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A beginner’s guide to 
integrating multi- omics data 
from microbial communities

Microbial communities are immensely important and occur nearly everywhere, but their inner 
workings are still being discovered. The early years of microbiome research have been dominated 
by cataloguing the sheer diversity of microbes in these communities. Now, more and more studies 
try to understand connections between the microbes, between the way communities are built 
and how they function, and between their activity and the effects on their surroundings, including 
host organisms like humans. Omics measurements, or meta- omics as they are called when multiple 
organisms are measured at the same time, are a cornerstone in this endeavour. Here, we will discuss 
why their integration is important, how it can be achieved, what pitfalls may be avoided and which 
approaches are taken by integrative studies.
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Beginner’s Guide

Omics analyses of microbiomes

Microbiomes are diverse communities of microorganisms 
that are responsible for essential environmental and host- 
associated processes. Many of their important functions 
are biochemical, involving the primary or secondary 
metabolism. These functions can be studied by omics 
analyses of the informative molecules of the central 
dogma of molecular biology, i.e., DNA, RNA, proteins 
and their metabolites. In this beginner’s guide, we use 
the general term ‘analyte’ for either of these molecules, 
while we stick to DNA, RNA, protein and metabolite 
for specific cases. Technological advances in DNA and 
RNA sequencing and mass spectrometry of proteins 
and metabolites have driven considerable progress in 
cataloguing and understanding the molecular make- up 
and functioning of microbial communities in the last 
decades.

Omics technologies aim to measure as many 
analytes as possible within a system, e.g., all genes in 
a genome or all transcripts in a transcriptome (see 
Figure  1). The prefix ‘meta-’ indicates that the system 
under study comprises multiple species: in the case of a 
microbiome, this can consist of hundreds or thousands 
of different microbial taxa. Finally, multi- omics means 
the system- wide analysis of multiple analyte pools, 
e.g., the metagenome and metaproteome. The term is 
sometimes extended to multiple connected systems, e.g., 
the microbial metagenome and the host metabolome. 
Omics technologies generate large data volumes, whose 
processing and decoding have high computational 

demands. Nevertheless, these analyses are often less 
laborious than traditional, culture- based microbiological 
methods – in some cases, they are also the only option 
to learn about microbiomes when members of the 
microbiome are not culturable in isolation. Moreover, 
the phenotypes of isolates may not reflect their activity 
in a microbiome and in association with a host, because 
of interactions such as cross- feeding, inter- species 
signalling, chemical inhibition of competitors and 
immune responses.

Why integrate?

Each ‘meta- omics level’ is a proxy for the functions of the 
microbiome system. Each level provides information on 
only a part of this system. Integration of multiple omics 
levels can give more insight in the functioning of the 
whole system e.g., to answer questions on the production 
of a metabolite that may be beneficial or detrimental to 
a host (e.g., a short chain fatty acid in a gut bacterium). 
Measuring the metabolome may be a faithful proxy for 
the metabolite level, but the metabolome is a community 
measure. It does not enable us to distinguish between 
mechanisms, such as producers disappear or become 
inactive; producers invest into alternative metabolic 
pathways; and other community members metabolize 
our product of interest. Therefore, integration of, e.g., 
metagenomics, metatranscriptomics and metabolomics, 
including lipidomics, provides mechanistic hypotheses 
for a better understanding of the community state or 
dynamics. This can lead to mechanistic hypotheses, 
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generalizable observations or indications of functionally 
important community members.

Integration can also improve the detection of 
analytes in one data set by borrowing information 

from another: the measurements of the second level 
can be adjusted (e.g., choice of instrumentation or 
sampling depth); or the data mining can be adapted 
(e.g., by setting the search space in metaproteomics). 
Integration can serve to validate the results of models 
that are based on observations of one level. Or it can be 
part of an exploratory study of a system that is not yet 
well described and where information is lacking at all 
omics levels (as was the case in the recent description of 
the Asgard archaea). If the state of the microbiome is of 
interest for classification purposes, e.g., as a diagnostic 
tool, the integration of several omics levels can improve 
the sensitivity and/or specificity and suggest biomarker 
panels made up of different kinds of analytes. Several 
approaches for integration of multi- omics data exist. 
They can be roughly divided into three groups (Figure 2): 
(a) the flow of genetic information through omics levels; 
(b) data fusion models that identify common patterns 
or interactions; and (c) prior knowledge on functional 
units, e.g., metabolic pathways. Combinations of the 
three approaches can be employed in the same study. The 
development of strategies to combine and complement 
these approaches is an active field of research.

What to consider when planning a multi-
omics study

Which omics levels contain the most important 
information for the question at hand? How much 
knowledge is there on the system at that level, and 

Summary

• Microbial communities or microbiomes are made up 
of many different, interacting microbial species.

• To understand how microbiomes function, they 
are commonly studied by directly measuring 
‘meta- omes’, e.g., the metagenome (the genomes 
of all present microbes), metatranscriptome (all 
transcripts of all microbes), metaproteome (all 
proteins), or metabolome (the metabolites of all 
microbes).

• Because every meta- omics data set provides only 
parts of the picture, integration of multiple omics 
data is key to mechanistic insights into microbial 
communities.

• Multi- omics study design and analysis makes 
provisions for biological and technical differences in 
the meta- omics data sets.

• Depending on the system under study and the 
research question, integration can make use of:
1. common sequence information;
2. data fusion methods to identify common patterns 
or interactions;
3. prior knowledge of genetic or metabolic 
functions.

Figure 1. Meta- omics analytes, technologies, and associated information.
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can this be taken advantage of? For metagenomics 
or metatranscriptomics data, curated collections of 
genomes from isolates or metagenomes exist, including 
gene annotations and gene function predictions. The 
tens or hundreds of thousands of genomes in these 
collections far outnumber the species recorded in 
phenotype databases. Most of the millions of recognized 
gene families or orthologous groups are also not well 
described. Therefore, databases that link gene identities 
or orthologous groups to metabolic reactions, pathways, 
kinetics or models can only provide a means to integrate 
a limited proportion of sequence- based information 
with metabolomes.

How reliable are the different omics data sets? Each 
omics data set is affected by its technology’s limitations. 
For example, metaproteomics can only reach a shallower 
sampling depth than sequencing- based analyses and 
often does not reach the same phylogenetic resolution. 
The time scales in which the analytes can be measured 
accurately also vary: DNA can be very stable, but it 
can also represent dead and dormant microorganisms. 
RNA can be very unstable and does not always yield 
reliable results when long experimental handling times 
are required. Proteins and metabolites have specific life 
times, with some being very labile and others outlasting 
their producers in the environment.

Should more omics or more samples be measured? 
There are usually many more analytes than samples, 
which aggravates problematic characteristics of omics 
data sets. The uncertainty in the identification of the 
analytes may also affect the observed abundance, 
including not reporting an analyte. Most omics data 
sets are not truly quantitative, e.g., the number of reads 
linked to one taxon does not specify a cell count, and 
the peak intensities of different metabolites cannot be 
compared, as each metabolite has its own response factor 
which depends on the type of metabolite. Frequently, the 
technological sampling or measurement depth is not 
adequate to capture all analytes and very high and very 
low levels cannot be measured with the desired accuracy.

How related are the omics data sets? Preferably, the 
different omics are measured from the same samples 
or subjects, to reduce the effects of individual variation 
on the integration. There are also technical differences 
in the data sets: the total counts in metagenomics and 
-transcriptomics data are capped by the sequencing 
technology (and, therefore, compositional), while for 
metabolites the abundance of one metabolite does not 
per se affect the detectable amount of all others (but 
there can be specific effects on detectability, as in ion 
suppression). Metatranscriptomics functional data has a 
high proportion of zeroes, which mainly occur due to 

Figure 2. Schematic representation of integration strategies. Each meta- omics data set is visualized as a matrix of samples × 
analytes. In all examples, the samples that are measured at the two meta- omics levels are representative of the same systems. 
(a) Due to sequence identity, the analytes (e.g., proteins and genes) can be directly related across the meta- omics levels; 
(b) the relationship between the analytes in the two data sets is unknown and data fusion methods are employed to reveal 
common patterns within the samples (black dots) together with the most important analytes (arrows); (c) for well- described 
systems, links between the analytes in the two data sets are established based on existing knowledge, e.g., genome scale 
metabolic models. Metabolic models of each species (white boxes) are combined into common compartment models of 
the whole community and their host (grey box), of which the metabolites are obtained. Approaches to extending metabolic 
models to community level are still in their infancy.
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under- sampling, while the high (strain- level) resolution 
of metagenomics yields taxa which are absent in most 
samples. It’s important to take these differences into 
account when designing studies, when choosing omics 
levels and in the multi- omics integration.

Applications

After a few pioneering multi- omics studies of human- 
associated and soil microbiomes, multi- omics 
investigations of microbiomes have become more 
frequent in the last 5  years – contributing to human, 
animal, plant, environmental, and biotechnological 
research.

Sequence- and genome-centric 
integration

As mentioned earlier, metagenomics, metatranscriptomics 
and metaproteomics lend themselves to integration due 
to the sequence identity: metatranscriptomics reads can 
be mapped onto assembled metagenomes or can be 
co- assembled with metagenomic reads (Figure  3). This 
increases the detectability of highly expressed genes in low- 
abundant taxa. Proteins must be identified based on protein 
or peptide databases, and it has been demonstrated that this 
process is aided by the use of metagenomic information from 
the same sample. Integration has been used to determine the 
correlation between transcript and protein abundance, the 
level of variation of the different omics levels and hence the 
potential to find mechanistically important players in either 
data set.

An important concept in integrated meta- omics is 
genome- centric analyses: genomes are reconstructed 
from metagenomics data and the other omes are 
mapped to them. The genome, therefore, gives context 
to the observations (e.g., other genetic functions in the 
same genome, abundances in different samples). Based 

Figure 4. The interpretation of correlations between 
analytes depends fully on the relationship between the 
samples. Here, analytes A and B are limited by a third (white 
circle in the boxes, e.g. a precursor or nutrient source) which 
has one fixed level under condition 1 and another under 
condition 2. The correlation between analytes A and B over 
all samples of both conditions simultaneously is positive 
(blue box) and could suggest positive feedback from A to B, 
while focusing on specific conditions, negative correlation 
by inhibition (orange) or no correlation (red) should be 
concluded.

Figure 3. Example of information flow in a study integrating multiple meta- omics levels. Black circles indicate raw data, grey 
circles represent knowledge represented in databases, white circles are major data processing steps; boxes connect data sets 
that are connected by common information.
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on phylogenetic relationships, genomes can be linked to 
prior phenotypic or biochemical knowledge. Examples 
of applications include functional analyses of human 
gut, soil, ground- and wastewater microbiomes. An 
advantage of these methods is that they are applicable 
to both described and completely unknown organisms. 
Genome- centric approaches to metabolomics 
integration based on reference strain metabolite profiles 
and co- cultures are currently being developed.

Data fusion

Probably the most common combination of omes are 
metagenomics and metabolomics: it has been studied 
in most microbiomes, from various human niches, over 
model and non- model terrestrial and marine animals, to 
plant rhizospheres, to soil and to biotechnological mixed 

communities. However, this integration is challenging: 
there is, of course, no sequence- identity to rely on. Due to 
the absence of biologically meaningful links, applicable 
methods are called data ‘fusion methods’, as opposed 
to integration methods. In the simplest case, fusion is 
attempted by pair- wise correlations of, e.g., all microbial 
taxa with all metabolites, where correlations that are 
above a certain threshold are represented in a ‘correlation 
network graph’. However, in this example, it is likely that 
many real processes are not observed except for cases 
where metabolites can only be produced and metabolized 
by single taxa or by sets of highly correlating taxa. More 
advanced methods estimate multivariate correlations 
between data sets by calculating linear combinations 
(components) of the analytes in one data set that co- vary 
highly with linear combinations of the other data set(s) 
(see Figure  2b). These covarying components are said 

Figure 5. Meta- omics data with examples of integration methods. The methods make use of numerical, sequence or 
metabolism information and to different extents of existing databases. Abbreviations/method names: AGORA – assembly of 
gut organisms through reconstruction and analysis, BacDive – bacterial diversity metadatabase, CCA – canonical correlation 
analysis, deepNOG – deep network architecture to assign EggNOG5 orthologous groups, DIABLO – data integration analysis 
for biomarker discovery using latent variable approaches for omics studies, EggNOG – database of orthology relationships, 
functional annotation and gene evolutionary histories, gNOMO – multi- meta- omics pipeline for non- model organisms, 
GTDB – genome taxonomy database, GTDBtk – GTDB toolkit, GEM – genome scale metabolic models, HMDB – human 
metabolome database, HMMer – methods using profile hidden Markov models, IMP – integrated meta- omic pipeline, KEGG 
– Kyoto Encyclopedia of Genes and Genomes, MaxBin2 – automatic tool for binning metagenomics sequences, MetaBAT2 – 
metagenome binning with abundance and tetra- nucleotide frequencies, metaCyc – highly curated, non- redundant reference 
database of small- molecule metabolism, Metlin – metabolite and chemical entity database, MiMeNet – Microbiome- 
metabolome network, MIMOSA2 – model- based integration of metabolite observations and species abundances, mmvec 
– microbe- metabolite vectors, MOFA – multi- omics factor analysis, M2M – Metage2Metabo (a software system for the 
characterization of metabolic complementarity starting from annotated individual genome), OMP – ontology of microbial 
phenotypes, O2PLS – two- way orthogonal PLS (partial least squares), PALM – pipeline for the analysis of longitudinal multi- 
omics data, PhenDB – prediction of bacterial phenotypes, SILVA – automatic software pipeline for sequence retrieval, quality 
assignment and alignment of ribosomal RNA genes, Traitar – microbial trait analyzer, VMH – virtual metabolic human, 
MMseqs2 – many- against- many sequence searching.
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to describe the ‘common’ or ‘joint’ information. Most of 
these methods assume analyte levels to be symmetrically 
distributed, but new methods are being developed that 
take the zero- inflated structure of microbiome data into 
account. Note that for interpreting correlations, it is of 
extreme importance to consider over which samples 
the correlation is calculated as they can change due to 
changing experimental conditions (Figure 4).

All data fusion methods have in common that 
biological interpretation is done afterwards, which is a 
problematic situation: the omics way of working that 
revolutionized biological research suffers from the 
curse of dimensionality, as more and more analytes are 
measured in an untargeted approach for a small set of 
samples. To model such data in a meaningful manner, 
thousands of samples would be needed to find the 
relevant analytes between the noise. If studies have a 
limited number of samples, it is of essential importance 
that the biological function of each feature is known and 
used to link analytes within and between datasets.

Integration with prior knowledge

Knowledge- based analyses of metabolic networks, 
which represent both sequence- based omics and 
metabolomics, have been applied in soil, wastewater 
treatment and human microbiomes. Here, the omics 
levels are summarized as functions of the whole 
community. Because they are additionally linked by 
known metabolic pathways, these approaches are 
successful in providing insights into metabolic pathways 
that respond to changing conditions (e.g., drought stress, 
temperature, or nutrition).

The microbial metagenome has become an omics 
level that is included in multi- omics studies of complex 
organisms such as plants, e.g., Brassica rapa, mice, cows 

and humans – especially in the context of metabolic 
and inflammatory diseases. Systematic references for 
mechanistic links of host and microbiome are not yet 
well developed, especially outside of human physiology. 
Hence, the associations between microbiome taxa 
or functions and host gene expression, epigenetics, 
metabolism and phenotype must necessarily be 
established by data fusion methods. Another trend 
in host- focused studies is to attempt classification of 
individuals (e.g., as a diagnostic tool for colorectal 
carcinomas) based on multi- omics biomarker panels, 
where supervised data fusion approaches are applied.

Outlook

Integration strategies adapt to and are facilitated by 
technological advances: for instance, recent research in 
a biogas reactor community has demonstrated several 
ways of how quantitative measurements at multiple 
meta- omics levels provide better functional explanations 
of community phenotype. High- quality multi- species 
metabolic models, methods for metagenomics- based 
construction of metabolic models and the integration 
of multi- omics measurements into such models are 
important research fields. Measurements and integration 
of the spatial structure of microbial communities will 
play a bigger role in the future. Large, openly accessible 
multi- omics data sets, databases with genetic and 
metabolite information and data standards (Figure 5) are 
developed, maintained and grown thanks to individual 
and community efforts. A key challenge for meta- omics 
integration will be the development of methods that 
combine the approaches described earlier to make sound 
use of data and meaningful knowledge – and to use the 
gained information to develop new research questions.■

Further reading

Readers who are interested in knowing more are referred to recent reviews which cover multi- omics integration 
from different points of view:
• Sequence- based omics: Heintz- Buschart A, Wilmes P. Human Gut Microbiome: Function Matters. Trends Microbiol. 

2018 26 (7): 563–574. doi: 10.1016/j.tim.2017.11.002.
• Metabolomics: Bauermeister A, Mannochio- Russo H, Costa- Lotufo LV, Jarmusch AK, Dorrestein PC. Mass spectrometry- 

based metabolomics in microbiome investigations. Nat Rev Microbiol. 2021 doi: 10.1038/s41579- 021- 00621- 9.
• Multi- omics networks and beyond: Jiang D, Armour CR, Hu C, Mei M, Tian C, Sharpton TJ, Jiang Y. Microbiome Multi- 

Omics Network Analysis: Statistical Considerations, Limitations, and Opportunities. Front Genet. 2019 10: 995. doi: 
10.3389/fgene.2019.00995.

• Metabolic modelling: Colarusso A, Goodchild- Michelman I, Rayle M, Zomorrodi AR. Computational modeling 
of metabolism in microbial communities on a genome- scale. Curr Opin Syst Biol. 2021 26: 46–57. doi: 10.1016/j.
coisb.2021.04.001.

Specific methodological questions are addressed in the current literature:

(Continued)
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• Multi- omics power calculation: Tarazona S, Balzano- Nogueira L, Gómez- Cabrero D, Schmidt A, Imhof A, Hankemeier T, 
Tegnér J, Westerhuis JA, Conesa A. Harmonization of quality metrics and power calculation in multi- omic studies. Nat 
Commun. 2020 11 (1): 3092. doi: 10.1038/s41467- 020- 16937- 8.

• Quantitative multi- omics: Delogu F, Kunath BJ, Evans PN, Arntzen MØ, Hvidsten TR, Pope PB. Integration of absolute 
multi- omics reveals dynamic protein- to- RNA ratios and metabolic interplay within mixed- domain microbiomes. Nat 
Commun. 2020 11 (1): 4708. doi: 10.1038/s41467- 020- 18543- 0.

Data analysis packages may be found here:
• Multiple omics analytics: http://mixomics.org/
• General data fusion methods: https://cran.r-project.org/web/packages/multiblock/
• R.JIVE: O'Connell MJ, Lock EF. R.JIVE for exploration of multi- source molecular data. Bioinformatics. 2016 32 (18): 2877- 

9. doi: 10.1093/bioinformatics/btw324. https://cran.r-project.org/web/packages/r.jive/
Example applications of multi- omics analyses can be found here:
• A pioneering study in permafrost soils: Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz 

SJ, Harden J, Turetsky MR, McGuire AD, Shah MB, VerBerkmoes NC, Lee LH, Mavrommatis K, Jansson JK. Multi- omics 
of permafrost, active layer and thermokarst bog soil microbiomes. Nature. 2015 521 (7551): 208–212. doi: 10.1038/
nature14238.

• Time- resolved multi- omics in wastewater treatment: Herold M, Martínez Arbas S, Narayanasamy S, Sheik AR, Kleine- 
Borgmann LAK, Lebrun LA, Kunath BJ, Roume H, Bessarab I, Williams RBH, Gillece JD, Schupp JM, Keim PS, Jäger C, 
Hoopmann MR, Moritz RL, Ye Y, Li S, Tang H, Heintz- Buschart A, May P, Muller EEL, Laczny CC, Wilmes P. Integration of 
time- series meta- omics data reveals how microbial ecosystems respond to disturbance. Nat Commun. 2020 11 (1): 
5281. doi: 10.1038/s41467- 020- 19006- 2.

• Human gut microbiome multi- omics in colorectal cancer: Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima 
T, Sakamoto T, Watanabe H, Masuda K, Nishimoto Y, Kubo M, Hosoda F, Rokutan H, Matsumoto M, Takamaru H, 
Yamada M, Matsuda T, Iwasaki M, Yamaji T, Yachida T, Soga T, Kurokawa K, Toyoda A, Ogura Y, Hayashi T, Hatakeyama 
M, Nakagama H, Saito Y, Fukuda S, Shibata T, Yamada T. Metagenomic and metabolomic analyses reveal distinct 
stage- specific phenotypes of the gut microbiota in colorectal cancer. Nat Med. 2019 25 (6): 968–976. doi: 10.1038/
s41591- 019- 0458- 7.

• Hertel J, Heinken A, Martinelli F, Thiele I. Integration of constraint- based modeling with fecal metabolomics reveals 
large deleterious effects of Fusobacterium spp. on community butyrate production. Gut Microbes. 2021 13: 1. doi: 
10.1080/19490976.2021.1915673.

Further reading (Continued)
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