eqn 1 shows that a low PMF
is assigned to a high-probability position. Note that high-
probability regions in the conformational space are more stable
thermodynamically than low-probability regions. In other words,
the low-PMF regions are thermodynamically stable. Therefore,
PMF is regarded as a free-energy landscape. The low-PMF regions
are called ‘free-energy basins’, and the parameters s1 and s2 are
called ‘reaction coordinates’. Figure 3 illustrates the relationship
between Pcano and F in a 1D case. In a general case Pcano is
converted as:

F(s1, s2, s3, ..., sn, Troom)

= −RTroom ln [Pcano(s1, s2, s3, ..., sn, Troom)] (2)

where both Pcano and F are expressed by n parameters.

Figure 4 Scheme for explaining umbrella sampling

(a) High-dimensional space is expressed here two-dimensionally (“conformation axis 1” and
“conformation axis 2”), and reaction coordinate p is defined, for which the edges with filled circles
labeled pu and pn correspond to unbound and native complex conformations, respectively. Open
circles are intermediate conformations along the p-axis. (b) Biased distribution functions (broken
and solid lines) obtained by individual simulations at different bias centers at temperature T room.
The solid line highlights a distribution around bias center pbias. (c) Solid lines are fragments of
the full distribution function Pcano (p, T room). Each fragment is computed only in well-sampled
region of a biased distribution function in panel b. (d) Pcano (p, T room) is obtained by smoothly
connecting the fragments.

As an enhanced sampling method, we first introduce umbrella
sampling [11,12]. In this method, an appropriate reaction
coordinate p is set in advance so that the variation of p reflects
the change of complex form well. Figure 4a shows the p
axis schematically, which connects the unbound (Pu) and the
native complex structures (Pn). The umbrella sampling method
introduces bias functions known as ‘umbrella potential functions’
along the p axis. A bias potential set at a bias centre (one of
the filled or open circles in Figure 4a) forces the conformation
to be confined within a narrow region around the bias centre
during a simulation. Then, performing individual simulations
at different bias centres at temperature T room, one can obtain a
number of biased distribution functions (Figure 4b). The purpose
of the umbrella sampling is to obtain an entire distribution
function Pcano(p, T room) without the effects of the biased potentials
in the full range [Pu,Pn] of the p axis. Then a reweighting
technique is applied to each of the biased distributions, and
non-biased fragments of the entire distribution (Figure 4c) are
obtained. Finally, smooth connection of the fragments produces
Pcano(p, T room) (Figure 4d). This connection technique is called
a ‘weighted histogram analysis’ [13]. After the simulations,
sampled snapshots are also reweighted and integrated into the
conformational ensemble Q(T room).

‘Adaptive umbrella sampling’ (AUS) [14,15] also introduces
a bias function. However, this bias function is not for restricting
the conformation in a narrow range of the reaction coordinate
p. On the contrary, the bias assists the conformation to fluctuate
smoothly in the range [Pu, Pn] (Figure 5a). In short, AUS is a
method for enhancing the conformational fluctuations along the
reaction coordinate. The bias potential EAUS is given as:

EAUS = E + RTroom ln [Pcano(p, Troom)] (3)

Note that the second term of the right-hand side of this equation is
PMF (see eqns 1 and 2). An MD simulation at T room, where EAUS

is used for evaluation of interatomic forces (force = −∇EAUS),

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC
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Figure 5 Scheme for AUS

(a) The conformation fluctuates in range [pu,pn] of reaction–coordinate axis P with time. (b)
Conformational distribution PAUS(p, Troom) resulted from AUS.

produces a flat distribution function Pcano(p, T room) along the p axis
(Figure 5b) when the function Pcano(p, T room) is accurate enough
and the simulation long enough: PAUS(p, T room) ≈ constant.

Note that the distribution function Pcano(p, T room) is unknown
in advance, and this function is then refined iteratively through
simulations [10]. After a simulation has been finished, Pcano(p,
T room) is updated from the simulation trajectory and the next
simulation is started using the updated function, etc. Through
the iterations, PAUS(p, T room) is flattened more and more, and
when PAUS(p, T room) becomes sufficiently flat, we judge that
Pcano(p, T room) is sufficiently accurate. Finally, we perform a long
simulation using the refined Pcano(p, T room) and store snapshots.
Then Q (Troom) is generated, where a thermal weight at T room is
assigned to each of the stored snapshots (reweighting).

A method known as ‘metadynamics’ refines Pcano(p, T room)
within a simulation [16,17]. Thus, metadynamics is an iteration-
free method and, therefore, suitable for automation of the
simulation procedure [10]. Wang–Landau sampling [18], which
enhances the conformational fluctuations along the energy axis as
explained later, also refines a bias potential within a simulation.

Multi-canonical sampling was originally proposed for the study
of the statistical properties of a physical model, the Potts model
[19]. In this work, the Metropolis Monte Carlo algorithm was
carried out to explore the conformational space. This method
was then applied to biological systems [20–23], and extended
to an MD scheme in which newtonian equations were solved
in the cartesian coordinate space [24]. We denote this MD-based
multi-canonical method as ‘McMD’. The adoption of the cartesian
coordinates makes the sampling readily applicable to a multi-
polypeptide system in an explicit solvent [25].

As with the AUS, multi-canonical sampling introduces an
energy bias function (multi-canonical potential energy) as:

EMC = E + RTroom ln [Pcano(E, Troom)] (4)

where Pcano(E,T room) is the canonical energy distribution function
at T room. An MD simulation using atomic forces of force =
-gradEMC at T room produces a flat distribution function PMC(E,
T room)≈const along the energy axis when the function Pcano

(E, T room) is accurate enough and the simulation long enough.
Therefore, the multi-canonical sampling enhances the fluctuations

along the energy axis: when the system is in a high-energy
range (the shaded range in Figure 2c), the conformation can
overcome energy barriers, and when it is in a low-energy range
(the chequered range in Figure 2c), which corresponds to the room
temperature range, the sampled conformations are accumulated
into the ensemble Q (T room).

Recently, trajectory parallelization has been combined with
McMD [6,26], and applied to a system consisting of a fragment
taken from an intrinsically disordered protein (IDP) and its
partner protein in an explicit solvent [27]. Furthermore, a virtual
system, which has arbitrary physical properties defined by a
researcher, has been introduced to enhance sampling and couple
with the biomolecular system [28]. This procedure was named
‘virtual-system coupled multi-canonical molecular dynamics’ (V-
McMD). The V-McMD method was combined with the trajectory
parallelization and applied to the p53 interdomain linker, which is
an intrinsically disordered region of p53 for regulating p53–DNA
interactions [29].

As well as the AUS, the distribution function Pcano (E, T room) is
unknown in advance. This function is then determined iteratively:
when the ith simulation run has been finished, Pcano(E, T room) is
updated using a recurrent equation (see Higo et al. [10]), EMC

is refined using eqn 4, and the (i + 1)th run is performed. We
call this procedure an ‘every-run’ update method. As mentioned
above, the Wang–Landau sampling method [18] updates Pcano(E,
T room) at every step of the simulation. We call this updating
method an ‘every-step’ update method. A force-biased McMD
[30] is a method that is in between the every-run and every-
step update methods: a long simulation can be regarded as a
succession of simulation intervals (blocks). After a block has been
finished, Pcano(E, T room) is updated using the data in this block, and
the simulation for the next block is started using the updated
Pcano(E,T room). We call this method an ‘every-interval’ update
method, and it is also suitable for automating the simulation
procedure.

Simulated tempering [31,32] is a method in which the
temperature of the system changes as T1→T2→T3→ . . . during
a simulation, satisfying the detailed balancing condition at
temperature switching, and similar methods with simulated
tempering have been proposed [33–35]. In this method, the
temperature fluctuates, covering a range from T room to high
temperatures. When the temperature is elevated, the system
overcomes energy barriers.

A method known as ‘temperature replica exchange method’
(tREM) [36,37] or ‘parallel tempering’ [38] introduces multiple
systems (replicas), the chemical compositions of which are
exactly the same, although the temperatures differ. These replicas
evolve, according to the newtonian equations of motion (or
Monte Carlo method) for a while, and occasionally exchange
their temperatures, imposing the detailed balancing condition at
exchange of temperature. Therefore, each replica experiences
various temperatures during the time evolution. Importantly,
replicas overcome energy barriers when their temperatures are
high. One, at least, of the temperatures is set to T room and, then,
snapshots sampled at T room are assembled in Q(T room). Lyman
et al. [39] expanded the replica exchange method in which replicas
are expressed by different resolution models, such as all-atom and
coarse-grained models, and the resolutions are exchanged among
the replicas in a simulation. In fact, the quantity to be exchanged
is arbitrary [40]; some exchange methods have been proposed:
exchange of van der Waals’ radius [41], coulomb interactions
[42] and hamiltonian (i.e. Hamiltonian exchange) [43].

A method called ‘λ dynamics’ [44,45] also enhances
the conformational fluctuations along an arbitrary structural
parameter (the reaction coordinate called λ), as with AUS. In λ

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC
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dynamics, however, the reaction coordinate is treated as a dynamic
quantity, i.e. λ, and its momentum, pλ, is involved as a dynamic
variable in equations of motion. Ikebe et al. [46] recently proposed
an extended form of λ dynamics, adaptive λ square dynamics
(ALSD), in which different weights are assigned to each energy
term and the weights fluctuate as dynamic variables. ALSD is
effective for sampling a biomolecular system in which very strong
and weak interactions are mixed [47].

In most of conformational sampling methods based on the
Monte Carlo scheme, the conformational changes are controlled
by the detailed balancing condition. Recently, an algorithm,
called the Suwa–Todo algorithm [48], has been proposed based
on a balancing condition (non-detailed balancing condition).
Probability fluxes may then occur in time evolution of the system’s
probability distribution function. Importantly, an equilibrated
distribution is obtained finally in spite of the fact that the detailed
balance condition is broken. Based on the Suwa–Todo algorithm,
biomolecular sampling methods have been proposed [49,50], in
which, although the method has a similar fashion to the replica
exchange method, the exchange (or permutation) rule among the
replicas obeys the Suwa–Todo condition. These methods may
generate a new trend in conformational sampling.

Double density dynamics (DDD) is a sampling method in
which an arbitrary parameter and its momentum are treated as
dynamic variables in the equations of motion [51]. As a result,
the parameter fluctuates in a given range. One may think that
DDD is similar to the λ dynamics or ALSD mentioned above. In
DDD, however, the statistics that microscopic states obey can
be designed arbitrarily. Thus, one can optimize the sampling
efficiency by modulating the statistics in theory.

SEMI-STABLE CONFORMATIONAL CLUSTERS IN AN IDP SYSTEM

We mentioned in the Introduction that the generalized ensemble
method elucidates not only the most thermodynamically stable
state (the largest conformational cluster), but also semi-
stable states, which may appear temporally in the molecular
binding process. In the present review we introduce our recent
computational study on an IDP interacting with its partner
protein. IDP is a challenging system for examining the efficiency
of the generalized ensemble methods because IDPs have
larger conformational fluctuations than ordered proteins (regular
proteins). Therefore, the free-energy landscape of an IDP consists
of both the most stable and the semi-stable states.

An ordered protein has its own tertiary structure (native
structure) determined by its amino acid sequence, which does
not vary largely before and after complex formation. A unique
tertiary structure is not assigned to the IDP when the IDP is in
the unbound (isolated) state, and the unique structure is formed
when it binds to its partner molecules [52–54]. This mechanism
is known as ‘coupled folding and binding’ [54]. Therefore, the
free-energy landscape of an IDP in the unbound state has no
dominant cluster prevailing against the other clusters (Figure 6a).
In the bound state, on the contrary, the landscape has the dominant
cluster (the most stable complex) (Figure 6b).

We have computed the free-energy landscape of two systems:
NRSF–mSin3 [27] and pKID–KIX [55] systems, in which NRSF
and pKID are IDPs, and mSin2 and KIX their partner proteins. In
the present review, we focus on the NRSF–mSin3 system. NRSF
(the N-terminal repressor domain of neural restrictive silencer
factor) is an IDP known to be an essential transcriptional repressor
for neuron-specific genes in non-neuronal cells and neuronal
progenitors, and mSin3 is its partner protein. The complex
structure was solved using NMR [56]: a 15-residue segment of

Figure 6 Schematic free-energy landscape of IDP

(a) Unbound and (b) bound states shown one-dimensionally. The x axis represents the
conformation of IDP, although the system in (b) consists of two molecules (IDP and its partner).
The black filled circle represents the IDP conformation moving along a simulation trajectory
(broken line).

a NRSF fragment folded into a helix when bound to the cleft
on the surface of the paired amphipathic helix (PAH) domain of
mSin3. The regions of NRSF other than the 15-residue segment
are disordered even in the complex structure.

In the McMD simulation, the 15-residue fragment and the
PAH domain of mSin3 were treated. We denote the PAH domain
of mSin3 simply as mSin3. In the initial conformation of the
simulation, these two molecules were distant from each other in
an explicit solvent. Furthermore, the conformation of the NRSF
segment was disordered in advance (Figure 1c in Higo et al.
[27]). After refinement of the multi-canonical energy EMC (eqn
4) via iterative McMD simulations, the production runs were
performed yielding the ensemble Q(300K). McMD of the single
NRSF fragment (i.e. unbound state) was also performed with
a similar simulation procedure. The initial conformation of the
NRSF fragment was randomized in advance and put in an explicit
solvent (Figure 1b in Higo et al. [27]).

Conformational clustering applied to Q(300K) has shown that
the largest cluster (i.e. the most stable cluster) is the native-like
complex cluster (Figure 7 in Higo et al. [27]). Thus, the McMD
simulations provided reliable data, in the sense that the NMR
complex was predicted correctly. In a high-energy range, the
NRSF fragment distributed widely in space without a dominant
structure (Figure 4A in Higo et al. [27]). On the other hand, at
300K, the NRSF segment was trapped into the NRSF-binding cleft
of mSin3 (Figure 4B in Higo et al. [27]). Figure 7 demonstrates
the conformational distribution for Q(300K) projected in an
abstract conformational space. Note that a region with crowded
dots (conformations) corresponds to a low free-energy (PMF)
region (see eqn 2). Figure 7 shows that three domains of crowded
dots exist and that the domains were spaced by broken lines
labelled b1 and b2, along which the dots distribute sparsely. These
sparsely dotted regions correspond to free-energy barriers because
the probability of conformation around the regions is low. The
domains were discriminated well by the molecular orientation
of the NRSF fragment in the NRSF-binding cleft of mSin3
(see Figure 7). Therefore the rearrangement of the molecular
orientation of the fragment requires jumping over the free-energy
barriers.

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC
BY-NC-ND).
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Figure 7 Conformational distribution of Q(300K) for system consisting of
the NRSF fragment and mSin3

(a) The distribution is shown in an abstract 3D space, with coordinate axes (orange–tan coloured
lines) labelled v1, v2 and v3, which are calculated using principal component analysis: each
coloured dot is a projection of a conformation of the NRSF fragment in the 3D space (see Higo
et al. [27]). The closer the two dots, the more similar the two conformations. Some tertiary
structures are also displayed, in which the magenta model is the NRSF fragment and the blue
model mSin3. Yellow spheres indicate the N-terminus of the NRSF fragment. The black sphere
represents the position of the NMR complex structure labelled ‘native’. There are three large
domains spaced by broken lines labelled b1 and b2, along which dots distribute sparsely. Dots
are coloured depending on mutual molecular orientations between the two molecules: the colour
is magenta when the NRSF fragment is approximately parallel to the cleft of mSin3 and cyan
when they are approximately anti-parallel. Otherwise, the colour is yellow. See Higo et al. [27]
for strict colouring method.

Figure 8 represents the conformational distribution of Q(300K)
for the single NRSF fragment. A variety of conformations, such as
helix, hairpin or bent, are seen in the conformational space, which
means that the conformation fluctuates among these structures
in solution at 300K: no dominant structure exists. Therefore,
the NRSF fragment is disordered in the unbound state. It is
interesting that most of the conformations in Q(300K) of the single
NRSF system are found in the NRSF–mSin3 system, whereas the
probabilities assigned to the conformations are different between
the two systems (Figure 10 in Higo et al. [27]). The main feature
for the complex state was a helix, although the single NRSF
fragment adopts both the helix and the hairpin (Figure 3 in Higo
et al. [27]).

From these results, we proposed a mechanism for the coupled
folding and binding of NRSF (Figure 9): in the unbound regimen,
NRSF fluctuates among various conformations. NRSF binds with
the cleft of mSin3 when using these conformations, and non-native
complexes are formed. The NRSF conformation moves in the
bound regime. Otherwise the complex dissociates. Depending on
the first formed non-native complex, the complex may overcome
one or two free-energy barriers, and finally the native complex
is formed. The McMD simulation has shown that the complex
formation with the all-atom model is considerably complicated
where the complex experiences various intermediates overcoming
free-energy barriers.

Figure 8 Conformational distribution of Q(300 K) for single NRSF fragment

Axes v1, v2 and v3 are calculated as for Figure 7. Some conformations are also displayed.
Yellow spheres indicate the N-terminus of the NRSF fragment.

VIRTUAL-SYSTEM COUPLING

Above we introduced various enhanced conformational sampling
methods. Now we introduce a ‘virtual system’, which couples
with the biomolecular system (a ‘real system’) [57]. The entire
system is the sum of the real and the virtual systems, which
are specified by the coordinates x for the real system (i.e.
coordinates of the constituent atoms of the molecular system)
and a state parameter for the virtual system. In a simulation, both
the real and virtual systems move. Advantageously, one can set
the virtual system arbitrarily. We trace the time development of
the entire system rather than pursuing just the motions of the
real system. Recently, the virtual system was integrated with
McMD and AUS, abbreviated as ‘V-McMD’ [28] and ‘V-AUS’
[58], respectively. Although it may be difficult to understand the
coupling between the real and virtual systems intuitively, the
computational technique is simple as explained below (see Higo
et al. [28] for details).

Imagine a virtual system, for which the state is specified by
a discrete ordinal number i (‘virtual-state index’). We assume
that when the virtual-state index is i, the energy of the real system
E(x) is confined in an energy zone zi as: zi = [Emin

i ] � E � Emax
i ].

Figure 10a represents a space constructed by the energy axis and
virtual-state axis. Zones zi−1 and zi (e.g. z1 and z2) overlap each
other as well as zi and zi + 1 (e.g. z2 and z3) do, but two zones,
zi − 1 and zi + 1, do not overlap because they are set as: Emin

i+1 −
Emax

i−1 > ε, where ε is a positive but infinitely small number. In
time development of the entire system, the conformation of the
real system varies according to the equations of motion, and the
virtual-state index jumps i to i + 1 or i − 1, which causes the
variable energy range for the real system to be reset. If inter-virtual
state transitions are exhibited in the simulation, the real system
fluctuates within zi, which means that only a narrow region of the
conformational space is sampled (i.e. sampling efficiency is low).

We define the inter-virtual state transitions as follows: suppose
that E is at the filled-circle position in Figure 10b. Then, the
virtual state i may jump to the virtual state i + 1 without changing
x of the real system. On the other hand, if E is at the open-
circle position, the virtual state may move to i − 1. At this point,
we introduce a rule: during a time interval of [t, t + τ ], the
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Figure 9 Simplified free-energy landscape integrated from the all-atom detailed free-energy landscapes for the NRSF–mSim3 complex and single-chain
NRSF

Arrows represent conformational changes. Yellow spheres in the molecular models indicate the N-terminus of the NRSF fragment.

Figure 10 Space constructed by the energy axis and virtual-state axis,
where four virtual states exist as an example

(a) Although the widths of the zones are shown equally in this figure, they are not necessarily
the same in the actual sampling. (b) Transitions among adjacent virtual states (see text).

virtual state number is fixed to i, and x moves according to the
ordinary equations of motion confining E in zi. At time t + τ the
transition to zi − 1 or zi + 1 is achieved with transition probability
ρ t (0 � ρ t � 1), at which x does not move. Due to the arbitrary
property of the virtual system, one can set the transition
probability ρ t and the interval τ , arbitrarily, which may increase
the sampling efficiency [28,57]. Consequently, by travelling
the virtual states, the real system fluctuates across the wide
conformational space overcoming energy barriers. The detailed
balance for this time development is theoretically well satisfied,
as described in the Appendix. Introduction of the virtual system
to AUS is explained in Higo et al. [58].

Recently, Moritsugu et al. [59,60] introduced ‘multiscale
essential sampling’ (MSES), in which a protein system was
expressed by an all-atom model, coupled with a coarse-grained
model(s) to enhance conformational sampling. MSES was applied
to protein–protein binding of a barnase–barstar system [61]. The
free-energy landscape for association/dissociation demonstrated

the existence of the non-native complex forms as well as the
native complex. Although the methodological fashion of MSES is
considerably different from the virtual-system coupling method,
the two methods have a similarity in introducing non-realistic
systems for coupling with the real system.

FREE-ENERGY LANDSCAPE FOR DIMER FORMATION BY V-McMD

In the present review, as an example of a generalized ensemble
method applied to a biomolecular complex formation, we show the
free-energy landscape of homo-dimer formation of an endothelin-
1 (ET1) derivative computed by V-McMD simulations. ET1 is a
biomolecule of 21 amino acids, known as a strong vasoconstrictor
of a vessel’s smooth muscles [62–64]. This molecule is a potent
drug target because it is related to many human diseases [65–69].
The tertiary structure was solved by NMR spectroscopy [70–72]
and X-ray crystallography [73]. In either study, the N-terminal
region adopts a strand and the middle region forms an α-helix.
As two disulfide bonds link the strand and the helix, the tertiary
structure is compact and stable regardless of its short polypeptide
length.

ET1 aggregates at a concentration of 1–4 mM. To increase
the solubility, the N-terminus was then extended by two charged
amino acid residues, lysine and arginine [74], which exist in
its precursor protein. This extended ET1 is denoted as KR-
ET1. Unexpectedly and of interest, KR-ET1 has less activity
than ET1 in spite of an increase in solubility. Then, X-ray
crystallography [75] showed that KR-ET1 forms a homo-dimer
(PDBID; 1t7h) (Figure 11a), in which the orientations of the two
molecules are anti-parallel to each other, although the molecular
tertiary structure is similar to that of the single ET1 structure.
In this study, five amino acid residues at the C-terminus of
KR-ET1 were removed because those residues are presumably
disordered and exposed in solution. This truncated peptide of 18
amino acids (sequence: KRCSCSSLMDKECVYFCH) is denoted
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Figure 11 Homo-dimer complex of KR-CSH-ET1 determined by X-ray
crystallography

(a) Two ‘N’ characters indicate the N-termini of the molecules. An intermolecular β-sheet is
formed between two strands indicated by black broken-line arrows. Intermolecular hydrophobic
stacking between phenylalanine side-chain rings is shown by the rectangle labelled ‘St’. Two
intermolecular salt bridges, formed between arginine and aspartic acid, are indicated by the
rectangles labelled ‘SB’. Red arrows are used to identify the molecular orientations of the two
molecules, which point from the Cα atom of lysine to the Cα atom of the last cysteine in the
sequence KR-CSH-ET1. (b) Initial conformation of V-McMD simulation.

as KR-CSH-ET1. Figure 11a indicates that this complex is
stabilized by three factors: intermolecular β-sheet, intermolecular
hydrophobic stacking of phenylalanine side-chain rings and two
intermolecular salt bridges. Therefore, the experimental study
of Hoh et al. [75] reported that this homo-dimer structure has
considerable stability.

The dimer formation of KR-CSH-ET1 is an appropriate target
for assessing V-McMD because the complex form is discriminated
well by two quantities: the mutual molecular orientation, ea1 · ea2,
and the intermolecular separation distance, r12, the exact definition
of which is given later. Previously we performed V-McMD
simulations for KR-CSH-ET1 dimer formation [28], where the
two molecules were confined in a spherical droplet of an explicit
solvent, and the 2D free-energy landscape was computed. The
free-energy landscape at room temperature was predominantly
composed of the crystallographic native complex structure. In
the present review, we performed V-McMD of the KR-CSH-
ET1 dimer formation with a periodic boundary condition, and
computed the free-energy landscape.

The simulation system was generated as follows: one KR-
CSH-ET1 was immersed at the centre of a periodic box (box
size: 453 Å3; 1 Å = 0.1 nm) filled by an explicit solvent; the
other KR-CSH-ET1 was put at a position apart from the first
molecule. The system consisted of 8706 atoms (580 atoms for
the KR-CSH-ET1 molecules, 9 Na+ , 11 Cl− ions and 2702 water
molecules). The number of ions was determined to set the solution
at a physiological salt concentration. Then a constant-pressure
MD simulation was performed at room temperature and pressure
of 1.0 atm, by which the initial conformation for V-McMD
was prepared (resultant box size: 44.003683 Å3) (Figure 11b).
The V-McMD simulation procedure was similar to that for the
previous study [28] as follows: first refinement of EMC was
done via iterative V-McMD simulations, and then a V-McMD
simulation was performed to produce an entire conformational
ensemble. The conformational ensemble Q(T room) was constructed
by reweighting the snapshots in the entire ensemble.

In V-McMD the energy moves in a wide range as mentioned
previously. KR-CSH-ET1 may then unfold when the system is
elevated to a high-energy region. The purpose of the present
review is to show the free-energy landscape for the molecular
binding, and refolding of KR-CSH-ET1 is outside its scope. Thus,
we restrained the tertiary structure of each KR-CSH-ET1 weakly
by intramolecular restraint functions (see Higo et al. [28] for

Figure 12 Free-energy landscapes

Free-energy landscapes at (a) 310 K, (b) 350 K, and (c) 370 K. x-axis is mutual molecular
orientation, which is a scalar product of ea 1 and ea 2, where ea1 and ea2 are unit vectors
parallel to the red-colored vectors defined in Figure 11a: −1 � ea 1 · ea 1 � 1. Orientations
of two KR-CSH-ET1 molecules are approximately parallel, anti-parallel, and perpendicular to
each other for ea 1 · ea 2 ≈ 1, ea 1 · ea 2 ≈ −1, and ea 1 · ea 2 ≈ 0 respectively. y-axis is
inter-molecular separation distance r12 = | rG1−rG2 | where rG1 and rG2 are positions of the
geometrical centres of the two molecules, and the geometrical centre is computed from the
Cα-atomic positions of each molecule. The free-energy value (PMF; Eq. 1), whose height is
shown by the coloured scale bars, is set so that the lowest PMF is zero. Tertiary structures from
three clusters at 300 K are shown in panel (a), where the small black filled circle indicates the
position of the native complex experimentally determined.

technical details). Thus, the translational and rotational motions
of the KR-CSH-ET1 molecules were free to maintain their tertiary
structures.

In the present review, we set T room as 310K and obtained
a canonical ensemble Q(310K). Figure 12(a) demonstrates a
free-energy landscape at 310K, presented in 2D by ea1 · ea2,
and r12, the exact definition of which is given in Figure 12(a).
From Figure 12(a), the largest cluster (i.e. the lowest free-
energy cluster) is native like, whereas the two KR-CSH-ET1
molecules are arranged anti-parallel and the three factors,
mentioned above, stabilized the complex structure. We call
this cluster the native-like cluster. The landscape provided two
other clusters: in the second largest cluster (the second lowest
free-energy cluster), the orientations of the two KR-CSH-ET1
molecules are approximately perpendicular to each other: ea1 · ea2

≈ 0 The third largest cluster (the third lowest free-energy
cluster) was characterized by ea1 · ea2 ≈ 1, which means that
the relative orientations of the two molecules are parallel. In
the solvent–droplet boundary condition [28], the free-energy
landscape had only the native-like cluster. It is likely that the
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solvent–droplet boundary condition would result in a stronger
pressure than 1 atm in the droplet centre due to the surface
tension of the spherical droplet. This strong pressure could
stabilize the well-packed conformation (i.e. native complex), and
then probabilities assigned to the non-native complexes were
diminished. The periodic boundary condition does not induce such
an artificial excess pressure because there is no free surface in this
treatment.

Figures 12(b) and 12(c) demonstrate free-energy landscapes
at 350K and 370K, respectively. The largest and second largest
clusters are connected at 350K, although the third largest cluster
is still isolated. At 370K, the third largest cluster is connected
to the second largest cluster. We presume that, once a non-native
complex is formed in the cluster of ea1 · ea2 ≈ 0, this complex can
transition to the native-like cluster relatively readily. On the other
hand, once a non-native complex has been formed in the cluster of
ea1 · ea2 ≈ 1, this complex should overcome a high-energy barrier
to reach the native-like cluster via the cluster of ea1 · ea2 ≈ 0.
Otherwise, this complex dissociates, and the free KR-CSH-ET1
molecules may reassociate after that. Another interesting result
from Figure 12 is that the second largest cluster at 300K and 350K
is the third largest cluster at 370K.

We exemplify, in this section, that the generalized ensemble
method is a powerful tool to compute the free-energy landscape,
through which we can discuss the thermodynamic stability of the
clusters, the cluster networks and the temperature dependence of
the networks.

CONCLUSION

In the present review, we have introduced various generalized
ensemble methods, focusing in particular on methods
applicable to biomolecular association/dissociation with an
atomic resolution in explicit solvent to obtain the free-energy
landscape. To make the methods useful for drug discovery,
the methods should not only explain basic mechanisms for
association/dissociation, but also predict the complex forms
and their stabilities. From this point of view, the sampling
methods are useful if they generate a free-energy landscape for
complex formation in explicit solvent at atomic resolution. In
the Introduction, we listed three approaches: fast computations,
multiple simulation runs and generalized ensemble methods.
Note that these approaches can be combined, e.g. trajectory
parallelization has been used for multi-canonical sampling and
AUS. The free-energy landscape obtained from the generalized
ensemble method does not involve information on rate constants.
However, from knowledge about the locations of many locally
stable states, it is possible to look for the shortest path between a
pair of conformational clusters, e.g. using the string method [76],
and the activation energy overcoming the energy barrier can be
computed. In addition, combination of the generalized ensemble
methods with the rate-constant estimation method, using the
Markov state model [7,8] among conformational clusters, may
be useful.

In living matter, a number of biological molecules (proteins,
metabolites and DNAs) crowd together in solution (water and
ions). Recent studies reveal that crowding itself provides and/or
enhances the biomolecules’ activities [77,78]. These large-scale
studies, however, view the biomolecules, neglecting their atomic
details. Therefore, detailed intermolecular information from the
generalized ensemble methods is useful to complete the molecular
picture for living matter.

Most MD simulations in current use are based on classical
mechanics (newtonian dynamics). On the other hand, many

important processes taking place in living matter, such as catalytic
reactions, are quantum chemical. Thus, development of quantum-
mechanical MD [79–83] is an important step for elucidating
vividly biochemical reactions in living matter, although there is
a way to go before being applied to large biomolecular systems.
One of the goals of the generalized ensemble methods is to be
coupled with the quantum-mechanical technique in the molecular
crowding environment.

APPENDIX

As explained in the main text, the virtual-system coupling method
allows two types of variations for the entire system (molecular
system plus virtual system): the biomolecular conformational
variations in real space and the virtual-state index variations. In
this appendix, we show that these variations satisfy the detailed
balance. We simplify the system as illustrated in Figure 13, which
does not negate the generality of the discussion. In Figure 13,
there are only two virtual states (index vm; m = 1,2) and
the real space is divided into small bins to specify the site
positions. Each site is denoted by i(vm), where i is the site ordinal
number in a virtual state vm. The biomolecular conformational
variations are intra-virtual state transitions shown by horizontal
arrows in Figure 13, and the virtual-state index variations are
inter-virtual state transitions shown by the vertical arrows. The
probability assigned at i(vm) is denoted as ρi(vm )(t) , where t is
time.

Time development of ρi(vm )(t) by the intra-virtual state transi-
tions is expressed formally as:

ρi(vm )(t + �τ ) =
k∈vm∑

k

ak(vm )→i(vm )ρk(vm )(t), (5)

where ak(vm)→i(vm) is the transition probability from k(vm) to i(vm)
during �τ . Then the term ak(vm )→i(vm )ρk(vm )(t) is the probability flux
from k(vm) to i(vm) during �τ . Summation of the stay probability
in i(vm) and the outflux probabilities from i(vm) is unity:

k∈vm∑
k

ai(vm )→k(vm ) = 1(∀i) (6)

Then, eqn 5 is rewritten using eqn 6 as:

ρi(vm )(t + �τ ) = ρi(vm ) (t) + �ρi(vm ), (7)

where:

�ρi(vm ) =
k∈vm∑
k( �=i)

[
ak(vm )→i(vm )ρk(vm )(t) − ai(vm )→k(vm )ρi(vm )(t)

]

=
k∈vm∑
k( �=i)

�Ak . (8)

Eqn 7 is applied to all the sites in each virtual state, and further time
development is achieved by repeating this procedure M times:
ρ i(vm)(t)→ρ i(vm)(t′), where t′ = M�τ .

Next, we consider the inter-virtual state transitions. Suppose
that two sites, i(v1) and j(v2) belong to different virtual states and
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Figure 13 Scheme for explaining detailed-balance satisfaction in the virtual-system coupling method

are connected by vertical arrows as in Figure 13. Then, variation
of ρ i(v1)(t′)ρ j(v2)(t′) by the inter-virtual state transition is:

{
ρ∗

i(v1) (t ′) = bi(v1)→i(v1)ρi(v1) (t ′) + bj(v2)→i(v1)ρ j(v2) (t ′)
ρ∗

j(v2) (t ′) = bi(v1)→ j(v2)ρi(v1) (t ′) + bj(v2)→ j(v2)ρ j(v2) (t ′) ,
(9)

where bi(v1)→ j(v2) and bj(v2)→i(v1) are the inter-virtual state transition
probabilities from i(v1) to j(v2) and from j(v2) to i(v1) respectively.
Two quantities, bi(v1)→i(v1) and bj(v2)→ j(v2), are the stay probabilities
in i(v1) to j(v2), respectively. The probability invariants are given
as:
{

bi(v1)→i(v1) + bi(v1)→ j(v2) = 1
bj(v2)→i(v1) + bj(v2)→ j(v2) = 1

(10)

Using the invariants, eqn 9 is rewritten as:

{
ρ∗

i(v1) (t ′) = ρi(v1) (t ′) + �ρ∗
i(v1)

ρ∗
j(v2) (t ′) = ρ j(v2) (t ′) + �ρ∗

j(v2)
(11)

where
{
�ρ∗

i(v1) = bj(v2)→i(v1)ρ j(v2) (t ′) − bi(v1)→ j(v2)ρi(v1) (t ′)
�ρ∗

j(v2) = bi(v1)→ j(v2)ρi(v1) (t ′) − bj(v2)→i(v1)ρ j(v2) (t ′)
(12)

The asterisks in eqns 9, 11 and 12 are introduced to indicate clearly
that time t′ does not evolve by the inter-virtual state transitions
because the real system does not move with these transitions. Eqn
11 is applied to all sites that are connected by vertical arrows in
Figure 13.

In the virtual-system coupling method, the variation ρi(vm )(t) →
ρ∗

i(vm )(t + M�τ ) is achieved by repeating eqn 7 M times followed
by eqn 11. Repetition of this procedure yields a stationary state
as:

ρi(vm ) (t) → ρ∗
i(vm ) (t + M�τ ) → ρ∗

i(vm ) (t + 2M�τ )

→ . . . → ρi(vm ) (∞) .

Below we determine the stationary state. First, remember that V-
McMD or V-AUS is designed so that probabilities converge to a
constant for each virtual state:

ρi(vm )(∞) = cm (m = 1, 2) (13)

where the two constants c1 and c2 are not necessarily the same
because eqn 7 does not involve the inter-virtual state transitions.
Eqn 13 is equivalent to the following equation:

ak(vm )→i(vm ) = ai(vm )→k(vm ) (14)

where (m = 1, 2). Next, remember that the inter-virtual state
transition probabilities in V-McMD or V-AUS are set as:

bj(vm′ )→i(vm ) = bi(vm )→ j(vm′ ) = 1 (15)

where m = m′.
Then, we define the following probabilities:

ρi(v1) = ρ j(v2) = const (∀i and ∀ j) (16)

From eqns 14 and 15, the set of probabilities defined by eqn 16
satisfies the following equations:
{

�Ak = 0
�ρ∗

i(vm ) = 0 (17)

Therefore, eqn 16 defines the stationary state and eqn 17 shows
that the detailed balance is satisfied (i.e. the stationary state is the
equilibrium state).

In the above discussion, M was constant. However, M can vary
arbitrarily in the sampling to reach the same equilibrium state
(eqn 16). Besides, the discussion above does not alter for other
systems with many more virtual states and an infinitely small bin
size.
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