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Understanding large and 
complex biological data sets 
using visualization

Molecular biology experiments are generating an unprecedented amount of information from a 
variety of different experimental modalities. DNA sequencing machines, proteomics mass cytometry 
and microscopes generate huge amounts of data every day. Not only is the data large, but it is also 
multidimensional. Understanding trends and getting actionable insights from these data requires 
techniques that allow comprehension at a high level but also insight into what underlies these trends. 
Lots of small errors or poor summarization can lead to false results and reproducibility issues in large 
data sets. Hence it is essential we do not cherry-pick results to suit a hypothesis but instead examine 
all data and publish accurate insights in a data-driven way. This article will give an overview of some 
of the problems faced by the researcher in understanding epigenetic changes (which are related to 
changes in the physical structure of DNA) when presented with raw analysis results using visualization 
methods. We will also discuss the new challenges faced by using machine learning which can be 
helped by visualization.
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Introduction

Modern science institutes generate gigabytes of data. 
For example, a single human genome can now be 
sequenced in a day, generating 1.5 GB of raw DNA 
information, and it is becoming increasingly easy to 
generate data from multi-omics experiments. For 
example, RNA Seq (sequencing the transcriptome), 
chromatin immunoprecipitation (ChIP)-Seq 
(sequencing to understand epigenetics), proteomics 
and metabolomics experiments are becoming routine. 
Imaging experiments are also adding to this data 
accumulation – in the fields of spatial transcriptomics 
or proteomics, generating several gigabytes per square 
millimetre of sample image analysed. Data collection 
is now not an issue. What is becoming difficult is 
how to sensibly process and integrate all the data and 
make it comprehensible to understand the underlying 
mechanisms and function.

To gain insight from these large data sets, having the 
right tools to process and visualize the data is essential. 
Imagine trying to understand a protein structure from 
raw X-ray crystallography output or understand a 
gene regulatory network without being able to draw 
a graph. These views don’t represent true reality but 
are abstractions of something more complex to allow 
the scientist to build a mental model of the complex 
biological process.

The focus of this article will be why visualization 
is important in understanding complex information 
generated as part of bioinformatics analysis. To illustrate 
this we will look at some of the steps that are used in 
studying the epigenetics and chromatin structure 
highlighting the pros and cons of high-throughput 
bioinformatics analysis and where visualization can help.

Understanding the non-coding genome

Where do proteins bind to DNA?
Gene expression is modulated by epigenetic processes 
that are not yet fully understood. Broadly, proteins 
bind to the non-coding elements of DNA which causes 
different regions to interact with each other in 3D 
space, and in a tissue-specific manner to control gene 
expression.

Trying to understand the complex structure of 
elements that bind to these regions on the genome is 
a complex task. Genome browsers are a great example 
of visualizing huge amounts of complex data and are 
commonly used as a first step in visualizing genomic 
data. For example, a chromosome browser such as the 
UCSC genome browser is essentially a 2D representation 
of a complex 3D, 2-metre-long molecule of tightly packed 
DNA (see Figure 1). This makes such information-rich 
data palatable for the molecular biologist who wants a 
basic understanding of the genome.

D
ow

nloaded from
 http://port.silverchair.com

/biochem
ist/article-pdf/43/5/54/922590/bio_2021_165.pdf by guest on 09 April 2024

https://crossmark.crossref.org/dialog/?doi=10.1042/bio_2021_165&domain=pdf&date_stamp=2021-09-21


55 October 2021 © The Authors. Published by Portland Press Limited under the Creative Commons Attribution License 4.0 (CC BY-NC-ND)

Data Visualization

To uncover where proteins bind to DNA, ChIP assays 
are used to find the so-called chromatin marks. ChIP-Seq 
involves using an antibody that is specific for the protein 
of interest. In the assay the protein is cross-linked to 
the DNA it binds to and then the DNA is sheared. The 
antibody can be used to pull out just the regions where 
the protein binds and the other non-bound regions 
discarded. The sequences in the bound regions can be 
sequenced and then mapped back to the genome, and 
these can be visualized on a genome browser as an area of 
enrichment. On a chromosome browser this is visualized 
as a peak whose size is proportional to the number of 
reads mapped (see Figure  1c). This is an example of 

taking semi-structured data – the DNA sequence – 
and making it structured by mapping it to a standard 
coordinate system so it can be visualized and queried.

There are many different chromatin marks that 
can be assayed, all giving orthogonal views to precise 
binding site locations of enhancers, promoters, 
open chromatin regions and CTCF sites, the latter 
mediating chromatin loops in selected tissues. These 
are extremely useful in understanding the non-coding 
regions of the genome that modulate gene activity. 
They potentially offer new ways of understanding 
the fine tuning of gene expression and hence are also 
potential drug targets.

Figure 1.  The UCSC Genome Browser shows a subset of the genome in a web browser and serves as a reference map for 
visualizing the results from a variety of experiments generated around the world. Here you can see a region of chromosome 
16 from 1 to 500,000,000 bp which is associated with α-globin formation in the blood. (a) Overview of chromosome. (b) Gene 
locations and direction of transcription. (c) ChIP-Seq data shown as series of peaks where proteins bind.

Figure 2.  Example of Lanceotron output visualized in MLV showing thousands of items from an experiment. (a) Peak calls are 
visualized with an interactive bed file, charts, clustering and linked genome browser. Filtering can be applied using MLV or 
any other criteria based on a column in the interactive bed file. (b and c) Peak calls retrieved from ENCODE and converted into 
a feature vector. Every peak is then compared to every other peak which creates an n-dimensional matrix. This is visualized 
using UMAP and tSNE which are both techniques to reduce dimensionality of big matrices to a 2D graph coloured by the 
score generated by Lanceotron. These are shown as red (high peak score) to blue (low peak store). The image thumbnail panel 
for b shows high and c low scoring regions. The peaks in b are visibly much clearer than c.
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Depending on antibody affinity, experimental 
conditions, experiment design and depth of sequencing 
chosen, there may be thousands of potential candidate 
peaks that can be assessed computationally to 
determine whether they are true binding regions or 
background noise. Traditionally bioinformatics tools, 
called ‘peak callers’, are used to find areas of enrichment. 
These peaks are compared to background levels using 
statistical models and if they pass a threshold they are 
deemed a biological signal. Peak callers often overcall 
however, and many peaks may in fact be false positives. 
In addition, protein binding regions can often occur in 
open chromatin where the background signal may be 
higher – in many cases this results in false negatives 
with the peak caller ignoring these peaks.

It has been observed that humans are adept at 
classifying true peaks based on their shape. This is an 
example where we have a mixture of structured data 
(positions on the chromosome) but there is semi-
structured data associated with it (data that represents 
the abstract shape based on how the reads map to the 
genome). Given there are many thousands of peaks to 
assess, this can prove laborious using a genome browser 
to examine each peak one by one. Using visualization 
tools to view and cluster large numbers of such ‘peak 
calls’ can save time, produce more accurate results and 
can help understand trends across the data.

In our lab, this has led to the development of 
tools such as Multi Locus View (MLV) which allow 

visualization of thousands of peaks, keeping the 
human in the loop to set better thresholds for getting 
true positive peaks and therefore to find more accurate 
binding sites. With all these peaks in the database we 
can convert the peak to a vector and use techniques 
such as dimensionality reduction to group together 
similarly shaped peaks. In Figure  2 we show an 
ENCODE data set (the current gold standard for 
epigenetics data) looking for H3K27ac (a repressive 
epigenetic mark) in a prostate cancer cell line.

More recently machine learning (ML) offers a 
promising way of identifying true signals accurately 
and rapidly above other methods. We can treat finding 
a characteristic peak as a problem in computer vision, 
where – just by looking at the shape alone – we can find 
peaks that are likely to have arisen from a true protein-
binding event and ignore peaks that are simply due 
to noise from non-specific binding events in the data 
(which we class as ‘poor peaks’). By training a model 
to learn what are robust peaks and what are poor peaks 
means better accuracy and specificity can be achieved 
over existing tools. The current statistical models are 
too simplistic to represent the underlying biology and 
ML offers a way to improve the detection since it can 
be trained with a variety of different peak types. The 
HSK27ac data set above was assessed by ENCODE as 
having approximately 45,000 peaks. When we assessed 
these using the ML peak caller ‘Lanceotron’ however, 
it showed ~15,000 of these may not be real peaks at 

Figure 3.  Hi-Glass Contact Map visualization of (a) B-cells (white blood cells) vs (b) K562 lymphoblastoid cells (red progenitor 
blood cells) in the α-globin region. The darker, more dense display shows the interaction frequencies of chromosome regions 
(shown on x- and y-axes) occurring in the genome in white blood cells (left) vs red progenitor blood cells (right). This is 
interpreted as α-globin is highly expressed in (b) and the chromatin is in a more open configuration compared with (a) so the 
transcriptional machinery may access it.
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all. This highlights the importance of looking at the 
complete dataset where possible and not just high-
level trends. The combination of being able to combine 
structured (the positions) with unstructured data (the 
peak image) is very powerful.

What is the structure of the folded DNA and proteins
Understanding how chromatin (DNA and proteins) is 
folded in the nucleus is fundamental to understanding 
its function. As mentioned earlier, gene expression 
has been found to be driven by the way the genome is 
folded in the nucleus. In the last few years techniques 
have become available to define where chromatin 
interacts and thereby understand its 3D structure. 
Chromatin Conformation Capture (3C) techniques 
allow a chromosome-wide contact map to be studied 
in a particular tissue or cell type showing where 
chromatin regions most frequently interact with other 
regions, and in some cases, other chromosomes. Using 
sophisticated modelling techniques we are beginning 
to piece together the model of the 3D structure of 
the genome. There are several caveats with these 
techniques, not least that there are no robust single-
cell 3C techniques. Information is gathered as an 
aggregate across several thousand cells, and within 
each of the cells the chromatin may be in different 
conformational states. Similarly the quality of the data 
can depend on which type of 3C method you use, how 
much DNA has been used to make the DNA library 
and whether the apparent interaction is in fact due to 
background noise. Nonetheless this is a burgeoning and 
exciting field and thus has many opportunities where 
visualization can help make sense of this complex data. 
Tools such as Hi-Glass (see Figure 3) allow the user to 

‘zoom’ into the contact maps and compare structures 
between different tissues. In areas of gene expression 
there are clear differences between cell or tissue types 
demonstrating different chromatin conformation.

The 2D representation of these data is a convenient 
way of comparing structures but we know these are 
actually 3D structures. There are bioinformatics tools 
that have been developed to use contact map data 
as input to generate a 3D structure, potentially the 
ultimate way to understand the data. The best methods 
use high-resolution fluorescent imaging markers as 
ground truth. These techniques are on the edge of 
what currently can be achieved based on resolution 
and the number of fluorescent markers that can be 
visualized. It is made more challenging by the fact 
that these are extremely dynamic structures which 
cannot be captured easily. Despite limitations they 
do offer a snapshot about where chromatin and loci 
are positioned in 3D space. There are a large number 
of simulation and modelling tools that have been 
developed to infer 3D structure based on molecular 
dynamics principles, traditionally used in areas such 
as protein folding.

We developed a dynamic modelling tool called 
CSynth (see Figure 4) which can dynamically assemble 
3D models based on contact data. It also allows 
comparison of models generated from data in different 
tissues/cell states as well as the results of third-party 
3D modelling outputs. CSynth encourages interaction 
with the modelling parameters – on-screen or in 
virtual reality – allowing experimentation to see how 
these affect the 3D model.

With any visualization of 3D genome data, caution 
should be used because the generated structures 

Figure 4.  3D modelling the genome using CSynth which takes the contact map data and uses forces to seek conformations that best satisfy the known 
interaction frequencies. It shows simulated structure in the mouse α-globin region in (a) red blood cell progenitors and (b) white blood cells. The 2D contact 
map projection is shown on the triangular grid below the 3D models as a further aid to visualize the differences between structures.
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need to be verified by real data. This can be difficult 
because even state-of-the-art experimental techniques 
cannot capture the dynamics and resolution required 
to get fully accurate genome models. However, 
with an increasing number of chromatin structural 
alterations linked to human diseases and development 
abnormalities understanding the 3D structure holds 
promise to understand these complex biological 
mechanisms.

Summary

This article has shown a number of visualization 
methods that can be used when trying to understand 

some of the more complex aspects of gene expression. 
The tools shown in this article are not exhaustive, but 
highlight important issues in big data visualization in 
this field.

Visualization is becoming increasingly important as 
data volumes increase in size and complexity, but care 
should be taken to verify these assumptions by checking 
any underlying data to ensure beautiful visualizations are 
not hiding ugly data!■
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