Bovine adrenomedullary cells in culture have been used to study the role of myosin in vesicle transport during exocytosis. Amperometric determination of calcium-dependent catecholamine release from individual digitonin-permeabilized cells treated with 3μM wortmannin or 20mM 2,3-butanedione monoxime (BDM) and stimulated by continuous as well as repetitive calcium pulses showed alteration of slow phases of secretion when compared with control untreated cells. The specificity of these drugs for myosin inhibition was further supported by the use of peptide-18, a potent peptide affecting myosin light-chain kinase activity. These results were supported also by studying the impact of these myosin inhibitors on chromaffin granule mobility using direct visualization by dynamic confocal microscopy. Wortmannin and BDM affect drastically vesicle transport throughout the cell cytoplasm, including the region beneath the plasma membrane. Immunocytochemical studies demonstrate the presence of myosin types II and V in the cell periphery. The capability of antibodies to myosin II in abrogating the secretory response from populations of digitonin-permeabilized cells compared with the modest effect caused by anti-myosin V suggests that myosin II plays a fundamental role in the active transport of vesicles occurring in the sub-plasmalemmal area during chromaffin cell secretory activity.

This content is only available as a PDF.
You do not currently have access to this content.