Jurkat T cells showed a major, early decrease in blue autofluorescence in response to Fas/Apo-1/CD95 cross-linking or stimulation with cell-permeant ceramide. This indicates the oxidation/depletion of NADH or NADPH before the onset of apoptosis. Kinetic studies, cytofluorimetric multiparameter analyses and cell sorting experiments indicated a close temporal relationship between NAD(P)H oxidation/depletion and the dissipation of the mitochondrial transmembrane potential (∆Ψm). In contrast, NAD(P)H depletion was detected well before several other changes associated with late apoptosis, including enhanced superoxide generation, phosphatidylserine exposure on the cell surface, loss of cytosolic K+, decreased cytoplasmic pH, nuclear DNA fragmentation, cell shrinkage, loss of viability and the appearance of the mitochondrial antigen APO2.7. Full activation of caspase 9 and caspase 3 appeared to be correlated with the appearance of superoxide anions in the mitochondria, and followed the drop in NADPH. Overexpression of the apoptosis-inhibitory proto-oncogene Bcl-2, which encodes an inhibitor of the mitochondrial permeability transition (PT) pore, delayed both the ∆Ψm disruption and the depletion of NAD(P)H. Similar effects were observed with the pharmacological PT pore inhibitors, bongkrekic acid and cyclosporin A. Thus there appears to be a close functional relationship between mitochondrial and cellular redox changes during early apoptosis; events that are inhibited by Bcl-2.

This content is only available as a PDF.
You do not currently have access to this content.