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Responding appropriately to changes in oxygen availability is
essential for multicellular organism survival. Molecularly, cells
have evolved intricate gene expression programmes to handle
this stressful condition. Although it is appreciated that gene
expression is co-ordinated by changes in transcription and
translation in hypoxia, much less is known about how chromatin
changes allow for transcription to take place. The missing link
between co-ordinating chromatin structure and the hypoxia-
induced transcriptional programme could be in the form of a class
of dioxygenases called JmjC (Jumonji C) enzymes, the majority

of which are histone demethylases. In the present review, we will
focus on the function of JmjC histone demethylases, and how these
could act as oxygen sensors for chromatin in hypoxia. The current
knowledge concerning the role of JmjC histone demethylases in
the process of organism development and human disease will also
be reviewed.

Key words: chromatin, chromatin remodeller, histone methyla-
tion, hypoxia, hypoxia-inducible factor (HIF), Jumonji C (JmjC),
transcription.

INTRODUCTION

Changes to oxygen availability or increased oxygen demand
create an imbalance called hypoxia. Hypoxia is an important
physiological stimulus for embryo development of mammals,
but it is also a serious component of the pathology of many
human diseases [1–3]. Given its importance, it has attracted
a great amount of research, which has helped to understand
how the physiology of oxygen sensing and response works.
However, at the cellular and molecular level, great unknowns
still exist. The molecular mechanisms underlying the cellular
response were significantly boosted by the discovery of the
main transcription factor family controlled by oxygen, called
HIF (hypoxia-inducible factor) in the early 1990s [4]. HIF is
now known to be a heterodimer of the oxygen-controlled subunit
HIF-α and the oxygen-insensitive subunit HIF-1β, which was
originally identified as a binding partner for the aryl hydrocarbon
receptor, and as such has the gene name of ARNT (aryl
hydrocarbon nuclear translocator) [5].

In mammalians there are three genes for HIF-α subunits, HIF-
1α, HIF-2α (gene name EPAS1, for endothelial Pas protein 1) and
HIF-3α [6]. HIF-α is controlled by oxygen post-translationally via
the action of dioxygenase enzymes such as prolyl hydroxylases
and FIH (factor inhibiting HIF). Prolyl hydroxylase-mediated
hydroxylation of HIF α-subunits creates a high-affinity binding
site for the ubiquitin ligase complex containing the tumour
suppressor VHL (von Hippel–Lindau protein) [7–10]. VHL is
part of the cullin-2, elongin B/C and the small RING finger
protein RBX1 ligase complex [11], which promotes Lys48-linked
ubiquitination, and hence proteasomal-mediated degradation.
FIH-mediated hydroxylation produces an inhibitory moiety in
the C-terminal transactivation domain of HIF-1α and HIF-2α,
preventing the binding of co-activator proteins such as p300 and

hence reducing the transcriptional activity of the transcription
factor [12].

HIF-dependent genes are varied and many, with over 100 direct
genes being validated and several more putative genes recently
identified by genomic approaches, such as ChIP-sequencing
[13]. Genes involved in restoration of oxygen homoeostasis, cell
survival and growth as well as metabolism have received great
interest from the medical community, as these can be used not only
as biomarkers, but also as direct therapeutic targets for diseases
such as cancer [14].

One interesting new class of HIF-dependent targets are
the dioxygenase enzymes called JmjC (Jumonji C)-containing
proteins [15]. These enzymes are, for the most part, protein
demethylases, and were identified as being structurally similar
to the HIF hydroxylase FIH [16,17]. On the basis of the
structural analysis of these enzymes, it became clear that these
enzymes, much like FIH, would require molecular oxygen and 2-
oxoglutarate to catalyse their enzymatic reactions, suggesting that
JmjC enzymes could act as molecular oxygen sensors in the cell.
In the present review, we will discuss the evidence available on
how JmjC histone demethylases can contribute to oxygen sensing
by altering chromatin structure and function.

CHROMATIN AND HISTONE METHYLATION

Chromatin is the collective name for DNA and the protein
complexes, of which the nucleosome (DNA and histone octamer)
is the basic unit [18]. Initially thought as a passive impediment
to nuclear processes, it is now known that chromatin is highly
dynamic, and responsive to several stimuli and stages of
development [19]. Two major states of chromatin are generally
accepted: heterochromatin (compact/silent) and euchromatin
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Figure 1 Histone methylation marks associate with chromatin compaction
status

Active chromatin or euchromatin is associated with a more open status and is characterized by
several types of histone methylation marks as depicted. On the other hand, silent chromatin
or heterochromatin is associated with closed and compacted status, also characterized by a
subset of histone methylation patterns as depicted. JmjC enzymes can thus, in principle, control
chromatin status by removing the histone methyl groups.

(open/active) [18]. However, imaging approaches have revealed
additional distinct compaction levels do exist in both types of
chromatin domains [20].

Chromatin structure can be altered by several mechanisms,
either involving ATP-dependent remodellers [21] or changes to
the histone octamer [22,23], including alternative histone and
histone post-translation modifications. The number of possible
histone modifications is vast; however, one such modification,
with relevance to the present review, is histone methylation.
Histone methylation can occur on several lysine or arginine
residues, primarily on histone H3 and histone H4 [24]. Lysine
methylation, unlike acetylation, does not change the charge
of the protein. As such, methylation marks change chromatin
structure by different mechanisms, involving the recruitment or
inhibition of recruitment of distinct enzymatic complexes [25,26].
Functionally, histone methylation can both activate and repress
transcription [25] as well as control DNA replication [26]. Histone
methylation can lead to compaction or relaxation of chromatin
(Figure 1), depending on which histone residue is methylated
and, as such, how the recruitment of the corresponding enzymatic
complex is altered [22].

Soon after its identification, histone methylation was thought
to be a stable modification, as no enzymes were known to remove
this mark. However, now it is known that histone methylation can
be removed by two different classes of enzymes: the LSD (lysine-
specific demethylase) family and the JmjC family (Table 1). For
a more detailed review of the LSD family, please see [27].

JmjC OXYGEN REGULATION

On the basis of the presence of the JmjC domain, there are
currently 32 proteins in humans belonging to this class (Table 1).
However, not all of these have been associated with histone
demethylation. Although some of the JmjC proteins without
histone demethylase activity have important biological functions
in the cell, the present review will focus on the regulation of

Table 1 JMJC-containing protein in humans according to UniProt

Y, yes; N, no.

Gene name UniProt number Additional names Histone demethylase activity (Y/N)

HR O43593 Hairless, HAIR N
HSPBAP1 Q96EW2 HBAP1 N
HIF1AN Q9NWT6 HIF1N, FIH N
JARID2 Q92833 JARD2 N*
JMJD1C Q15652 JHD2C N†
JMJD4 Q9H9V9 - N
JMJD6 Q6NYC1 PSR Y‡
JMJD7 P0C870 - N
JMJD8 Q96S16 - N
KDM2A Q9Y2K7 FBXL11, JHDM1A Y
KDM2B Q8NHM5 FBXL10, JHDM1B Y
KDM3A Q9Y4C1 JMJD1A Y
KDM3B Q7LBC6 JMJD1B Y
KDM4A O75164 JMJD2A Y
KDM4B O94953 JMJD2B Y
KDM4C Q9H3R0 JMJD2C Y
KDM4D Q6B0I6 JMJD2D Y
KDM4E B2RXH2 JMJD2E Y
KDM5A P29375 RBBP2, JARID1A Y
KDM5B Q9UGL1 PLU1, JARID1B Y
KDM5C P41229 JARID1C Y
KDM5D Q9BY66 JARID1D Y
KDM6A O15550 UTX Y
KDM6B O15054 JMJD3 Y
JHDM1D Q6ZMT4 KDM7A Y
KDM8 Q8N371 JMJD5 Y
MINA Q8IUF8 MINA53, NO52 Y§
NO66 Q9H6W3 C14orf169 Y
PHF2 O75151 CENP35, JHDM1E Y
PHF8 Q9UPP1 JHDM1F Y
TYW5 A2RUC4 - N
UTY O14607 - N

*No histone demethylase activity, but modulates methyltransferases.
†No evidence found yet.
‡Only in vitro.
§Not the main enzymatic activity.

JmjC histone demethylases. As mentioned above, the JmjC class
of proteins require oxygen and 2-oxoglutarate for their activity.
Elegant structural work from the Schofield group and other
laboratories has greatly helped in the understanding of how target
selectivity is achieved, as well as with the general mechanism of
demethylation by these enzymes [24,28–30].

For catalytic activity, JmjC histone demethylases use molecular
oxygen and 2-oxoglutarate with release of CO2, succinate and
formaldehyde [29,31]. As such, reduction in the availability
of oxygen would have an impact on catalytic activity. Work
performed using recombinant prolyl hydroxylases and FIH
proteins has shown that these enzymes have different Km values
for oxygen [32]. Although the prolyl hydroxylase Km value is
approximately 230 μM O2, the FIH Km value for O2 is only
90 μM [32]. These results indicated that prolyl hydroxylases are
inhibited with a smaller reduction in the availability of O2 than
FIH. However, thus far oxygen affinity for the majority of the
JmjC enzymes has not been determined. One enzyme that has
been investigated, which belongs to the KDM4 (lysine-specific
demethylase 4) family, is KDM4E [33]. It was shown that KDM4E
reacts slowly with O2, at a similar level to prolyl hydroxylase 2.
It was also suggested that KDM4E has an incremental response
over physiologically relevant ranges of O2 [33]. This analysis did
indicate the potential of these enzymes to act as oxygen sensors
in the cell. However, it would be necessary for more biochemical
studies to be performed in vitro to really establish, and compare,
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Table 2 Methylation marks as a determinant of chromatin states

Methylation mark Associated activity

H3K4me2/3 Hallmark of regulatory elements at the 5′ end of
transcriptionally active genes or of genes poised for
transcriptional activation

H3K4me1 Hallmark of enhancer sequences
H3K36me1/2 Restricted to the body and 3′ end of the gene
H3K36me2/3 and H3K79me2/3 H3K36me2/3 and H3K79me2/3 are enriched in gene bodies
H3K9me3 and H4K20me3 Associate with non-genic regions, repetitive or transposable

DNA elements including satellite sequences and long
terminal repeats

H3K4me3 and H3K27me3 Bivalent domain in embryonic stem cells associated with
complex transcription

the oxygen requirements of JmjC histone demethylases with
other known dioxygenases such as prolyl hydroxylases and
FIH.

An additional regulation of JmjC demethylases by oxygen,
albeit indirect, is via transcriptional regulation. Transcriptional
analyses, using several different cellular systems, have shown
that a great number of JmjC histone demethylases are hypoxia-
inducible at the mRNA levels [34]. These include KDM2A,
KDM2B, KMD3A, KDM3B, KMD4B, KDM4C, KDM4D,
KDM5A, KDM5A, KDM5B, KDM5C, KDM5D, KDM6A,
KDM6B, KDM8, JARID2 and PHF8 (plant homeodomain finger
protein 8) (references in [34]). Some of these enzymes have been
shown to be direct targets of HIF-1α. The HIF-1α-regulated JmjC
histone demethylases are: KDM3A [35–38], KDM4B [35,36],
KDM4C [36], KDM5C [39] and KDM6B [40]. Whether any
of the additional JmjC histone demethylases that were found
to be hypoxia-inducible are also HIF-dependent remains to be
investigated. In addition, their regulation by HIF-2 has not been
directly investigated, apart from KDM3A, KDM4B and KDM4C,
which are mainly regulated by HIF-1α [36]. As such, it is not
known whether the remaining hypoxia-inducible JmjC enzymes
are HIF-1-specific targets. Current studies should help elucidate
these questions.

JmjC ACTIONS ON CHROMATIN STRUCTURE AND CHROMATIN
REMODELLERS

Histone methylation is probably one of the most studied chromatin
modifications with a great number of studies describing the role
of a specific methylation mark in the control of gene expression.
The recent availability of large-scale and genomic sequencing
data has also helped to associate different methylation marks with
the diverse chromatin states [41]. Generally, methylation at Lys4,
Lys36 or Lys79 of histone H3 are hallmarks of actively transcribed
genes, whereas methylation of Lys9 and Lys27 of histone H3, as
well as of histone H4 Lys20, are associated with transcriptional
repression and heterochromatin formation [42] (Table 2). Mutual
exclusiveness of these marks establishes the importance of histone
demethylases in the remodelling of chromatin and reprogramming
of gene expression.

Considering the role of the methylation marks and demethylase
specificity, KDM2 and KDM5 families can promote the formation
of repressed chromatin, KDM3, KDM6 and KDM7 act as
chromatin activators and the KDM4 family may have different
effects on chromatin status [41]. However, less is known about
the interplay between histone demethylases and other important
types of chromatin-remodelling enzymes, such as the ATP-

dependent chromatin remodellers [CRCs (chromatin-remodelling
complexes)].

Four subfamilies of CRCs have been characterized in mammals:
SWI/SNF, CHD (chromodomain helicase DNA binding), Ino80
and ISWI (imitation-SWI protein) [34]. They share a similar
ATPase domain responsible for the disruption of protein–DNA
interactions in nucleosome using the energy of ATP hydrolysis.
However, all four subfamilies specialize in particular purposes
and biological context, depending on their interaction network
[18,21]. The broad interaction network of chromatin remodellers
is regulated by unique domains flanking the ATPase domain or
by the presence of accessory subunits (Figure 2).

There is very little information concerning how JmjC enzymes
interact or control the action of CRCs. However, a few studies
have suggested that demethylases can alter the action of such
remodellers. LSD1 and several JmjC enzymes were found in
a genetic screen in Drosophila as corepressors of SWI/SNF
activity during wing development [43]. In addition, KDM6A was
shown to interact with BRM, one of the catalytic helicases in the
SWI/SNF complex, modulating the acetylation of H3K27 (where
K indicates the lysine residue under investigation, i.e. H3K27
is Lys27 of histone H3) via binding with CBP (cAMP-response-
element-binding protein-binding protein) [44].

Despite the lack of direct research investigating how JmjC
control the action of CRCs, indirect evidence does exist to
support this hypothesis. As such, ISWI- and CHD- remodelling
complexes contain tandem CDs (chromodomains) and PHDs
(plant homeodomains) that are able to recognize methylated
lysine residues (Figure 3A). Histone methylation was shown
to be important for the recruitment and stabilization of CRCs
[45–47]. Different methylation marks are associated with ISWI
and CHD binding. They are recruited to promoter and enhancer
elements enriched in H3K4 methylation, known to regulate
transcription initiation [45–47], recruited to methylated H3K36 in
gene bodies linking remodellers to transcription elongation and
termination [48] and recruited to the H3K9 methylated regions of
repressed chromatin (Figure 3A). As such, given the importance
of histone methylation for CRC recruitment, it would be rational
to hypothesize that histone demethylases can regulate this process.
Future research directed at this particular question would be
necessary to fully establish how JmjC enzymes co-ordinate the
action of CRCs.

An interesting example of the action of CRCs controlled by
histone methylation marks is the recognition of methylated lysine
residues by the NuRD (nucleosome-remodelling deacetylase)
complex (Figure 3B). NuRD is a repression complex that
combines deacetylase activity with ATP-remodelling activity
to form a compacted chromatin state, and thus repress gene
expression. It contains a CHD3/CHD4 ATPase domain with
tandem PHDs and CDs in its N-terminus. The PHD fingers
were shown to interact with H3K9me3 [where me indicates
the methylation status, from me1 (monomethylated) to me3
(trimethylated)] and this interaction can be regulated by the
methylation status of H3K4 [49]. Methylation of H3K4 by Set9
reduces the association of the complex with the histone H3
tail, which is the most probable mechanism for regulating the
formation of repressed chromatin by the NuRD complex [50].
The histone demethylase LSD1 has been linked with the NuRD
complex [51], indicating that indeed histone demethylases can
modulate CRC’s activity. However, the involvement of JmjC in
the control of NuRD recruitment has not been investigated thus
far.

Almost all CRCs apart from CHD have been implicated in the
hypoxia response [52–55]. As such, and considering the level of
cross-talk present in chromatin remodelling, more links between
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Figure 2 Schematic representation of chromatin-remodelling complexes, highlighting the domains present in different subunits

ARID, AT-rich interactive domain; HAND-SANT-SLIDE, DNA-binding domains; HSA, domain binding nuclear actin-related proteins (ARPs) and actin; NuRF, ISWI-related chromatin remodeller.

Figure 3 How histone methylation controls CRC recruitment

(A) Histone methylation marks localization and chromatin remodellers associated with them. bromo, bromodomain; me, methylation site. (B) Regulation of NuRD recruitment by histone methylation
marks. Set9, H3K9 methyltransferase.

lysine demethylation and ATP-dependent chromatin remodelling
will be discovered in the near future.

JmjC HISTONE DEMETHYLASES AND TARGET SPECIFICITY IN LOW
OXYGEN

KDM2A was the first published JmjC-domain-containing protein
shown to have histone demethylase activity [31]. Since then, many
more JmjC histone demethylases have been uncovered and their
histone targets investigated. In vitro studies have revealed that

while some JmjC have quite particular selectivity for histone
residues, others have a broader range of targets (Figure 4).
However, which JmjC histone demethylase is active in cells is
still unknown, and most likely will vary from cell type to cell
type, as well as developmental state.

Studies in hypoxia have shown that histone methylation
marks are indeed increased (Figure 5) [56–58]. Exposure of
Hepa1-6 cells to 0.2 % O2 for 48 h induces global increases in
H3K4me2, H3K4me3, H3K79me3, H3K27me3 and H3K9me2
[56]. Another study found that changes in histone methylation
marks in mouse macrophage cells were only visible after 24 h
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Figure 4 JmjC family domain structure and histone targets

ARID, AT-rich interactive domain; C5HC2-ZF, C5HC2 zinc finger domain; CXXC-ZF, CXXC zinc finger domain; FBox, F-box domain; JmjC, Jumonji C domain; JmjN, Jumonji N domain; LRR,
leucine-rich repeat domain; TPR, tetratricopeptide domain; Tudor, Tudor domain.

of exposure when oxygen levels were below 3%. Furthermore,
at 1% oxygen there was a global increase in H3K9me2,
H3K9me3 and H3K36me3, and these changes were attributed
to inhibition of histone demethylase activity [58]. These studies
suggest that a variety of JmjC enzymes can be inhibited by low
oxygen conditions; however, given that most of these enzymes
can target several histone residues (Figure 4), additional work
is required to really establish which enzymes are altered in
hypoxia.

One study has reported a global increase in H3K4me3 at 1%
oxygen, as a result of KDM5A inhibition [57]. That study also
observed an increase in H3K4me3 at HMOX1 (haem oxygenase
1) and DAF gene promoters [57], thus suggesting that global and
local increases in H3K4me3 due to KDM5A inhibition during
hypoxia may lead to altered gene transcription.

However, there is still very little information about the role
of histone methylation on chromatin structure and JmjC-specific
actions during hypoxia. One important question to answer is
how are particular histone modifications associated with active
and repressive transcription altered following hypoxic stress.
In addition, dynamic analysis is also lacking, as the oxygen
sensing and response system in cells is usually programmed to
reset after prolonged hypoxia, as is observed in the regulation
of HIF levels by prolyl hydroxylases. As such, it would be
hypothesized that changes in histone methylation marks would

Figure 5 Hypoxia induces the increase of certain histone methylation marks

Diagram depicting the relationship between oxygen concentration and increased levels of histone
methylation marks observed in several studies.

be more dramatic and directly dependent on JmjC inhibition
at earlier times of hypoxia exposure. Prolonged hypoxia would
involve not only inhibition of these enzymes, but also, and most
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Table 3 Phenotypes associated with JmjC depletion studies in model organisms

–, no orthologue; ND, not determined or no data.

Phenotype in depletion studies

JmjC Mus musculus Danio rerio Caenorhabditis elegans Drosophila melanogaster

KDM2B Partial peri/postnatal lethal, lowered sperm count, defective
neural tube development [112]

ND ND Embryonic lethal [113]

KDM3A Metabolic defects, adult obesity and male infertility
[114–116]

– – ND

KDM4A Impaired cardiac stress response [60] ND Increased germline apoptosis [117] Abnormal male wing extension and
reduced male lifespan [118]

KDM4D No detected phonotypical change [119] ND
KDM5A Decreased apoptosis in HSC and myeloid progenitors [120] ND Defects in vulva formation and

reduced lifespan [83,121]
Developmental defects [122]

KDM5B Embryonic lethal [123] ND
KDM5C Cardiac looping and neuralation defects [124] Increased neuronal cell death and

abnormal dendrite development
[90]

JARID2 Embryonic lethal [125–127] ND – ND
KDM6B Perinatal lethal and defective lung development [128] ND Defective vulva development [129] Larval lethal [130]
KDM6A Partial male embryonic lethal, defects in neural tube and

cardiac development and female embryonic lethal [63,124]
Abnormal posterior development [59]

PHF2 Partial neonatal lethal, adipogenesis defects [61] Detects in brain development [131] Defects in body movement [97] –
KDM8 Embryonic lethal [132] ND ND ND
JMJD6 Perinatal lethal with multiple developmental defects [133] Defects in heart brain, somites and

notochord [134]
Mild cell engulfment defects [135] Enhanced apoptosis in developing eye

[136]

likely, compensatory mechanisms by which increased expression
of JmjC proteins would occur.

JmjC FUNCTIONS IN DEVELOPMENT

Although cell culture studies have revealed important information
on the complex molecular functions, regulation and targets of
JmjC histone demethylases, whole organism studies are vital
in understanding the biological significance of these enzymes
in vivo. The importance of JmjC demethylases in biological
processes is illustrated by their association with diseases and
depletion studies in model organisms (Table 3), showing that
they have key roles in development. Studies in invertebrate
model organisms found developmental defects when certain
JmjC enzymes are depleted. For example, knockout of two PHF
family orthologues in zebrafish, Jhdm1da and Jhdm1db, leads to
abnormal posterior development [59]. Also knockdown of Lid,
the KDM5 family orthologue in Drosophila, causes numerous
developmental defects through deregulation of homeotic gene
expression [60].

Several JmjC histone demethylases have been depleted in mice
(Table 3). Phenotypes of these knockouts have large variation,
ranging from embryonic lethality in KDM8, JARID2 and KDM5B
knockouts to male infertility and obesity in the KDM3A knockout,
to no detectable phenotypical change in KDM4D depletion.
This demonstrates that, although some of these demethylases are
essential in development, functional redundancy partly as a result
of overlapping targets is likely to account for milder phenotypes
observed from depletion of others. Mechanistic insights have been
gained from some of these studies. For example, PHF2-knockout
mice have reduced adipose tissue, PHF2 interacts with the key
regulator of adipogenesis CEBPA and is proposed to promote
adipogenesis through co-activation of CEBPA [61,62]. This has
led to the suggestion that PHF2 may be a novel therapeutic target
for the treatment of obesity and metabolic diseases.

The cardiac defects observed in KDM6A-depleted mice are
likely to be due to deregulation of cardiac gene expression
programmes, as KDM6A is recruited to cardiac-specific enhancer
regions where it associates with multiple transcription factors
[63]. However, for several of the depletion studies performed,
molecular mechanisms to explain the observed phenotypes are
still ill-defined and will require further investigation. Furthermore,
for many of the JmjCs, there is limited information from
in vitro studies and no/limited information from in vivo studies,
which will need to be addressed in order to characterize these
enzymes.

JmjC FUNCTIONS IN HUMAN DISEASE

One aspect that highlights the importance of a particular gene is its
association with human disease. As such, there are numerous links
between JmjC histone demethylases and human diseases, most
notably cancer and neurological disorders (Figure 6). Genetic
alterations in JmjCs, including KDM2A, KDM2B, KDM4A,
KDM4B, KDM42C and KDM5B, have all been linked to
cancer progression and these enzymes have been suggested as
chemotherapeutic targets [64–73].

The KDM2 group of JmjCs appear to have both cancer-
promoting and -inhibiting functions depending on cellular
context, through their regulation of cell proliferation. In cell
culture, NF-κB (nuclear factor κB)-dependent colon cancer
cell growth is impaired by KDM2A [74] and KDM2B has
been demonstrated to negatively regulate cell proliferation
via repression of ribosomal RNA genes [75]. Conversely,
overexpression of KDM2A and KDM2B in mouse embryo
fibroblasts confers resistance to stress-induced senescence [66].
KDM2B positively regulates cell proliferation and growth through
silencing of the cell cycle inhibitor p15Ink4b [66,76]. KDM2A
is overexpressed in a subset of non-small cell lung cancer
patients and has been reported to drive cancer progression in
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Figure 6 JmjC alterations in human disease

Diagram of the observed associations of JmjC expression in different human diseases,
highlighting KDM4 as particularly susceptible to deregulation in a variety of human
pathologies.

these tumours through up-regulation of ERK1/2 (extracellular-
signal-regulated kinase 1/2) signalling [64]. KDM2B has been
identified both as oncogene and tumour suppressor through
proviral insertional mutagenesis studies in rodents [77,78].
Various leukaemias and bladder cancers display up-regulated
KDM2B [65,66] and it is proposed to play a key role in leukaemia
progression through loss of p15Ink4b function [65]. As well as
being overexpressed in certain cancers, KDM2A and KDM2B
have also been found to be down-regulated in prostate cancer and
glioblastoma respectively [75,79]. These studies have highlighted
the cell-dependent nature of the KDM2 family’s mode of
action.

The KDM4 group has also been associated with various
cancers. KDM4A is down-regulated in bladder cancer [80], and
KDM4A and KDM4B are up-regulated in breast cancer and
peripheral nerve sheath tumours respectively [67,81]. KDM4B
is oestrogen inducible and has been shown to promote oestrogen-
stimulated breast cancer proliferation [82]. Amplification of
KDM4C has been reported in breast cancer, oesophageal
squamous cell cancer and medulloblastoma [68,69,83] and a
translocation involving KDM4C is present in mucosa-associated
lymphoid tissue lymphomas [70]. KDM4C overexpression
induces transformation in immortalized mammalian epithelial
cell lines, suggesting a role for KDM4C in driving tumorigenesis
[83]. This is supported by studies showing that knockdown of
KDM4C limits proliferation in mammalian cancer cell lines
[83–85].

The KDM5 group also has strong association with human
diseases. KMD5A is associated with tumourigenesis in the lung
[86] and is also associated with haemopoietic malignancies [87].
KDM5B has low expression levels in normal adult tissue, except in
the testes, but it is found overexpressed in the bladder, prostate and
breast cancer [71–73]. KDM5B is a transcriptional co-activator

of the androgen receptor, but can also function as a transcriptional
repressor [88]. It has also been shown to promote breast cancer
proliferation in both in vitro and in vivo. Depletion of KDM5B
limits growth in MCF-7 breast cancer cells and in a mouse
breast cancer model, and this correlates with repression of tumour
suppressor genes including BRCA1 (breast cancer early-onset 1)
[89].

Several JmjCs, including KDM5C and PHF8, have strong links
to neurological development and defects. KDM5C is important
for neuronal survival in primary mammalian neurons and
dendritic development in zebrafish [90]. Furthermore, mutations
in KDM5C are frequently found in X-linked mental retardation
[91–94]. KDM5C is involved in REST (repressor element 1-
silencing transcription factor)-mediated transcriptional repression
and loss of KDM5C activity, leading to deregulation of neuronal
genes under transcriptional regulation of REST, which has been
proposed as the mechanism between KDM5C and X-linked
mental retardation [95]. PHF8 loss-of-function mutations have
also been found in X-linked mental retardation patients as well
as patients with cleft palate [96], it is suggested that KDM5C
and other X-linked mental retardation-associated genes are under
regulation by PHF8 via the transcription factor ZNF711 (zinc
finger protein 711) [97].

KDM6A has been associated both with cancer and X-
linked syndromes such as Kabuki syndrome [98–101]. Similarly,
KMD6B contributes to tumour suppression by activation of
p14ARF [102], as well as co-operating with p53 [103]. It has
also been associated with pro-inflammatory gene expression in
immune cells [104–106].

CONCLUSIONS

Epigenetic deregulation is a key driver of tumorigenesis and
neurological disorders as well as other diseases. The pathological
roles of enzymes modifying histone methylation, including JmjC
histone demethylases, is only beginning to be understood and
these enzymes provide promising drug targets. As such, several
studies have already attempted to employ structural and medicinal
chemical strategies to target these enzymes for therapy [104,107–
111]. As JmjC histone demethylases require oxygen as a cofactor,
it is possible to speculate that histone marks can be rapidly altered
when hypoxia is present. This would indicate that chromatin
structure would change and adapt to low oxygen, possibly even
more rapidly than any other process in the cell, and would thus
set the landscape for the hypoxia-induced transcriptional program
observed in many cells. However, additional work regarding
the specific requirements for oxygen for each of the JmjCs is
required to fully verify this hypothesis. As more information
is gathered regarding the molecular function of the individual
JmjC enzymes, more targeted approaches can be employed. Thus
there is still great potential for using JmjC enzymes as valid new
targets for therapy in human disease. Future research analysing
the role of individual JmjC enzymes, and their relationship with
chromatin-remodelling complexes, should provide exciting and
useful insights into the biology of JmjC enzymes as well as exploit
their potential for therapeutic targeting.
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