

Research Article

The potential role of *MGMT* rs12917 polymorphism in cancer risk: an updated pooling analysis with 21010 cases and 34018 controls

Zhiguo Sheng¹, Meini Kang² and (i) Hao Wang³

¹Department of Neurosurgery, The First Center Hospital of Tianjin, Tianjin Medical University First Center Clinical College, Tianjin 300192, P.R. China; ²Department of Family Medicine, Tianjin United Family Hospital, Tianjin 300221, P.R. China; ³Department of Neurosurgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen 518020, P.R. China

Correspondence: Hao Wang (hwmai1979@163.com)

In the present study, we aimed at determining the potential role of rs12917 polymorphism of the O-6-methylguanine-DNA methyltransferase (MGMT) gene in the occurrence of cancer. Based on the available data from the online database, we performed an updated meta-analysis. We retrieved 537 articles from our database research and finally selected a total of 54 case–control studies (21010 cases and 34018 controls) for a series of pooling analyses. We observed an enhanced risk in cancer cases compared with controls, using the genetic models T/T compared with C/C (P-value of association test <0.001; odds ratio (QR) = 1.29) and T/T compared with Q-C/C/T (Q-0.001; QR) = 1.32). We detected similar positive results in the subgroups 'Caucasian', and 'glioma' (all Q-0.05; QR). However, we detected negative results in our analyses of most of the other subgroups (Q-0.05). Begg's and Egger's tests indicated that the results were free of potential publication bias, and sensitivity analysis suggested the stability of the pooling results. In summary, the T/T genotype of Q-MGMT rs12917 is likely to be linked to an enhanced susceptibility to cancer overall, especially glioma, in the Caucasian population.

Introduction

In humans, the O-6-methylguanine-DNA methyltransferase (MGMT) protein, encoded by the MGMT gene located on chromosome 10 (10q26) [1], is involved in the DNA repair process [2,3]. By means of methyl transfer, MGMT removes alkylating agents from the DNA direct reversal repair pathway and thus repairs the DNA [2,3]. Two potential functional polymorphisms have been identified in the MGMT gene, namely rs12917 (Leu84Phe) and rs2308321 (Ile143Val) [4,5]. In addition, the promoter methylation status of the gene is reportedly correlated with several clinical diseases, such as glioblastoma [6,7], gastric cancer [8], and oral carcinoma [9].

Both genetic and environmental factors contribute to the occurrence and progression of clinical cancers [10,11]. A number of studies have been conducted on the potential genetic effect of *MGMT* rs12917 polymorphism on its susceptibility to cancer, but the results were inconclusive. Before 2013, only three relative meta-analyses investigated the potential role of this polymorphism in the overall risk for cancer [12–14]. Based on the currently available data, we performed an updated meta-analysis to reassess the genetic relationship between *MGMT* rs12917 polymorphism and cancer risk. We enrolled a total of 54 case–control studies for the study.

Received: 13 June 2018 Revised: 12 September 2018 Accepted: 14 September 2018

Accepted Manuscript Online: 19 September 2018 Version of Record published: 17 October 2018

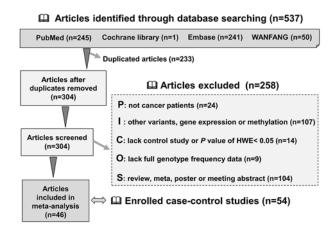


Figure 1. Flowchart for the identification of eligible case-control studies

Materials and methods Database searching strategy

Article screening strategy

We designed our inclusion and exclusion criteria according to Patient, Intervention, Comparison and Outcome and Study design (PICOS) principles. We ruled out duplicates and screened improper articles. Exclusion criteria were as follows: (P), non-cancer patients; (I), other variants, gene expression or methylation; (C), lack of study controls or P-value of Hardy–Weinberg equilibrium (HWE) <0.05; (O), lack of full genotype frequency data; (S), review, meta, poster, or meeting abstract. Eligible articles had to be designed as case–control studies, targetting the genetic relationship between MGMT rs12917 and cancer risk and containing the full genotype (C/C, C/T, T/T) frequencies in both cancer cases and negative controls.

Data extraction and quality assessment

After extracting usable data, we listed the basic information in tables. We assessed methodological quality via the Newcastle–Ottawa Scale (NOS) [15]. High-quality articles with NOS score > 5 were regarded as eligible and included in our statistical analysis.

Statistical analysis

We used STATA software version 12.0-SE (StataCorp, College Station, TX) to perform our analyses. We first assessed the inter-study heterogeneity using Cochran's Q statistic and the I^2 test. A P-value of Cochran's Q statistic < 0.1 or I^2 value > 50% was considered to show a high level of heterogeneity. We thus used the DerSimonian–Laird association test with a random-effects model. Otherwise, we used the Mantel–Haenszel association test with a fixed-effects model. The P-value of association test, summary odds ratio (OR), along with the corresponding 95% confidence interval

(CI) could be obtained for the allele (T compared with C), homozygous (T/T compared with C/C), recessive (T/T compared with C/C+C/T), heterozygous (C/T compared with C/C), dominant (C/T+T/T compared with C/C), and carrier (T compared with C) models.

We performed subgroup analyses by race, cancer type, and control source. Additionally, we assessed possible publication bias by means of Begg's and Egger's tests and evaluated the robustness of the results through sensitivity analysis.

Results

Eligible case-control studies

Figure 1 depicts the flowchart for the identification of eligible case–control studies. We initially obtained a total of 537 articles by searching four databases, including PubMed (245 articles), Cochrane Library (1 article), Embase (241 articles), and WANFANG (50 articles). We then excluded 233 duplicates plus another 258 articles based strictly on our screening strategy. Finally, we identified 46 full-text articles for inclusion [4,5,16–59]. After data extraction and quality evaluation, we enrolled a total of 54 case–control studies free of poor quality (all NOS score > 5) in our pooling analyses. The basic information and genotype frequency distribution are presented in Supplementary Table S1 and Table 1, respectively.

Meta-analysis data

First, we studied the association between the MGMT rs12917 polymorphism and cancer risk via an overall meta-analysis. As shown in Table 2, we included a total of 54 case–control studies with 21010 cases and 34018 controls under the genetic models of allele T compared with C, C/T compared with C/C, C/T+T/T compared with C/C, and carrier T compared with C; meanwhile, we included 50 studies with 20716 cases and 33608 controls under the models of T/T compared with C/C and T/T compared with C/C+C/T. For the homozygous, recessive and carrier genetic models, we performed a Mantel–Haenszel association test with a fixed-effects model, and we observed no high degree of heterogeneity (Table 2; all P-values of heterogeneity > 0.1; $I^2 < 50\%$). For other models (all P-values of heterogeneity < 0.001), we performed a DerSimonian–Laird association test with a random-effects model. Pooling data (Table 2) indicated an increased risk of cancer in cases compared with controls for the T/T compared with C/C (P-value of association test < 0.001; OR = 1.29) and T/T compared with C/C+C/T (P<< 0.001; OR = 1.32) genetic models. Nevertheless, we failed to detect any statistical difference between cancer cases and negative controls under other genetic models (Table 2; all P>0.05). Forest plot data are shown in Figure 2 and Supplementary Figures S1–S5; they revealed that the T/T genotype of the MGMT rs12917 polymorphism was likely to be associated with an increased susceptibility to cancer.

Subgroup analysis data

Next, we carried out four subgroup analyses by race, cancer type, and control source. For the T/T compared with C/C model (Table 3), the association test data showed an increased cancer risk in the subgroups 'Caucasian' (P<0.001; OR = 1.35), 'glioma' (P=0.022; OR = 1.70), 'population-based control (PB)' (P<0.001; OR = 1.32) and 'hospital-based control (HB)' (P<0.030; OR = 1.39). Figure 3 and Supplementary Figures S6–S7 present the forest plot data.

For the T/T compared with C/C+C/T model (Table 4), we also observed positive correlations in the subgroups 'Caucasian' (P<0.001; OR = 1.37), 'Asian' (P=0.036; OR = 1.37), 'glioma' (P=0.026; OR = 1.68), 'PB' (P<0.001; OR = 1.32), and 'HB' (P=0.004; OR = 1.52). Supplementary Figures S8–S10 present the forest plot data.

We did not detect positive results for the other genetic models (Supplementary Tables S2–S5; P<0.05) except for the subgroups 'colorectal cancer' (Supplementary Table S3; P=0.041; OR = 0.79), 'HB' (Supplementary Table S3; P=0.027; OR = 0.86) under the C/T compared with C/C model; and the subgroup 'head and neck cancer' (Supplementary Table S5; P=0.020; OR = 0.92) under the carrier T compared with C model. Thus, the T/T genotype of MGMT rs12917 may have been associated with an increased risk of cancer in cases, especially the glioma cases, in the Caucasian population.

Publication bias and sensitivity analysis

Begg's and Egger's tests indicated that results were free of possible publication bias (Supplementary Table S6; P>0.05 for Begg's test, >0.05 for Egger's test). A Begg's funnel plot with pseudo-95% confidence limits under the T/T compared with C/C model is shown in Figure 4. In addition, we observed the same stable results in our subsequent sensitivity analysis; data from this analysis under the homozygous model (Figure 5) are presented as an example.

Table 1 Genotype and allele frequency of MGMT rs12917 in the enrolled case-control studies

Authors	Year	Geno	type (cas	se)	Allele (case)	Cancer type (case)	Genot	ype (co	ntrol)	Allele	(control)	HWE	(control)
		C/C	C/T	T/T	С	Т		C/C	C/T	T/T	С	Т	χ2	P
Agalliu et al. [16]	2010	949	269	32	2167	333	Prostate cancer1	916	298	23	2130	344	0.05	0.83
		106	35	6	247	47	Prostate cancer ²	60	20	1	140	22	0.22	0.64
Akbari et al. [17]	2009	142	53	1	337	55	Esophageal cancer	185	63	2	433	67	1.84	0.17
Betti et al. [18]	2011	95	36	2	226	40	MPM3	179	64	8	422	80	0.59	0.44
		50	17	1	117	19	MPM4	32	12	0	76	12	1.10	0.29
Bye et al. [19]	2011	225	111	10	561	131	Esophageal cancer ¹	300	155	14	755	183	1.28	0.26
		120	65	11	305	87	Esophageal cancer ⁵	294	116	13	704	142	1.28	0.26
Chae et al. [20]	2006	344	84	4	772	92	Lung cancer	341	81	10	763	101	3.65	0.06
Chuang et al. [21]	2011	1105	307	43	2517	393	Head and neck cancer	2256	823	81	5335	985	0.33	0.57
Doecke et al. [22]	2008	416	136	14	968	164	Esophageal cancer	1029	281	27	2339	335	2.25	0.13
Felini et al. [23]	2007	289	84	6	662	96	Glioma	369	84	6	822	96	0.24	0.63
Feng et al. [24]	2008	96	58	47	250	152	Esophageal cancer	87	85	29	259	143	1.20	0.27
Gu et al. [25]	2009	152	60	2	364	64	Melanoma	168	43	1	379	45	1.01	0.31
Hall et al. [26]	2007	548	193	38	1289	269	UADT	730	281	23	1741	327	0.44	0.51
Han et al. [27]	2006 ¹	344	82	8	770	98	Endometrial cancer	822	242	21	1886	284	0.42	0.52
Han et al. [28]	2006 ²	964	279	33	2207	345	Breast cancer	1,306	382	26	2994	434	0.10	0.75
Hu et al. [29]	2013	389	130	24	908	178	Glioma	405	84	6	894	96	0.48	0.49
Hu et al. [4]	2007	418	77	5	913	87	Lung cancer	421	93	3	935	99	0.78	0.38
Huang et al. [30]	2017	76	12	2	164	16	Glioma	75	14	1	164	16	0.14	0.71
Huang et al. [31]	2007	372	156	11	900	178	Cervical cancer	592	198	10	1382	218	2.12	0.15
Huang et al. [32]	2010	151	25	0	327	25	Oral cancer	89	21	0	199	21	1.22	0.27
Huang et al. [33]	2005 ¹	190	82	8	462	98	Gastric cancer	279	99	9	657	117	0.00	0.95
Huang et al. [34]	2005 ²	386	117	11	889	139	Head and neck cancer	529	204	21	1262	246	0.06	0.80
Inoue et al. [35]	2003	55	18	0	128	18	Primary brain cancer	160	55	9	375	73	2.24	0.13
Kiczmer [36]	2018	49	11	9	109	29	Head and neck cancer	168	66	5	402	76	0.25	0.61
Kietthubthew et al. [37]	2006	84	21	1	189	23	Oral cancer	130	33	1	293	35	0.50	0.48
Li et al. [38]	2005	132	34	1	298	36	Bladder cancer	173	28	3	374	34	2.11	0.15
Liu et al. [39]	2002 ¹	53	7	0	113	7	Lung cancer	89	11	0	189	11	0.34	0.56
Liu et al. [40]	2002 ²	21	3	0	45	3	Gynecologic tumor	89	11	0	189	11	0.34	0.56
		26	8	0	60	8	Digestive system cancer	89	11	0	189	11	0.34	0.56
Liu et al. [41]	2006	82	16	2	180	20	Esophageal cancer	57	8	0	122	8	0.28	0.60
Liu et al. [42]	2009	299	62	8	660	78	Glioma	267	89	7	623	103	0.02	0.89
Loh et al. [43]	2011	146	37	5	329	47	Cancer	894	212	14	2000	240	0.13	0.72
Lu et al. [44]	2006	142	45	4	329	53	Gastric cancer	186	59	6	431	71	0.26	0.61
McKean-Cowdin et al. [45]	2009	774	204	20	1752	244	Glioblastoma	1,480	453	35	3413	523	0.00	0.96

Continued over

Table 1 Genotype and allele frequency of MGMT rs12917 in the enrolled case-control studies (Continued)

Authors	Year	Genot	ype (cas	se)	Allele (case)	Cancer type (case)	Genot	уре (соі	ntrol)	Allele	(control)	HWE	(control)
		C/C	C/T	T/T	С	Т		C/C	C/T	T/T	С	Т	χ2	P
O'Mara et al. [46]	2011	889	261	23	2039	307	Endometrial cancer6	810	270	19	1890	308	0.42	0.52
		278	108	11	664	130	Endometrial cancer ⁷	296	103	7	695	117	0.33	0.57
Palli et al. [47]	2010	210	77	4	497	85	Gastric cancer	395	131	11	921	153	0.00	0.97
Rajaraman et al.	2010	265	77	9	607	95	Glioma	348	117	12	813	141	0.33	0.57
[48]		102	23	4	227	31	Meningioma	348	117	12	813	141	0.33	0.57
		52	12	2	116	16	Acoustic neuroma	348	117	12	813	141	0.33	0.57
Ritchey et al. [49]	2005	123	36	2	282	40	Prostate cancer	213	32	1	458	34	0.03	0.86
Shah et al. [50]	2012	64	26	2	154	30	Esophageal cancer	57	20	0	134	20	1.72	0.19
Shen et al. [51]	2005	778	265	21	1821	307	Breast cancer	824	263	20	1911	303	0.03	0.85
Shen et al. [52]	2007	432	112	11	976	134	NHL	373	110	12	856	134	1.27	0.26
Shi et al. [53]	2011	253	47	3	553	53	AML	459	91	4	1009	99	0.05	0.83
Stern et al. [54]	2007	251	40	1	542	42	Colorectal cancer	959	194	13	2112	220	0.81	0.37
Tranah et al. [55]	2006	147	33	6	327	45	Colorectal cancer ⁸	1,634	471	32	3739	535	0.09	0.77
		204	47	6	455	59	Colorectal cancer ⁹	330	93	6	753	105	0.04	0.85
Wang et al. [5]	2006	832	259	30	1923	319	Lung cancer	872	272	19	2016	310	0.18	0.67
Yang et al. [56]	2009	33	14	1	80	16	NHL	289	58	5	636	68	1.10	0.29
Zhang et al. [57]	2008	352	53	1	757	55	Biliary track cancer	631	144	7	1406	158	0.15	0.70
Zhang et al. [58]	2010	563	151	7	1277	165	Head and neck cancer	933	284	17	2150	318	0.78	0.38
Zienolddiny et al. [59]	2006	189	102	13	480	128	Lung cancer	247	106	10	600	126	0.12	0.73

Abbreviations: AML, acute myeloid leukemia; MPM, malignant mesothelioma; NHL, non-Hodgkin's lymphoma; UADT, upper aerodigestive tract.

Table 2 Meta-analysis of the association between MGMT rs12917 and cancer susceptibility

Models	Sample size			Heteroge	eneity	Association			
	Study	Case	Control	J ²	P	Fixed/random	P	OR (95% CI)	
Allele T compared with C	54	21010	34018	50.1%	<0.001	Random	0.354	-	
T/T compared with C/C	50	20716	33608	4.5%	0.384	Fixed	< 0.001	1.29 (1.14-1.46)	
T/T compared with C/C+C/T	50	20716	33608	3.2%	0.410	Fixed	< 0.001	1.32 (1.17-1.49)	
C/T compared with C/C	54	21010	34018	46.1%	< 0.001	Random	0.442	-	
C/T+T/T compared with C/C	54	21010	34018	47.7%	< 0.001	Random	0.976	-	
Carrier T compared with C	54	21010	34018	20.0%	0.104	Fixed	0.642	-	

^{-,} OR (95% CI) data were not provided, when P-value of association >0.05.

Discussion

We observed conflicting conclusions about the genetic role of MGMT rs12917 polymorphism in its susceptibility to different cancers. For instance, the polymorphism seems to be associated with the risk of esophageal cancer in the Chinese population [41], but not in the Kashmiri population [50]. This merits a quantitative synthesis via the meta-analytic approach. Although there were already three meta-analyses of the MGMT rs12917 polymorphism and its role in the overall risk for cancer [12-14], expanding the sample size and employing a distinct analysis strategy led to better results in our updated pooling analysis.

¹Data from Caucasian population. ²Data from African population. ³With population-based control. ⁴With hospital-based control. ⁵Data from mixed population.

⁶Data from Australia. ⁷Data from Poland. ⁸With controls from Nurses' Health Study (NHS). ⁹With controls from Physicians' Health Study (PHS) cohorts

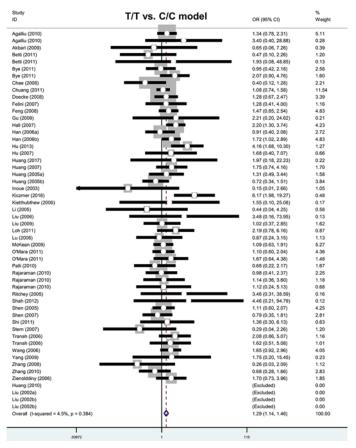


Figure 2. Forest plot of meta-analysis (T/T compared with C/C model)

Table 3 Data of subgroup analysis under T/T compared with C/C model

Factor	Subgroup	Sample s	ize		Heteroge	eneity	Associat	ion
		Study	Case	Control	I ²	P	P	OR (95% CI)
Race	Caucasian	27	13158	20678	0.0%	0.573	<0.001	1.35 (1.15, 1.58)
	African	3	796	1104	0.0%	0.538	0.560	-
	Asian	16	4031	6152	28.6%	0.136	0.088	-
Cancer type	Urinary system cancer	4	1725	1768	0.0%	0.526	0.174	-
	Esophageal cancer	8	2131	3907	0.0%	0.781	0.069	-
	Lung cancer	4	2357	2475	40.7%	0.167	0.155	-
	Head and neck cancer	14	5863	10581	39.5%	0.064	0.138	-
	Gastric cancer	3	762	1175	0.0%	0.692	0.891	-
	Blood cancer	3	906	1401	0.0%	0.702	0.882	-
	Colorectal cancer	3	735	3732	38.5%	0.197	0.416	-
	Brain cancer	9	2998	5030	17.4%	0.288	0.106	-
	Glioma	5	1735	1884	37.9%	0.168	0.022	1.70 (1.08, 2.68)
Control source	PB	39	16526	26488	6.3%	0.358	< 0.001	1.32 (1.14, 1.52)
	HB	8	2482	4148	3.2%	0.405	0.030	1.39 (1.03, 1.86)

^{-,} OR (95% CI) data were not provided, when P-value of association > 0.05.

We did our best to gather candidate articles from four online databases. After screening them based on strict inclusion and exclusion criteria, we enrolled only the case-control studies that were of high quality and those that followed HWE. We ultimately included a total of 46 articles in our updated meta-analysis. After data extraction, we enrolled 54 case-control studies with 21010 cases and 34018 controls in the meta-analysis. We used the carrier, allele,

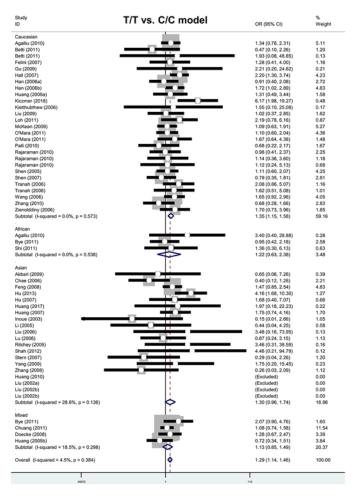


Figure 3. Forest plot of subgroup analysis by race (T/T compared with C/C model)

Table 4 Data of subgroup analysis under T/T compared with C/C+C/T model

Factor	Subgroup	Sample s	ize		Heterog	eneity	Association	
		Study	Case	Control	l ²	P	P	OR (95% CI)
Race	Caucasian	27	13158	20678	0.0%	0.528	<0.001	1.37 (1.17, 1.60)
	African	3	796	1104	0.0%	0.542	0.535	-
	Asian	16	4031	6152	27.2%	0.150	0.036	1.37 (1.02, 1.83)
Cancer type	Urinary system cancer	4	1725	1768	0.0%	0.527	0.152	-
	Esophageal cancer	8	2131	3907	0.0%	0.725	0.021	-
	Lung cancer	4	2357	2475	40.0%	0.467	0.174	-
	Head and neck cancer	14	5863	10581	37.5%	0.077	0.064	-
	Gastric cancer	3	762	1175	0.0%	0.718	0.815	-
	Blood cancer	3	906	1401	0.0%	0.769	0.901	-
	Colorectal cancer	3	735	3732	39.6%	0.191	0.344	-
	Brain cancer	9	2998	5030	3.0%	0.410	0.088	-
	Glioma	5	1735	1884	23.7%	0.263	0.026	1.68 (1.07, 2.65)
Control source	PB	39	16526	26488	2.5%	0.426	< 0.001	1.32 (1.15, 1.52)
	HB	8	2482	4148	11.0%	0.344	0.004	1.52 (1.14, 2.03)

^{-,} OR (95% CI) data was not provided, when P-value of association > 0.05.

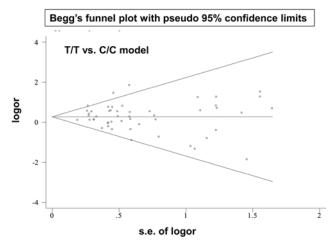


Figure 4. Begg's funnel plot with pseudo-95% confidence limits (T/T compared with C/C model)

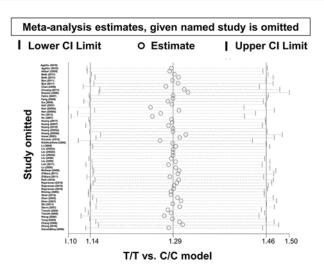


Figure 5. Sensitivity analysis result (T/T compared with C/C model)

homozygous, recessive, heterozygous, and dominant genetic models, and also confirmed the stability of the statistical results via sensitivity analysis.

In 2010, Zhong et al. [12] performed the first meta-analysis on this topic, reviewing 28 case–control studies from 26 articles [4,5,20,22,23,26–28,31,33–35,37,38,42,45,49,51,52,54,55,59–63]. Another 24 case–control studies [16–19,21,24,25,29,30,32,36,39–41,43,44,46–48,50,53,56–58] were included in our study. We excluded three studies not in-line with the HWE principle [61–63] and one that focussed only on colorectal adenomatous or hyperplastic polyps but not on colorectal cancer [60]. In 2013, Du et al. [14] enrolled 41 case–control studies with 16643 cancer cases and 26720 negative controls from 37 articles [5,16–20,22–24,26–28,31–34,37–41,43,44,46,47,49–59,64] in a meta-analysis. We excluded one of these studies [64] from our meta-analysis because it did not meet the requirement of full genotype frequency in both case and control groups. Finally, we enrolled another ten case–control studies [4,21,25,29,30,35,36,42,45,48]. In addition, when compared with another meta-analysis of Liu et al. (2013) [13], which consisted of 44 case–control studies from 37 articles [4,5,16,17,19,20,22,23,25–27,31–33,35,37,38,42,43,45–47,49,51,52,54–63,65,66], we excluded four studies that were not in HWE [61–63,66], one that did not analyze colorectal cancer [60], and one that included other genetic variants [65]. We also added another 15 new case–control studies [18,21,24,28–30,34,36,39–41,44,48,50,53] for the analysis.

Our updated pooling analysis data demonstrated that cases had an overall enhanced risk for cancer when compared with negative controls under the T/T compared with C/C and T/T compared with C/C+C/T genetic models, especially in the European-descended population, which is partly consistent with the data of previous analyses [12–14]. Moreover, we observed that the *MGMT* rs12917 polymorphism is likely to be associated with the susceptibility to

glioma, which is partly in-line with the two studies on the association between DNA repair gene polymorphisms and glioma risk [67,68]. Nevertheless, owing to the limitation of sample size, the previous three meta-analyses of the overall risk for cancer did not conduct subgroup analyses of 'glioma' [12–14].

Some of the limitations to our meta-analysis are as follows:

- (1) Although the sample sizes enrolled were quite large (21010 cases and 34018 controls), genotype data were very limited in many subgroup analyses. For instance, we used only three case–control studies in our analyses of the subgroups for gastric [33,44,47], blood [52,53,56], and colorectal [54,55] cancers. Even for the subgroup analysis of 'glioma', with positive correlations under the T/T compared with C/C and T/T compared with C/C+C/T models, only five case–control studies [23,29,30,42,48] were included.
- (2) We did not investigate the genetic effects of the *MGMT* rs12917 polymorphism in combination with other variants, such as rs2308321 of *MGMT*, rs25487 of X-ray cross-complementing group 1 (*XRCC1*), and rs13181 of xeroderma pigmentosum complementation group D (*XPD*), in certain specific cancers.
- (3) We extracted certain demographic information such as the mean age at diagnosis and the sex of subject, but not other confounding factors such as lifestyle and clinical features. Moreover, we did not perform the relevant stratified meta-analyses due to lack of sufficient usable data.
- (4) We detected significant heterogeneity amongst studies under the allele T compared with C, C/T compared with C/C, C/T+T/T compared with C/C, and carrier T compared with C genetic models. Complicating factors such as race and cancer type may be sources of inter-study heterogeneity. For instance, we detected decreased levels of heterogeneity in the 'Caucasian' and 'esophageal cancer' subgroups. Although we observed a positive conclusion in the 'glioma' subgroup, we failed to detect reduced inter-study heterogeneity. Only five case-control studies [23,29,30,42,48] were enrolled.
- (5) There may be other undetected or unpublished articles containing potential eligible case–controls in other geographical locations or languages; in other words, our study may suffer from selection bias.
- (6) Last but most important, our meta-analysis found a positive conclusion between MGMT rs12917 and the risk of cancer in general for the T/T compared with C/C and T/T compared with C/C+C/T models. Considering the distinct etiopathogenesis or pathogenesis of different kinds of cancers, more studies of large-scale populations of different ethnicities are required for a more scientific elucidation of MGMT rs12917's functional role in each particular cancer type.

To sum up, our updated pooling analysis offered additional evidence that *MGMT* rs12917 polymorphism is likely to be associated with an enhanced susceptibility to cancer overall, especially glioma, in the Caucasian population.

Author contribution

Z.S. and H.W. conceived and designed the study. Z.S. and M.K. were responsible for the data extraction and statistical analysis. Z.S. wrote the manuscript and H.W. revised the manuscript.

Competing interests

The authors declare that there are no competing interests associated with the manuscript.

Funding

This work was supported by grants from the key program of Tianjin health Bureau (Grant NO.14KG104).

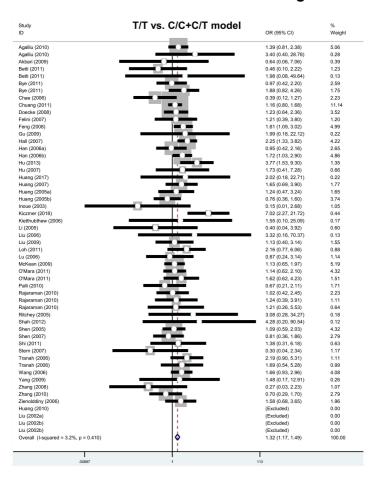
Abbreviations

HB, hospital-based control; HWE, Hardy-Weinberg equilibrium; MeSH, Medical Subject Heading; *MGMT*, O-6-methylguanine-DNA methyltransferase; NOS, Newcastle-Ottawa scale; OR, odds ratio; PB, population-based control.

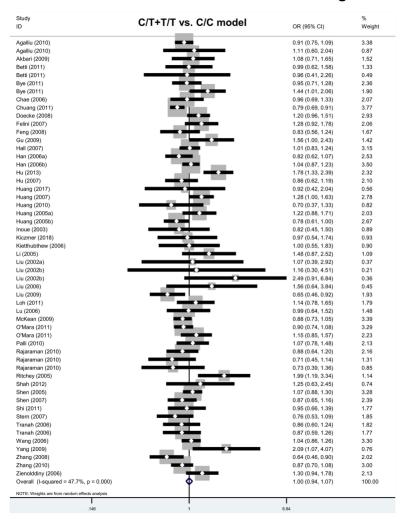
References

- 1 Natarajan, A.T., Vermeulen, S., Darroudi, F., Valentine, M.B., Brent, T.P., Mitra, S. et al. (1992) Chromosomal localization of human 06-methylguanine-DNA methyltransferase (MGMT) gene by in situ hybridization. *Mutagenesis* **7**, 83–85, https://doi.org/10.1093/mutage/7.1.83
- 2 Christmann, M., Verbeek, B., Roos, W.P. and Kaina, B. (2011) 0(6)-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. *Biochim. Biophys. Acta* 1816, 179–190

- 3 Nikolova, T., Roos, W.P., Kramer, O.H., Strik, H.M. and Kaina, B. (2017) Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling. Biochim. Biophys. Acta 1868, 29–39
- 4 Hu, Z., Wang, H., Shao, M., Jin, G., Sun, W., Wang, Y. et al. (2007) Genetic variants in MGMT and risk of lung cancer in Southeastern Chinese: a haplotype-based analysis. *Hum. Mutat.* **28**, 431–440, https://doi.org/10.1002/humu.20462
- 5 Wang, L., Liu, H., Zhang, Z., Spitz, M.R. and Wei, Q. (2006) Association of genetic variants of 06-methylguanine-DNA methyltransferase with risk of lung cancer in non-Hispanic Whites. *Cancer Epidemiol. Biomarkers Prev.* 15, 2364–2369, https://doi.org/10.1158/1055-9965.EPI-06-0437
- 6 Staedtke, V., a Dzaye, O.D. and Holdhoff, M. (2016) Actionable molecular biomarkers in primary brain tumors. *Trends Cancer* 2, 338–349, https://doi.org/10.1016/j.trecan.2016.06.003
- 7 Binabaj, M.M., Bahrami, A., ShahidSales, S., Joodi, M., Joudi Mashhad, M. and Hassanian, S.M. (2018) The prognostic value of MGMT promoter methylation in glioblastoma: a meta-analysis of clinical trials. *J. Cell. Physiol.* 233, 378–386, https://doi.org/10.1002/jcp.25896
- 8 Zhang, Z., Xin, S., Gao, M. and Cai, Y. (2017) Promoter hypermethylation of MGMT gene may contribute to the pathogenesis of gastric cancer: A PRISMA-compliant meta-analysis. *Medicine (Baltimore)* 96, e6708, https://doi.org/10.1097/MD.00000000000006708
- 9 Jayaprakash, C., Radhakrishnan, R., Ray, S. and Satyamoorthy, K. (2017) Promoter methylation of MGMT in oral carcinoma: A population-based study and meta-analysis. Arch. Oral Biol. 80, 197–208, https://doi.org/10.1016/j.archoralbio.2017.04.006
- 10 Theodoratou, E., Timofeeva, M., Li, X., Meng, X. and Ioannidis, J.P.A. (2017) Nature, nurture, and cancer risks: genetic and nutritional contributions to cancer. *Annu. Rev. Nutr.* **37**, 293–320, https://doi.org/10.1146/annurev-nutr-071715-051004
- 11 Sugimura, H. (2016) Susceptibility to human cancer: from the perspective of a pathologist. *Pathol. Int.* **66**, 359–368, https://doi.org/10.1111/pin.12418
- 12 Zhong, Y., Huang, Y., Huang, Y., Zhang, T., Ma, C., Zhang, S. et al. (2010) Effects of 06-methylguanine-DNA methyltransferase (MGMT) polymorphisms on cancer: a meta-analysis. *Mutagenesis* **25**, 83–95, https://doi.org/10.1093/mutage/gep050
- 13 Liu, J., Zhang, R., Chen, F., Yu, C., Sun, Y., Jia, C. et al. (2013) MGMT Leu84Phe polymorphism contributes to cancer susceptibility: evidence from 44 case-control studies. *PLoS ONE* 8, e75367, https://doi.org/10.1371/journal.pone.0075367
- 14 Du, L., Wang, H., Xiong, T., Ma, Y., Yang, J., Huang, J. et al. (2013) The polymorphisms in the MGMT gene and the risk of cancer: a meta-analysis. *Tumour Biol.* **34**, 3227–3237, https://doi.org/10.1007/s13277-013-0893-x
- 15 Stang, A. (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur. J. Epidemiol.* **25**, 603–605, https://doi.org/10.1007/s10654-010-9491-z
- 16 Agalliu, I., Kwon, E.M., Salinas, C.A., Koopmeiners, J.S., Ostrander, E.A. and Stanford, J.L. (2010) Genetic variation in DNA repair genes and prostate cancer risk: results from a population-based study. *Cancer Causes Control* 21, 289–300, https://doi.org/10.1007/s10552-009-9461-5
- 17 Akbari, M.R., Malekzadeh, R., Shakeri, R., Nasrollahzadeh, D., Foumani, M., Sun, Y. et al. (2009) Candidate gene association study of esophageal squamous cell carcinoma in a high-risk region in Iran. *Cancer Res.* **69**, 7994–8000, https://doi.org/10.1158/0008-5472.CAN-09-1149
- 18 Betti, M., Ferrante, D., Padoan, M., Guarrera, S., Giordano, M., Aspesi, A. et al. (2011) XRCC1 and ERCC1 variants modify malignant mesothelioma risk: a case-control study. *Mutat. Res.* **708**, 11–20, https://doi.org/10.1016/j.mrfmmm.2011.01.001
- 19 Bye, H., Prescott, N.J., Matejcic, M., Rose, E., Lewis, C.M., Parker, M.I. et al. (2011) Population-specific genetic associations with oesophageal squamous cell carcinoma in South Africa. *Carcinogenesis* 32, 1855–1861, https://doi.org/10.1093/carcin/bgr211
- 20 Chae, M.H., Jang, J.S., Kang, H.G., Park, J.H., Park, J.M., Lee, W.K. et al. (2006) 06-alkylguanine-DNA alkyltransferase gene polymorphisms and the risk of primary lung cancer. *Mol. Carcinog.* **45**, 239–249, https://doi.org/10.1002/mc.20171
- 21 Chuang, S.C., Agudo, A., Ahrens, W., Anantharaman, D., Benhamou, S., Boccia, S. et al. (2011) Sequence variants and the risk of head and neck cancer: pooled analysis in the INHANCE consortium. *Front. Oncol.* 1, 13, https://doi.org/10.3389/fonc.2011.00013
- 22 Doecke, J., Zhao, Z.Z., Pandeya, N., Sadeghi, S., Stark, M., Green, A.C. et al. (2008) Polymorphisms in MGMT and DNA repair genes and the risk of esophageal adenocarcinoma. *Int. J. Cancer* **123**, 174–180, https://doi.org/10.1002/ijc.23410
- 23 Felini, M.J., Olshan, A.F., Schroeder, J.C., North, K.E., Carozza, S.E., Kelsey, K.T. et al. (2007) DNA repair polymorphisms XRCC1 and MGMT and risk of adult gliomas. *Neuroepidemiology* **29**, 55–58, https://doi.org/10.1159/000108919
- 24 Feng, X.X., Li, Z.F., Wang, L.B., Zhang, J.B. and Lu, Z.X. (2008) Relationship between MGMT gene polymorphism and susceptibility of esophageal cancer. *Zhong Guo Gong Gong Wei Sheng* **24**, 697–699
- 25 Gu, F., Qureshi, A.A., Kraft, P., Guo, Q., Hunter, D.J. and Han, J. (2009) Polymorphisms in genes involved in DNA repair, cell growth, oxidative stress and inflammatory response, and melanoma risk. *Br. J. Dermatol.* **161**, 209–212, https://doi.org/10.1111/j.1365-2133.2009.09219.x
- 26 Hall, J., Hashibe, M., Boffetta, P., Gaborieau, V., Moullan, N., Chabrier, A. et al. (2007) The association of sequence variants in DNA repair and cell cycle genes with cancers of the upper aerodigestive tract. *Carcinogenesis* **28**, 665–671, https://doi.org/10.1093/carcin/bgl160
- 27 Han, J., Hankinson, S.E. and De Vivo, I. (2006) Polymorphisms in 06-methylguanine DNA methyltransferase and endometrial cancer risk. *Carcinogenesis* 27, 2281–2285, https://doi.org/10.1093/carcin/bgl099
- 28 Han, J., Tranah, G.J., Hankinson, S.E., Samson, L.D. and Hunter, D.J. (2006) Polymorphisms in 06-methylguanine DNA methyltransferase and breast cancer risk. *Pharmacogenet. Genomics* **16**, 469–474, https://doi.org/10.1097/01.fpc.0000215065.21718.4c
- 29 Hu, Y.Z., Wang, D.H., Gong, H.D., Li, G.Z., Li, J.W., Wang, L.J. et al. (2013) Correlation of polymorphism of DNA repair gene XRCC1 and MGMT with susceptibility to glioma in a Han population in northeastern China. *Chin. J. Cancer Prev. Treat.* 20, 1629–1633
- 30 Huang, G.Y., Zhang, X., Wu, Y.J., Cao, C.N., Pu, J., Ming, Y. et al. (2017) Association between genetic polymorphisms of MGMT and CASP3 and the susceptibility to glioma. *Guizhou Med. J.* 41, 118–140
- 31 Huang, J., Ye, F., Chen, H., Lu, W. and Xie, X. (2007) Amino acid substitution polymorphisms of the DNA repair gene MGMT and the susceptibility to cervical carcinoma. *Carcinogenesis* 28, 1314–1322, https://doi.org/10.1093/carcin/bgm003
- 32 Huang, S.H., Chang, P.Y., Liu, C.J., Lin, M.W. and Hsia, K.T. (2010) 06-methylguanine-DNA methyltransferase gene coding region polymorphisms and oral cancer risk. *J. Oral Pathol. Med.* **39**, 645–650, https://doi.org/10.1111/j.1600-0714.2009.00880.x



- 33 Huang, W.Y., Chow, W.H., Rothman, N., Lissowska, J., Llaca, V., Yeager, M. et al. (2005) Selected DNA repair polymorphisms and gastric cancer in Poland. *Carcinogenesis* **26**, 1354–1359, https://doi.org/10.1093/carcin/bgi084
- 34 Huang, W.Y., Olshan, A.F., Schwartz, S.M., Berndt, S.I., Chen, C., Llaca, V. et al. (2005) Selected genetic polymorphisms in MGMT, XRCC1, XPD, and XRCC3 and risk of head and neck cancer: a pooled analysis. *Cancer Epidemiol Biomarkers Prev.* 14, 1747–1753, https://doi.org/10.1158/1055-9965.EPI-05-0162
- 35 Inoue, R., Isono, M., Abe, M., Abe, T. and Kobayashi, H. (2003) A genotype of the polymorphic DNA repair gene MGMT is associated with *de novo* glioblastoma. *Neurol. Res* **25**, 875–879, https://doi.org/10.1179/016164103771954005
- 36 Kiczmer, P., Prawdzic Senkowska, A., Strzelczyk, J.K., Szydlo, B., Biernacki, K., Osadnik, T. et al. (2018) The role of MGMT polymorphisms rs12917 and rs11016879 in head and neck cancer risk and prognosis. *Acta Biochim. Pol.* 65, 87–92, https://doi.org/10.18388/abp.2017¹613
- 37 Kietthubthew, S., Sriplung, H., Au, W.W. and Ishida, T. (2006) Polymorphism in DNA repair genes and oral squamous cell carcinoma in Thailand. *Int. J. Hyg. Environ. Health* 209, 21–29, https://doi.org/10.1016/j.ijheh.2005.06.002
- 38 Li, C., Liu, J., Li, A., Qian, L., Wang, X., Wei, Q. et al. (2005) Exon 3 polymorphisms and haplotypes of 06-methylguanine-DNA methyltransferase and risk of bladder cancer in southern China: a case-control analysis. *Cancer Lett.* **227**, 49–57, https://doi.org/10.1016/j.canlet.2005.03.043
- 39 Liu, R.Q. and Zhuang, Z.X. (2002) Single-nucleotide polymorphisms of human 06-methylguanine-DNA methyltransferase (MGMT) gene in lung cancer patients from south china. Wei Sheng Du Li Xue Za Zhi 16, 1–5
- 40 Liu, R.Q., Zhuang, Z.X., He, C.H. and He, Y. (2002) Relationship between genetic polymorphisms of human 06-methylguanine-DNA methyltransferase (MGMT) gene. *Ai Zheng Ji Bian Tu Bian* 14, 101–106
- 41 Liu, S.H., Su, M., Cheng, L., Sun, B.L. and Lu, Z.H. (2006) Polymorphisms of O6-methylguanine-DNA methyltransferase gene in Chinese Chaoshan esophageal cancer patients. *Ai Zheng Ji Bian Tu Bian* 18, 100–104
- 42 Liu, Y., Scheurer, M.E., El-Zein, R., Cao, Y., Do, K.A., Gilbert, M. et al. (2009) Association and interactions between DNA repair gene polymorphisms and adult glioma. *Cancer Epidemiol. Biomarkers Prev.* **18**, 204–214, https://doi.org/10.1158/1055-9965.EPI-08-0632
- 43 Loh, Y.H., Mitrou, P.N., Wood, A., Luben, R.N., McTaggart, A., Khaw, K.T. et al. (2011) SMAD7 and MGMT genotype variants and cancer incidence in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk Study. *Cancer Epidemiol.* 35, 369–374, https://doi.org/10.1016/j.canep.2010.09.011
- 44 Lu, Y., Xu, Y.C., Shen, J., Yu, R.B., Niu, J.Y. and Guo, J.T. (2006) Study on the association between the role of polymorphisms of the 06-methylguanine-DNA methyltransferase gene and gastric cancer hereditary susceptibility. *Ji Bing Kong Zhi Za Zhi* **10**, 222–225
- 45 McKean-Cowdin, R., Barnholtz-Sloan, J., Inskip, P.D., Ruder, A.M., Butler, M., Rajaraman, P. et al. (2009) Associations between polymorphisms in DNA repair genes and glioblastoma. *Cancer Epidemiol. Biomarkers Prev.* 18, 1118–1126, https://doi.org/10.1158/1055-9965.EPI-08-1078
- 46 O'Mara, T.A., Ferguson, K., Fahey, P., Marquart, L., Yang, H.P., Lissowska, J. et al. (2011) CHEK2, MGMT, SULT1E1 and SULT1A1 polymorphisms and endometrial cancer risk. *Twin Res. Hum. Genet.* 14, 328–332, https://doi.org/10.1375/twin.14.4.328
- 47 Palli, D., Polidoro, S., D'Errico, M., Saieva, C., Guarrera, S., Calcagnile, A.S. et al. (2010) Polymorphic DNA repair and metabolic genes: a multigenic study on gastric cancer. *Mutagenesis* **25**, 569–575, https://doi.org/10.1093/mutage/geg042
- 48 Rajaraman, P., Hutchinson, A., Wichner, S., Black, P.M., Fine, H.A., Loeffler, J.S. et al. (2010) DNA repair gene polymorphisms and risk of adult meningioma, glioma, and acoustic neuroma. *Neuro Oncol.* 12, 37–48, https://doi.org/10.1093/neuonc/nop012
- 49 Ritchey, J.D., Huang, W.Y., Chokkalingam, A.P., Gao, Y.T., Deng, J., Levine, P. et al. (2005) Genetic variants of DNA repair genes and prostate cancer: a population-based study. *Cancer Epidemiol. Biomarkers Prev.* 14, 1703–1709, https://doi.org/10.1158/1055-9965.EPI-04-0809
- 50 Shah, M.A., Shaff, S.M., Lone, G.N. and Jan, S.M. (2012) Lack of influence of MGMT codon Leu84Phe and codon lleu143Val polymorphisms on esophageal cancer risk in the Kashmir valley. *Asian Pac. J. Cancer Prev.* **13**, 3047–3052, https://doi.org/10.7314/APJCP.2012.13.7.3047
- 51 Shen, J., Terry, M.B., Gammon, M.D., Gaudet, M.M., Teitelbaum, S.L., Eng, S.M. et al. (2005) MGMT genotype modulates the associations between cigarette smoking, dietary antioxidants and breast cancer risk. *Carcinogenesis* **26**, 2131–2137, https://doi.org/10.1093/carcin/bgi179
- 52 Shen, M., Purdue, M.P., Kricker, A., Lan, Q., Grulich, A.E., Vajdic, C.M. et al. (2007) Polymorphisms in DNA repair genes and risk of non-Hodgkin's lymphoma in New South Wales, Australia. *Haematologica* **92**, 1180–1185, https://doi.org/10.3324/haematol.11324
- 53 Shi, J.Y., Ren, Z.H., Jiao, B., Xiao, R., Yun, H.Y., Chen, B. et al. (2011) Genetic variations of DNA repair genes and their prognostic significance in patients with acute myeloid leukemia. *Int. J. Cancer* **128**, 233–238, https://doi.org/10.1002/ijc.25318
- 54 Stern, M.C., Conti, D.V., Siegmund, K.D., Corral, R., Yuan, J.M., Koh, W.P. et al. (2007) DNA repair single-nucleotide polymorphisms in colorectal cancer and their role as modifiers of the effect of cigarette smoking and alcohol in the Singapore Chinese Health Study. *Cancer Epidemiol. Biomarkers Prev.* **16**, 2363–2372, https://doi.org/10.1158/1055-9965.EPI-07-0268
- 55 Tranah, G.J., Bugni, J., Giovannucci, E., Ma, J., Fuchs, C., Hines, L. et al. (2006) 06-methylguanine-DNA methyltransferase Leu84Phe and Ile143Val polymorphisms and risk of colorectal cancer in the Nurses' Health Study and Physicians' Health Study (United States). *Cancer Causes Control* 17, 721–731, https://doi.org/10.1007/s10552-006-0005-y
- 56 Yang, F., Shi, J.Y., Xu, L., Ren, L.J., Zhang, Q.H., Zhao, W.L. et al. (2009) Genetic susceptibility of single nucleotide polymorphism in MGMT to non-Hodgkin lymphoma. *Zhonghua Xue Ye Xue Za Zhi* **30**, 622–625
- 57 Zhang, M., Huang, W.Y., Andreotti, G., Gao, Y.T., Rashid, A., Chen, J. et al. (2008) Variants of DNA repair genes and the risk of biliary tract cancers and stones: a population-based study in China. *Cancer Epidemiol. Biomarkers Prev.* 17, 2123–2127, https://doi.org/10.1158/1055-9965.EPI-07-2735
- 58 Zhang, Z., Wang, L., Wei, S., Liu, Z., Wang, L.E., Sturgis, E.M. et al. (2010) Polymorphisms of the DNA repair gene MGMT and risk and progression of head and neck cancer. *DNA Repair (Amst.)* **9**, 558–566, https://doi.org/10.1016/j.dnarep.2010.02.006
- 59 Zienolddiny, S., Campa, D., Lind, H., Ryberg, D., Skaug, V., Stangeland, L. et al. (2006) Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. *Carcinogenesis* 27, 560–567, https://doi.org/10.1093/carcin/bgi232
- 60 Bigler, J., Ulrich, C.M., Kawashima, T., Whitton, J. and Potter, J.D. (2005) DNA repair polymorphisms and risk of colorectal adenomatous or hyperplastic polyps. *Cancer Epidemiol. Biomarkers Prev.* **14**, 2501–2508, https://doi.org/10.1158/1055-9965.EPI-05-0270



- 61 Jiao, L., Bondy, M.L., Hassan, M.M., Wolff, R.A., Evans, D.B., Abbruzzese, J.L. et al. (2006) Selected polymorphisms of DNA repair genes and risk of pancreatic cancer. *Cancer Detect. Prev.* **30**, 284–291, https://doi.org/10.1016/j.cdp.2006.05.002
- 62 Krzesniak, M., Butkiewicz, D., Samojedny, A., Chorazy, M. and Rusin, M. (2004) Polymorphisms in TDG and MGMT genes epidemiological and functional study in lung cancer patients from Poland. *Ann. Hum. Genet.* **68**, 300–312. https://doi.org/10.1046/j.1529-8817.2004.00079.x
- 63 Moreno, V., Gemignani, F., Landi, S., Gioia-Patricola, L., Chabrier, A., Blanco, I. et al. (2006) Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. *Clin. Cancer Res.* **12**, 2101–2108, https://doi.org/10.1158/1078-0432.CCR-05-1363
- 64 Hung, R.J., Baragatti, M., Thomas, D., McKay, J., Szeszenia-Dabrowska, N., Zaridze, D. et al. (2007) Inherited predisposition of lung cancer: a hierarchical modeling approach to DNA repair and cell cycle control pathways. *Cancer Epidemiol. Biomarkers Prev.* **16**, 2736–2744, https://doi.org/10.1158/1055-9965.EPI-07-0494
- 65 Hazra, A., Chanock, S., Giovannucci, E., Cox, D.G., Niu, T., Fuchs, C. et al. (2008) Large-scale evaluation of genetic variants in candidate genes for colorectal cancer risk in the nurses' health study and the health professionals' follow-up study. *Cancer Epidemiol. Biomarkers Prev.* 17, 311–319, https://doi.org/10.1158/1055-9965.EPI-07-0195
- 66 Khatami, F., Noorinayer, B., Mohebi, S.R., Ghiasi, S., Mohebi, R., Hashemi, M. et al. (2009) Effects of amino acid substitution polymorphisms of two DNA methyltransferases on susceptibility to sporadic colorectal cancer. *Asian Pac. J. Cancer Prev.* **10**, 1183–1188
- 67 Adel Fahmideh, M., Schwartzbaum, J., Frumento, P. and Feychting, M. (2014) Association between DNA repair gene polymorphisms and risk of glioma: a systematic review and meta-analysis. *Neuro Oncol.* **16**, 807–814, https://doi.org/10.1093/neuonc/nou003
- 68 Liu, K. and Jiang, Y. (2017) Polymorphisms in DNA repair gene and susceptibility to glioma: a systematic review and meta-analysis based on 33 studies with 15 SNPs in 9 genes. *Cell Mol. Neurobiol.* **37**, 263–274, https://doi.org/10.1007/s10571-016-0367-y

Study ID	allele T vs. C	OR (95% CI)	% Weight
Agalliu (2010)		0.95 (0.81, 1.12)	3.31
Agalliu (2010)		1.21 (0.70, 2.09)	0.90
Akbari (2009)		1.05 (0.72, 1.55)	1.51
Betti (2011)		0.93 (0.62, 1.41)	1.37
Betti (2011)		1.03 (0.47, 2.24)	0.50
Sye (2011)		0.96 (0.75, 1.24)	2.45
Bye (2011)		1.41 (1.05, 1.91)	2.05
Chae (2006)		0.90 (0.67, 1.21)	2.03
Chuang (2011)		0.85 (0.75, 0.96)	3.68
Doecke (2008)		1.18 (0.97, 1.45)	2.90
Felini (2007)		1.24 (0.92, 1.68)	2.03
eng (2007)		1.10 (0.83, 1.47)	2.03
-eng (2008) Su (2009)	740	1.48 (0.99, 2.23)	1.40
3u (2009) Hall (2007)		1.48 (0.99, 2.23)	3.16
Han (2006a)		0.85 (0.66, 1.08)	2.49
Han (2006b)		1.08 (0.93, 1.26)	3.42
Hu (2013)		1.83 (1.40, 2.38)	2.32
Hu (2007)		0.90 (0.67, 1.22)	2.02
luang (2017)		1.00 (0.48, 2.07)	0.56
Huang (2007)		1.25 (1.01, 1.55)	2.77
luang (2010)		0.72 (0.40, 1.33)	0.76
Huang (2005a)		1.19 (0.89, 1.60)	2.09
Huang (2005b)		0.80 (0.64, 1.00)	2.67
noue (2003)		0.72 (0.42, 1.26)	0.88
Siczmer (2018)		1.41 (0.87, 2.27)	1.11
Kietthubthew (2006)		1.02 (0.58, 1.78)	0.88
.i (2005)		1.33 (0.81, 2.18)	1.06
iu (2002a)		1.06 (0.40, 2.82)	0.33
iu (2002b)		1.15 (0.31, 4.28)	0.19
iu (2002b)		2.29 (0.88, 5.96)	0.34
iu (2006)		1.69 (0.72, 3.97)	0.42
iu (2009)		0.71 (0.52, 0.98)	1.94
oh (2011)		1.19 (0.85, 1.66)	1.81
_u (2006)		0.98 (0.67, 1.44)	1.52
McKean (2009)	* *	0.91 (0.77, 1.07)	3.31
D'Mara (2011)	-	0.92 (0.78, 1.10)	3.23
O'Mara (2011)		1.16 (0.89, 1.53)	2.26
Palli (2010)		1.03 (0.77, 1.37)	2.14
Rajaraman (2010)	-	0.90 (0.68, 1.19)	2.19
Rajaraman (2010)		0.79 (0.52, 1.19)	1.36
Rajaraman (2010)		0.80 (0.46, 1.38)	0.89
Ritchey (2005)	_	1.91 (1.18, 3.09)	1.10
Shah (2012)		1.31 (0.71, 2.41)	0.75
Shen (2005)		1.06 (0.90, 1.26)	3.21
Shen (2007)		0.88 (0.68, 1.13)	2.39
Shi (2011)		0.98 (0.69, 1.39)	1.71
Stern (2007)		0.74 (0.53, 1.05)	1.74
ranah (2006)		0.96 (0.70, 1.33)	1.87
ranah (2006)		0.93 (0.66, 1.31)	1.77
Vang (2006)		1.08 (0.91, 1.28)	3.24
rang (2009)		1.87 (1.03, 3.38)	0.79
hang (2008)		0.65 (0.47, 0.89)	1.90
Thang (2010)		0.87 (0.71, 1.07)	2.91
Zienolddiny (2006)		1.27 (0.97, 1.67)	2.24
Overall (I-squared = 50.1%, p = 0.000)	•	1.03 (0.97, 1.09)	100.00
IOTE: Weights are from random effects analysis	l!		

Agalliu (2010) Agalliu (2010) Akbari (2009) Betti (2011) Betti (2011) Bye (2011)		0.87 (0.72, 1.05) 0.99 (0.53, 1.87) 1.10 (0.72, 1.68) 1.06 (0.66, 1.71) 0.91 (0.38, 2.15)	3.42 0.86 1.56
Agalliu (2010) Akbari (2009) Betti (2011) Betti (2011) Bye (2011)		0.99 (0.53, 1.87) 1.10 (0.72, 1.68) 1.06 (0.66, 1.71)	0.86
Akbari (2009) Betti (2011) Betti (2011) Bye (2011)		1.10 (0.72, 1.68) 1.06 (0.66, 1.71)	
Betti (2011) Betti (2011) Bye (2011)		1.06 (0.66, 1.71)	1.00
Betti (2011) Bye (2011)			1.33
Bye (2011)	-		0.50
		0.95 (0.71, 1.29)	2.38
Bye (2011)		1.37 (0.95, 1.99)	1.87
Chae (2006)		1.03 (0.73, 1.44)	2.07
Chuang (2011)		0.76 (0.66, 0.88)	3.83
Doecke (2008)		1.20 (0.95, 1.51)	2.95
Felini (2007)		1.28 (0.91, 1.79)	2.07
Feng (2008)		0.62 (0.40, 0.96)	1.48
Gu (2009)		1.54 (0.98, 2.42)	1.45
Hall (2007)		0.91 (0.74, 1.13)	3.15
Han (2006a)		0.81 (0.61, 1.07)	2.53
Han (2006b)		0.99 (0.83, 1.18)	3.55
Hu (2013)		1.61 (1.18, 2.19)	2.30
Hu (2007)		0.83 (0.60, 1.16)	2.13
Huang (2017)		0.85 (0.37, 1.95)	0.53
Huang (2007)		1.25 (0.98, 1.60)	2.83
Huang (2010)		0.70 (0.37, 1.33)	0.85
Huang (2005a)		1.22 (0.86, 1.72)	2.03
Huang (2005b)		0.79 (0.60, 1.02)	2.69
Inoue (2003)		0.75 (0.50, 1.02)	0.90
Kiczmer (2018)		0.57 (0.28, 1.17)	0.70
Kietthubthew (2006)		0.98 (0.53, 1.82)	0.91
Li (2005)		1.59 (0.92, 2.76)	1.08
Liu (2003)		1.07 (0.39, 2.92)	0.38
Liu (2002a)		■ 1.16 (0.30, 4.51)	0.38
Liu (2002b)	1 7	2.49 (0.91, 6.84)	0.38
Liu (2002b)		1.39 (0.56, 3.47)	0.45
Liu (2009)		0.62 (0.43, 0.90)	1.91
Loh (2011)		1.07 (0.72, 1.58)	1.75
Lu (2006)		1.00 (0.64, 1.56)	1.47
McKean (2009)		0.86 (0.71, 1.04)	3.43
O'Mara (2011)		0.88 (0.72, 1.07)	3.35
O'Mara (2011)		1.12 (0.81, 1.53)	2.24
Palli (2010)	36	1.12 (0.81, 1.53)	2.16
Rajaraman (2010)		0.86 (0.62, 1.20)	2.16
Rajaraman (2010)		0.67 (0.41, 1.10)	1.25
Rajaraman (2010)		0.69 (0.35, 1.33)	0.80
Ritchey (2005)		1.95 (1.15, 3.29)	1.15
Shah (2012)		1.16 (0.58, 2.29)	0.76
Shan (2012) Shen (2005)			3.33
		1.07 (0.88, 1.30)	2.39
Shen (2007)		0.88 (0.65, 1.18) 0.94 (0.64, 1.38)	1.79
Shi (2011)			
Stern (2007)		0.79 (0.55, 1.14)	1.88
Tranah (2006)		0.78 (0.53, 1.15)	1.74
Tranah (2006)		0.82 (0.55, 1.21)	1.74
Wang (2006)		1.00 (0.82, 1.21)	3.35
Yang (2009)		2.11 (1.06, 4.20)	0.75
Zhang (2008)		0.66 (0.47, 0.93)	2.06
Zhang (2010)		0.88 (0.70, 1.10)	3.06
Zienolddiny (2006)		1.26 (0.90, 1.75)	2.13
Overall (I-squared = 46.1%, p = 0.000)	~	0.97 (0.91, 1.04)	100.00
NOTE: Weights are from random effects analysis	+		

Study ID	carrier T vs. C model	OR (95% CI)	% Weight
Agalliu (2010)		0.93 (0.78, 1.11)	5.33 0.44
Agalliu (2010)		1.11 (0.61, 2.00)	0.44
Akbari (2009) Betti (2011)		1.06 (0.70, 1.59) 0.98 (0.63, 1.53)	0.94
Betti (2011)		0.99 (0.43, 2.24)	0.24
Bye (2011)		0.99 (0.43, 2.24)	2.19
Bye (2011)		1.31 (0.94, 1.82)	1.24
Chae (2006)		0.95 (0.69, 1.32)	1.57
Chuang (2011)		0.84 (0.74, 0.97)	9.24
Doecke (2008)		1.16 (0.93, 1.44)	3.05
Felini (2007)		1.21 (0.88, 1.68)	1.39
Feng (2008)		1.03 (0.73, 1.45)	1.34
Gu (2009)		1.40 (0.91, 2.16)	0.73
Hall (2007)		1.04 (0.85, 1.26)	4.10
Han (2006a)	_	0.85 (0.66, 1.11)	2.53
Han (2006b)	—	1.04 (0.88, 1.22)	5.78
Hu (2013)		1.61 (1.21, 2.15)	1.55
Hu (2007)		0.89 (0.64, 1.22)	1.67
Huang (2017)		0.94 (0.43, 2.07)	0.27
Huang (2007)		1.20 (0.95, 1.51)	2.70
Huang (2010)		0.74 (0.40, 1.39)	0.46
Huang (2005a)		1.16 (0.84, 1.60)	1.44
Huang (2005b)		0.83 (0.65, 1.06)	2.96
Inoue (2003)		0.83 (0.46, 1.49)	0.53
Kiczmer (2018)		1.10 (0.62, 1.95)	0.46
Kietthubthew (2006)	· · · · · · · · · · · · · · · · · · ·	1.00 (0.56, 1.81)	0.46
Li (2005)		1.37 (0.81, 2.31)	0.49
Liu (2002a)	•	1.06 (0.39, 2.88)	0.15
Liu (2002b)	•	1.14 (0.29, 4.39)	80.0
Liu (2002b)	•	2.14 (0.79, 5.76)	0.10
Liu (2006)	-	1.49 (0.61, 3.63)	0.17
Liu (2009)		0.72 (0.51, 1.01)	1.63
Loh (2011)		1.12 (0.78, 1.62)	1.11
Lu (2006)		0.99 (0.65, 1.50)	0.93
McKean (2009)		0.91 (0.76, 1.08)	5.48
O'Mara (2011)		0.92 (0.77, 1.11)	4.93
O'Mara (2011)		1.12 (0.83, 1.50)	1.74
Palli (2010)		1.05 (0.77, 1.42)	1.64
Rajaraman (2010)		0.91 (0.67, 1.23)	1.80 0.90
Rajaraman (2010) Rajaraman (2010)		0.78 (0.49, 1.23) 0.79 (0.43, 1.45)	0.51
Ritchey (2005)		1.77 (1.07, 2.95)	0.46
Shah (2012)		1.20 (0.63, 2.29)	0.35
Shen (2005)		1.05 (0.88, 1.27)	4.55
Shen (2007)		0.90 (0.68, 1.18)	2.17
Shi (2011)		0.96 (0.67, 1.40)	1.19
Stern (2007)		0.78 (0.55, 1.12)	1.48
Tranah (2006)		0.91 (0.63, 1.30)	1.33
Tranah (2006)		0.90 (0.62, 1.30)	1.25
Wang (2006)	—	1.04 (0.87, 1.25)	4.69
Yang (2009)	_ ————	1.76 (0.93, 3.33)	0.26
Zhang (2008)		0.68 (0.49, 0.95)	1.84
Zhang (2010)		0.89 (0.72, 1.11)	3.74
Zienolddiny (2006)		1.20 (0.89, 1.62)	1.61
Overall (I-squared = 20.0%, p = 0.104)	• —	0.99 (0.95, 1.03)	100.00
.174	1	5.76	

Study	T/T vs. C/C model		
ID	1/1 vs. C/C model	OR (95% CI)	Weight
Urinary system cancer			
Agalliu (2010)		1.34 (0.78, 2.31)	5.11
Agalliu (2010)		3.40 (0.40, 28.88)	0.28
Li (2005)		0.44 (0.04, 4.25)	0.58
Ritchey (2005)		3.46 (0.31, 38.59)	0.16
Subtotal (I-squared = 0.0%, p = 0.526)	<>	1,41 (0.86, 2.30)	6.12
esophageal cancer	li		
esopnagear cancer Akbari (2009)		0.65 (0.06, 7.26)	0.39
Byn (2011)		0.95 (0.42, 2.18)	2.55
Bye (2011)	70.0	2.07 (0.90, 4.76)	1.00
Doecke (2008)		1.28 (0.67, 2.47)	3.39
Feng (2008)	75	1.47 (0.85, 2.54)	4.83
Han (2006a)		0.91 (0.40, 2.06)	2.72
Half (2006a) Liu (2006)		3.48 (0.16, 73.95)	0.13
Shah (2012)		4.46 (0.21, 94.79)	0.13
Subtotal (I-squared = 0.0%, p = 0.781)	0	1.33 (0.98, 1.80)	15.75
others Betti (2011)		0.47 (0.10, 2.26)	1.20
Berti (2011)		1.93 (0.08, 48.85)	0.13
Betti (2011) Gu (2009)		1.93 (0.08, 48.85) 2.21 (0.20, 24.62)	0.13
Gu (2009) Hall (2007)		2.21 (0.20, 24.62)	4.23
Hall (2007) Han (2006b)			4.23
	_==	1.72 (1.02, 2.89)	
Huang (2007)		1.75 (0.74, 4.16)	1.70
Loh (2011)		2.19 (0.78, 6.16)	4.36
O'Mara (2011)		1.10 (0.60, 2.04)	1.48
O'Mana (2011) Shen (2005)		1.67 (0.64, 4.38)	1.48
Shen (2005) Zhang (2008)		0.26 (0.03, 2.07)	1.12
Zhang (2008) Huang (2010)		0.26 (0.03, 2.09) (Excluded)	1.12
Huang (2010) Liu (2002b)	1	(Excluded)	0.00
	1		0.00
Liu (2002b)	L	(Excluded)	
Subtotal (I-squared = 0.0%, p = 0.460)	P	1.48 (1.16, 1.88)	24.38
lung cancer	_ II		
Chae (2005)		0.40 (0.12, 1.28)	2.21
Hu (2007)		1.68 (0.40, 7.07)	0.66
Wang (2006)		1.65 (0.92, 2.96)	4.05
Zienolddiny (2006)		1.70 (0.73, 3.96)	1.85
Liu (2002a)		(Excluded)	0.00
Subtotal (I-squared = 40.7%, p = 0.167)	₩>	1.35 (0.89, 2.04)	8.78
head and neck cancer			
Chuang (2011)	E	1.08 (0.74, 1.58)	11.54
Felini (2007)		1.28 (0.41, 4.00)	1.16
Hu (2013)		4.16 (1.68, 10.30)	1.27
Huang (2017)		1.97 (0.18, 22.23)	0.22
Huang (2005b)		0.72 (0.34, 1.51)	3.84
Inoue (2003)		0.15 (0.01, 2.66)	1.05
Kiczmer (2018)		6.17 (1.98, 19.27)	0.48
Kiethubthew (2006)		1.55 (0.10, 25.08)	0.17
Liu (2009)		1.02 (0.37, 2.85)	1.62
McKean (2009)		1.09 (0.63, 1.91)	5.27
Rajaraman (2010)		0.98 (0.41, 2.37)	2.25
Rejaramen (2010)		1.14 (0.36, 3.60)	1.18
Rajaraman (2010)		1.12 (0.24, 5.13)	0.68
Zhang (2010)		0.68 (0.28, 1.66)	2.83
Subtotal (I-squared = 39.5%, p = 0.064)	•	1.18 (0.95, 1.46)	33.56
gastric cancer	<u>i.</u>		
Huang (2005a)		1.31 (0.49, 3.44)	1.58
Lu (2006)		0.87 (0.24, 3.15)	1.13
Palli (2010)		0.68 (0.22, 2.17)	1.67
Subtotal (I-squared = 0.0%, p = 0.692)	◆	0.96 (0.51, 1.81)	4.39
blood cancer	_1:		
Shin (2007)		0.79 (0.35, 1.81)	2.81
Shi (2011)		1.36 (0.30, 6.13)	0.63
Yang (2011)	196	1.75 (0.20, 15.45)	0.63
Subtotal (I-squared = 0.0%, p = 0.702)		0.95 (0.47, 1.90)	3.67
colorectal cancer	li .		
colorectal cancer Stern (2007)	-	0.29 (0.04, 2.26)	1.20
Transh (2006)	_ +	2.08 (0.86, 5.07)	1.16
Transh (2006)		1.62 (0.51, 5.08)	1.01
Subtotal (I-squared = 38.5%, p = 0.197)	45	1.31 (0.68, 2.50)	3.37
	II.		
Overall (I-squared = 4.5%, p = 0.384)	I o	1.29 (1.14, 1.46)	100.00

Study ID	T/T vs. C/C model	OR (95% CI)	% Weight
PB	-		
Agalliu (2010)		1.34 (0.78, 2.31)	5.11
Agalliu (2010)		3.40 (0.40, 28.88)	0.28
Betti (2011)		0.47 (0.10, 2.26)	1.20
Bye (2011)		0.95 (0.42, 2.18)	2.58
Bye (2011)		2.07 (0.90, 4.76)	1.60
Chae (2006)		0.40 (0.12, 1.28)	2.21
Chuang (2011)		1.08 (0.74, 1.58)	11.54
Doecke (2008)		1.28 (0.67, 2.47)	3.39
Felini (2007)		1.28 (0.41, 4.00)	1.16
Gu (2009)		2.21 (0.20, 24.62)	0.21
Han (2006a)		0.91 (0.40, 2.08)	2.72
Han (2006b)		1.72 (1.02, 2.89)	4.83
Hu (2013)		4.16 (1.68, 10.30)	1.27
Hu (2007)		1.68 (0.40, 7.07)	0.66
Huang (2017)		1.97 (0.18, 22.23)	0.22
Huang (2007)		1.75 (0.74, 4.16)	1.70
Huang (2005a)		1.31 (0.49, 3.44)	1.58
Inoue (2003)		0.15 (0.01, 2.66)	1.05
Kiczmer (2018)		6.17 (1.98, 19.27)	0.48
Kiethubthew (2006)		1.55 (0.10, 25.08)	0.17
Liu (2006)		3.48 (0.16, 73.95)	0.13
Liu (2009)		1.02 (0.37, 2.85)	1.62
Loh (2011)		2.19 (0.78, 6.16)	0.87
Lu (2006)		0.87 (0.24, 3.15)	1.13
O'Mara (2011)		1.10 (0.60, 2.04)	4.36
O'Mara (2011)		1.67 (0.64, 4.38)	1.48
Palli (2010)		0.68 (0.22, 2.17)	1.67
Ritchey (2005)		3.46 (0.31, 38.59)	0.16
Shah (2012)		4.46 (0.21, 94.79)	0.12
Shen (2005)		1.11 (0.60, 2.07)	4.25
Shen (2007)		0.79 (0.35, 1.81)	2.81
SN (2011)		1.36 (0.30, 6.13)	0.63
Stern (2007)		0.29 (0.04, 2.26)	1.20
Tranah (2006)		2.08 (0.86, 5.07)	1.16
Transh (2006)		1.62 (0.51, 5.08)	1.01
Wang (2006)		1.65 (0.92, 2.96)	4.05
Yang (2009)		1.75 (0.20, 15.45)	0.23
Zhang (2008)		0.26 (0.03, 2.09)	1.12
Zienolddiny (2006)		1.70 (0.73, 3.96)	1.85
Liu (2002a)	1	(Excluded)	0.00
Liu (2002b)	- 17	(Excluded)	0.00
Liu (2002b)	li li	(Excluded)	0.00
Subtotal (I-equared = 6.3%, p = 0.358	9)	1.32 (1.14, 1.52)	73.80
PB/HB	li li		
Akbari (2009)		0.65 (0.06, 7.26)	0.39
Huang (2005b)		0.72 (0.34, 1.51)	3.84
McKean (2009)		1.09 (0.63, 1.91)	5.27
Subtotal (I-squared = 0.0%, p = 0.645	5)	0.92 (0.60, 1.43)	9.50
HB	11:		
Betti (2011)		1.93 (0.08, 48.85)	0.13
Feng (2008)		1.47 (0.85, 2.54)	4.83
Hall (2007)		2.20 (1.30, 3.74)	4.23
Li (2005)	0	0.44 (0.04, 4.25)	0.58
Rajaraman (2010)		0.98 (0.41, 2.37)	2.25
Rajaraman (2010)		1.14 (0.36, 3.60)	1.18
Rajaraman (2010)		1.12 (0.24, 5.13)	0.68
Zhang (2010)		0.68 (0.28, 1.66)	2.83
Huang (2010)		(Excluded)	0.00
Subtotal (I-equared = 3.2%, p = 0.405	» >	1.39 (1.03, 1.86)	16.70
Overall (I-squared = 4.5%, p = 0.384)	, 	1.29 (1.14, 1.46)	100.00

Study			%
ID	T/T vs. C/C+C/T model	OR (95% CI)	Weight
Caucasian			
Agalliu (2010)			
		1.39 (0.81, 2.38)	5.06
Betti (2011)		0.46 (0.10, 2.22)	1.23
Betti (2011)		1.98 (0.08, 49.64)	0.13
Felini (2007)		1.21 (0.39, 3.80)	1.20
Gu (2009)		1.99 (0.18, 22.12)	0.22
Hall (2007)		2.25 (1.33, 3.82)	4.22
Han (2006a)		0.95 (0.42, 2.16)	2.65
Han (2006b)		1.72 (1.03, 2.90)	4.86
Huang (2005a)		1.24 (0.47, 3.24)	1.65
Kiczmer (2018)		7.02 (2.27, 21.72)	0.44
Ketthubthew (2006)		1.55 (0.10, 25.09)	0.17
Liu (2009)		1.13 (0.40, 3.14)	1.55
Loh (2011)	100	2.16 (0.77, 6.06)	0.88
McKean (2009)		1.13 (0.65, 1.97)	5.19
O'Mana (2011)	3-6	1.14 (0.62, 2.10)	4.32
	3-7-		1.51
O'Mara (2011)		1.62 (0.62, 4.23)	
Palli (2010)		0.67 (0.21, 2.11)	1.71
Rajaraman (2010)		1.02 (0.42, 2.45)	2.23
Rajaraman (2010)		1.24 (0.39, 3.91)	1.11
Rajaraman (2010)		1.21 (0.26, 5.53)	0.64
Shen (2005)		1.09 (0.59, 2.03)	4.32
Shen (2007)		0.81 (0.36, 1.86)	2.79
Transh (2006)		2.19 (0.90, 5.31)	1.11
Transh (2006)		1.69 (0.54, 5.28)	0.99
Wang (2006)		1.66 (0.93, 2.95)	4.08
Zhang (2010)		0.70 (0.29, 1.70)	2.79
Zienolddiny (2006)		1.58 (0.68, 3.65)	1.96
Subtotal (I-squared = 0.0%, p = 0.528)		1.37 (1.17, 1.60)	59.02
	ř	1.01 (1.11, 1.00)	55.02
African			
Agalliu (2010)		3.40 (0.40, 28.78)	0.28
Bye (2011)		0.97 (0.42, 2.20)	2.59
Shi (2011)		1.38 (0.31, 6.18)	0.63
Subtotal (I-squared = 0.0%, p = 0.542)	<u> </u>	1.23 (0.64, 2.40)	3.50
Asian	li i		
Akbari (2009)		0.64 (0.06, 7.06)	0.39
Chae (2006)		0.39 (0.12, 1.27)	2.23
Feng (2008)		1.81 (1.09, 3.02)	4 99
Hu (2013)		3.77 (1.53, 9.30)	1.35
Hu (2007)		1.73 (0.41, 7.28)	0.66
			0.22
Huang (2017)		2.02 (0.18, 22.71)	
Huang (2007)		1.65 (0.69, 3.90)	1.77
Inoue (2003)		0.15 (0.01, 2.68)	1.05
Li (2005)		0.40 (0.04, 3.92)	0.60
Liu (2006)		3.32 (0.16, 70.37)	0.13
Lu (2006)		0.87 (0.24, 3.14)	1.14
Ritchey (2005)		3.08 (0.28, 34.27)	0.18
Shah (2012)		4.28 (0.20, 90.54)	0.12
Stern (2007)		0.30 (0.04, 2.34)	1.17
Yang (2009)		1.48 (0.17, 12.91)	0.26
Zhang (2008)	100	0.27 (0.03, 2.23)	1.07
Huang (2010)		(Excluded)	0.00
Huang (2010) Liu (2002a)	11	(Excluded)	0.00
Liu (2002a)	11	(Excluded)	0.00
	li li		0.00
Liu (2002b)	<u> </u>	(Excluded)	
Subtotal (I-squared = 27:2%, p = 0.150)	Y	1.37 (1.02, 1.83)	17.33
Mixed			
Bye (2011)		1.88 (0.82, 4.26)	1.75
Chuang (2011)	W. W.	1.16 (0.80, 1.68)	11.14
Doecke (2008)		1.23 (0.64, 2.36)	3.52
Huang (2005b)		0.76 (0.36, 1.60)	3.74
Subtotal (I-squared = 0.0%, p = 0.461)		1.16 (0.88, 1.53)	20.15
	M		
Overall (I-squared = 3.2%, p = 0.410)	•	1.32 (1.17, 1.49)	100.00
,10807	1	19	

OR (96% CI)

IU .		OR (see CI)	wagn
Urinary system cancer	-		
Agelliu (2010)		1,39 (0.81, 2.38)	5.06
Agalliu (2010)		3.40 (0.40, 28.78)	0.28
Li (2006)		0.40 (0.04, 3.92)	0.60
Ritchey (2005)		3.08 (0.28, 34.27)	0.18
Subtotal (I-squared = 0.0%, p = 0.527)	♦	1.43 (0.88, 2.33)	6.12
esophageal cancer	li		
Akberi (2009)		0.64 (0.06, 7.06)	0.39
Bye (2011)		0.97 (0.42, 2.20)	2.59
Bye (2011)		1.88 (0.82, 4.26)	1.75
Doecke (2008)		1.23 (0.64, 2.36)	3.52
Feng (2008)		1.81 (1.09, 3.02)	4.99
Han (2006a)		0.95 (0.42, 2.16)	2.65
Liu (2006)		3.32 (0.16, 70.37)	0.13
Shah (2012)		4.28 (0.20, 90.54)	0.13
Subtotal (1-squared = 0.0%, p = 0.725)	<u></u>	1.42 (1.05, 1.90)	16.14
others			
Beti (2011)		0.46 (0.10, 2.22)	1.23
Bets (2011)		1.98 (0.05, 49.64)	0.13
Gu (2009)		1.99 (0.18, 22.12)	0.22
Hall (2007)	E	2.25 (1.33, 3.82)	
Han (2006b)		1.72 (1.03, 2.90)	4.86
Huang (2007)		1.65 (0.69, 3.90)	1.77
Loh (2011)		2.16 (0.77, 6.06)	0.88
O'Mara (2011)		1.14 (0.62, 2.10)	4.32
O'Mara (2011)		1.62 (0.62, 4.23)	1.51
Shen (2005)		1.09 (0.59, 2.03)	4.32
Zhang (2008)		0.27 (0.03, 2.23)	1.07
Huang (2010)	- Ti	(Excluded)	0.00
Liu (2002b)	15	(Excluded)	0.00
Liu (2002b)	I !	(Excluded)	0.00
Subtotal (I-squared = 0.0%, p = 0.467)	•	1.48 (1.17, 1.88)	24.54
lung conner	1:		
Chae (2006)		0.39 (0.12, 1.27)	2.23
Hu (2007)		1.73 (0.41, 7.28)	0.66
Wang (2006)		1.66 (0.93, 2.96)	4.08
Zienolddiny (2005)		1.58 (0.68, 3.65)	1.96
Zienolosny (2000) Liu (2002a)	The C	1.56 (0.66, 3.65) (Excluded)	0.00
	_		
Subtotal (I-squared = 40.0%, p = 0.172)	*	1.33 (0.88, 2.00)	8.92
head and neck cancer			
Chuang (2011)	E	1.16 (0.80, 1.68)	11.14
Felini (2007)		1.21 (0.39, 3.80)	1.20
Hu (2013)		3.77 (1.53, 9.30)	1.35
Huang (2017)		2.02 (0.18, 22.71)	0.22
Huang (2005b)		0.76 (0.36, 1.60)	3.74
Inque (2003)		0.15 (0.01, 2.68)	1.05
Kiczmer (2018)		7.02 (2.27, 21.72)	0.44
Kietthubthew (2006)		1.55 (0.10, 25.09)	0.17
Liu (2009)		1.13 (0.40, 3.14)	1.55
McKean (2009)		1.13 (0.65, 1.97)	5.19
Rajaraman (2010)	_34_	1.02 (0.42, 2.45)	2.19
Rajaraman (2010)		1.24 (0.39, 3.91)	1.11
Rajaraman (2010) Rajaraman (2010)		1.24 (0.39, 3.91)	0.64
Zhang (2010)		0.70 (0.29, 5.53)	2.79
Zhang (2010) Subtotal (I-squared = 37.5%, p = 0.077)	- -	1.23 (0.99, 1.70)	32.82
	B		
gastric cancer Huang (2005a)		1.24 (0.47, 3.24)	1.65
Huang (2005a) Lu (2006)		0.87 (0.47, 3.24)	1.65
Pall (2010)			1.71
Pali (2010) Subtotal (1-squared = 0.0%, p = 0.718)		0.67 (0.21, 2.11) 0.93 (0.49, 1.75)	4.50
	4	0.83 (0.48, 1.73)	4.00
blood cancer Shen (2007)		0.81 (0.36, 1.86)	2.79
			0.63
Shi (2011) Yang (2009)		1.38 (0.31, 6.18)	0.63
Yang (2009) Subtotal (I-squared = 0.0%, p = 0.769)	<15	0.96 (0.48, 1.91)	3.69
	Ti		
colorectal cancer	i		
Stern (2007)		0.30 (0.04, 2.34)	1.17
Tranah (2006)	1 5000	2.19 (0.90, 5.31)	1.11
Transh (2006)		1.69 (0.54, 5.28)	0.99
Subtotal (1-equaned = 39.6%, p = 0.191)	42	1.37 (0.72, 2.60)	3.27
Overall (I-squared = 3.2%, p = 0.410)	.	1.32 (1.17, 1.49)	100.00
	i		
		1	

T/T vs. C/C+C/T model

Study	T/T vs. C/C+C/T model	OR (95% CI)	% Weight
iii ii	1/1 VS. C/C+C/1 Illouel	OR (30% CI)	wago
PB			
Agalliu (2010)		1.39 (0.81, 2.38)	5.05
Agalliu (2010)		3.40 (0.40, 28.78)	0.28
Betti (2011)		0.46 (0.10, 2.22)	1.23
Bye (2011)		0.97 (0.42, 2.20)	2.59
Bye (2011)		1.88 (0.82, 4.26)	1.75
Chae (2006)		0.39 (0.12, 1.27)	2.23
Chuang (2011)		1.16 (0.80, 1.68)	11.14
Doecke (2008)		1.23 (0.64, 2.36)	3.52
Felini (2007)		1.21 (0.39, 3.80)	1.20
Gu (2009)		1.99 (0.18, 22.12)	0.22
Han (2006a)		0.95 (0.42, 2.16)	2.65
Han (2006b)		1.72 (1.03, 2.90)	4.88
Hu (2013)		3.77 (1.53, 9.30)	1.35
Hu (2007)		1.73 (0.41, 7.28)	0.66
Huang (2017)		2.02 (0.18, 22.71)	0.22
Huang (2007)		1.65 (0.69, 3.90)	1.77
Huang (2005a)		1.24 (0.47, 3.24)	1.65
Inoue (2003)		0.15 (0.01, 2.68)	1.05
Kiczmer (2018)		7.02 (2.27, 21.72)	0.44
Kiethubthew (2005)		1.55 (0.10, 25.09)	0.17
Liu (2006)		3.32 (0.16, 70.37)	0.13
Liu (2009)		1.13 (0.40, 3.14)	1.55
Loh (2011)		2.16 (0.77, 6.06)	0.88
Lu (2006)		0.87 (0.24, 3.14)	1.14
O'Mara (2011)		1.14 (0.62, 2.10)	4.32
O'Mara (2011)		1.62 (0.62, 4.23)	1.51
Pall (2010)		0.67 (0.21, 2.11)	1.71
			0.18
Ritchey (2005)		3.08 (0.28, 34.27)	
Shah (2012)		4.28 (0.20, 90.54)	0.12
Shen (2005)		1.09 (0.59, 2.03)	4.32
Shen (2007)		0.81 (0.36, 1.86)	2.79
Shi (2011)		1.38 (0.31, 6.18)	
Stem (2007)		0.30 (0.04, 2.34)	1.17
Tranah (2006)	Table 1	2.19 (0.90, 5.31)	1.11
Tranah (2006)		1.69 (0.54, 5.28)	0.99
Wang (2006)		1.66 (0.93, 2.96)	4.08
Yang (2009)		1.48 (0.17, 12.91)	0.26
Zhang (2008)		0.27 (0.03, 2.23)	1.07
Zienolddiny (2006)		1.58 (0.68, 3.65)	1.96
Liu (2002a)	T	(Excluded)	0.00
Liu (2002b)	12	(Excluded)	0.00
Liu (2002b)	12.	(Excluded)	0.00
Subtotal (I-squared = 2.5%, p = 0.426)	•	1.32 (1.15, 1.52)	73.96
PB/HB	- 11		
Akbari (2009)		0.64 (0.06, 7.06)	0.39
Huang (2005b)		0.76 (0.36, 1.60)	3.74
McKean (2009)		1.13 (0.65, 1.97)	5.19
Subtotal (I-squared = 0.0%, p = 0.686)		0.96 (0.62, 1.49)	9.32
_	11		
HB Betti (2011)		1.98 (0.08, 49.64)	0.13
		1.98 (0.08, 49.84)	4.99
Feng (2008)			
Hall (2007)		2.25 (1.33, 3.82)	4.22
Li (2006)		0.40 (0.04, 3.92)	0.60
Rajaraman (2010)		1.02 (0.42, 2.45)	2.23
Rajaraman (2010)		1.24 (0.39, 3.91)	1.11
Rajaraman (2010)		1.21 (0.26, 5.53)	0.64
Zhang (2010)		0.70 (0.29, 1.70)	2.79
Huang (2010)	76	(Excluded)	0.00
Subtotal (I-squared = 11.0%, p = 0.344)	❖	1.52 (1.14, 2.03)	16.72
Overall (I-squared = 3.2%, p = 0.410)	•	1.32 (1.17, 1.49)	100.00
Overall (I-squared = 3.2%, p = 0.410)	•	1.32 (1.17, 1.49)	100.00

Table S1. Basic information of included studies

Author	Year	Country	Race	Case	Control	Control	Quality	Genotyping	Mean ag	e Gender
Author	1 ear	Country	Kace	Case	Control	source	score	Assay	(case/control)	(Males %)
Agalliu, et al	2010	USA	Caucasian	1,250	1,237	PB	6	SNPlex TM Genotyping system	NA	NA
		USA	African	147	81	PB	6	SNPlex TM Genotyping system	NA	NA
Akbari, et al	2009	Iran	Asian	196	250	PB/HB	iPLEX-MALDI-TOF-		63.6/55.2	50.9/51.0
Akbari, et ai	2009	Iran	Asian	190	230	РБ/ПБ	0	MassARRAY	03.0/33.2	30.9/31.0
Betti, et al	2011	Italy	Caucasian	133	251	PB	8	TaqMan	66.8/61.7	67.0/69.0
		Italy	Caucasian	68	44	НВ	8	TaqMan	68.39/68.0	70.0/77.0
Bye, et al	2011	South Africa	African	346	469	PB	6	TaqMan	59.8/NA	50.8/NA
		South Africa	Mixed	196	423	PB	6	TaqMan	60.5/NA	65.2/NA
Chae, et al	2006	Korea	Asian	432	432	PB	7	PCR-RFLP	61.6/60.9	81.5/81.5
Chuang, et al	2011	Mixed	Mixed	1,455	3,160	PB	6	NA	NA	78.9/74.0
Doecke, et al	2008	Australia	Mixed	566	1,337	PB	8	SequenomiPLEXTM	64.0/61.0	66.0/89.0
Felini, et al	2007	USA	Caucasian	379	459	PB	7	TaqMan	NA	NA
Feng, et al	2008	China	Asian	201	201	НВ	6	PCR-RFLP	NA	NA
Gu, et al	2009	USA	Caucasian	214	212	PB	5	NA	NA	NA

Hall, et al	2007	Mixed	Caucasian	779	1,034	НВ	6	TaqMan	NA	87.9/76.7
Han, et al	2006a	USA	Caucasian	434	1,085	PB	7	TaqMan	NA	NA
Han, et al	2006b	USA	Caucasian	1,276	1,714	PB	8	TaqMan	NA	NA
Hu, et al	2013	China	Asian	543	495	PB	8	PCR-RFLP	51.5/50.9	62.1/53.9
Hu, et al	2007	China	Asian	500	517	PB	8	Illumina SNP genotyping Bead Lab platform	59.3/60.0	77.2/77.4
Huang, et al	2017	China	Asian	90	90	PB	7	SNaPshot	44.4/49.6	53.3/57.8
Huang, et al	2007	China	Asian	539	800	PB	7	modified PCR-mismatch amplification	NA	NA
Huang, et al	2010	China	Asian	176	110	НВ	6	DNA sequencing	54.0/55.7	92.0/60.9
Huang, et al	2005a	Poland	Caucasian	280	387	PB	6	MALDI-TOF/Hme chemistry	NA	66.0/66.0
Huang, et al	2005b	USA	Mixed	514	754	РВ/НВ	6	TaqMan/MALDI-TOF	56.0/55.0 ^a 60.0/58.0 ^b 65.0/57.0 ^c	71.0/70.0 ^a 79.0/56.0 ^b 90.0/78.0 ^c
Inoue, et al	2003	Japan	Asian	73	224	PB	6	PCR-SSCP	45.5/46.1	NA
Kiczmer, et al	2018	Poland	Caucasian	69	239	PB	6	TaqMan	56.1/34.7	71.0/44.6
Kietthubthew, et al	2006	Thailand	Caucasian	106	164	РВ	9	PCR-RFLP	67.1/68.4	72.6/55.5
Li, et al	2005	China	Asian	167	204	НВ	8	PCR-RFLP	63.6/59.2	80.2/84.8

Liu, et al	2002a	China	Asian	60	100	PB	8	PCR-SSCP/ sequencing	50.7/49.0	67.1/58.9
Liu, et al	2002b	China	Asian	58	100	PB	8	PCR-SSCP/ sequencing	49.5/50.0	53.0/51.1
Liu, et al	2006	China	Asian	100	65	PB	6	microarray-based method	57.7/59.1	88.0/78.5
Liu, et al	2009	USA	Caucasian	369	363	PB	8	SequenomMassARRAYiPLE	NA	56.8/43.6
Liu, et ai	2007	USA	Caucasian	307	303	1 B	0	X platform	NA	30.6/43.0
Loh, et al	2011	UK	Caucasian	188	1,120	PB	6	genome-wide association scan	64.6/61.9	57.8/51.8
Lu, et al	2006	China	Asian	191	251	PB	9	PCR-RFLP	61.8/61.4	73.8/72.5
McKean, et al	2009	USA	Caucasian	998	1,968	PB/HB	6	Multiple methods	56.3/53.6	61.0/51.1
O'Mara, et al	2011	Australia	Caucasian	1,173	1,099	PB	7	SequenomMassARRAY	NA	NA
O Mara, et ar	2011	Australia	Caucasian	1,173	1,099	1 B	,	platform	NA	IVA
		Poland	Caucasian	397	406	PB	7	Illumina iSelect Custom Bead	NA	NA
		1 oland	Caucasian	391	400	1 B	,	Chip	NA	NA
Palli, et al	2010	Italy	Caucasian	291	537	PB	6	TaqMan	NA	56.4/49.3
Rajaraman, et									51.2/49.2 ^d	54.7/46.1 ^d
al	2010	USA	Caucasian	546	477	НВ	5	TaqMan	54.8/49.2 ^e	22.4/46.1 ^e
aı									51.7/49.2 ^f	36.2/46.1 ^f
Ritchey, et al	2005	China	Asian	161	246	PB	8	MALDI-TOF/Hme chemistry	72.2/71.7	NA
Shah, et al	2012	India	Asian	92	77	PB	8	PCR-RFLP	58.0/51.8	69.5/67.5
Shen, et al	2005	USA	Caucasian	1,064	1,107	PB	7	FP	NA	NA

Shen, et al	2007	Australia	Caucasian	555	495	PB	6	TaqMan	NA	NA
Shi, et al	2011	South Africa	African	303	554	PB	6	SequenomiPLEXTM	42.2/NA	38.4/NA
Stown at al	2007	China	Asian	292	1,166	PB	7	TaqMan	61.6/56.5 ^g	52.0/43.0 ^g
Stern, et al	2007	Cillia	Asian	292	1,100	гь	/	i aqivian	60.9/56.5 ^h	60.9/56.5 ^h
Tranah, et al	2006	USA	Caucasian	186	2,137	$PB^{@}$	7	TaqMan	NA	NA
		USA	Caucasian	257	429	$PB^{\#}$	7	TaqMan	NA	NA
Wang, et al	2006	USA	Caucasian	1,121	1,163	PB	9	PCR-RFLP	61.4/61.1	52.6/49.4
Yang, et al	2009	China	Asian	48	352	PB	7	MassARRAY method	NA	58.3/52.3
										27.4/38.8 ⁱ
Zhang, et al	2008	China	Asian	406	782	PB	8	TaqMan	NA	59.8/38.8 ^j
										51.1/38.8 ^k
Zhang, et al	2010	USA	Caucasian	721	1,234	НВ	8	PCR-RFLP	57.0/57.1	74.9/74.1
Zienolddiny, et	2006	Norway	Caucasian	304	363	PB	8	APEX	NA	75.8/76.5
al	2000	Norway	Caucasian	304	303	ГБ	o	AFEA	INA	13.6/10.3

Abbreviations: PB, population-based control; HB, hospital-based control; @, control from Nurses' Health Study (NHS); #, controls from Physicians' Health Study (PHS) cohorts; PCR, polymerase chain reaction; RFLP, restriction fragment-length polymorphism; NA, not available; FP, fluorescence polarization; SNP, single nucleotide polymorphisms; MALDI-TOF, matrix-assisted laser desorption/ ionization time of flight mass spectrometry; hME, homogeneous mass extend; SSCP, single-strand conformation polymorphism; APEX, arrayed primer extension technique.

a, data in Washington; b, data in North Carolina; c, data in Puerto Rico; d, data of Glioma; e, data of Meningioma; f, data of Acoustic neuroma; g, data of cancer in colon; h,

data of cancer in rectum; i, data of gallbladder cancer; j, data of bile duct; k, data of Ampulla of Vater cancer.

Table S2. Data of subgroup analysis under allele T vs. C model

T	G.1	Sample	size		Heteroge	eneity	Associat	tion
Factor	Subgroup	Study	Case	Control	\mathbf{I}^2	P	P	OR (95% CI)
Race	Caucasian	27	13,158	20,678	18.5%	0.196	0.833	-
	African	3	796	1,104	0.0%	0.752	0.955	-
	Asian	20	4,325	6,562	63.0%	< 0.001	0.230	-
Cancer type	Urinary system cancer	4	1,725	1,768	64.7%	0.037	0.192	-
	esophageal cancer	8	2,131	3,907	30.3%	0.186	0.185	-
	lung cancer	5	2,417	2,575	0.0%	0.411	0.404	-
	head and neck cancer	14	5,863	10,581	67.7%	< 0.001	0.493	-
	gastric cancer	3	762	1,175	0.0%	0.674	0.429	-
	blood cancer	3	906	1,401	62.3%	0.070	0.694	-
	colorectal cancer	3	735	3,732	0.0%	0.520	0.183	-
	brain cancer	9	2,998	5,030	74.5%	< 0.001	0.778	-
	glioma	5	1,735	1,884	83.1%	< 0.001	0.637	-
Control source	population-based control	42	16,644	26,788	55.0%	< 0.001	0.122	-
	hospital-based control	9	2,658	4,258	2.7%	0.412	0.694	-

Abbreviations: OR, odds ratio; CI, confidence interval.

-, OR (95% CI) data was not provided, when P value of association >0.05.

Table S3. Data of subgroup analysis under C/T vs. C/C model

		Sample	size		Heteroge	eneity	Associat	ion
Factor	Subgroup	Study	Case	Control	\mathbf{I}^2	P	P	OR (95% CI)
Race	Caucasian	27	13,158	20,678	20.2%	0.175	0.079	-
	African	3	796	1,104	0.0%	0.989	0.670	-
	Asian	20	4,325	6,562	55.8%	0.001	0.379	-
Cancer type	Urinary system cancer	4	1,725	1,768	72.7%	0.012	0.330	-
	esophageal cancer	8	2,131	3,907	44.7%	0.081	0.896	-
	lung cancer	5	2,417	2,575	0.0%	0.557	0.856	-
	head and neck cancer	14	5,863	10,581	57.0%	0.004	0.059	-
	gastric cancer	3	762	1,175	0.0%	0.788	0.291	-
	blood cancer	3	906	1,401	62.9%	0.067	0.695	-
	colorectal cancer	3	735	3,732	0.0%	0.984	0.041	0.79 (0.64, 0.99)
	brain cancer	9	2,998	5,030	66.2%	0.003	0.461	-
	glioma	5	1,735	1,884	78.1%	0.001	0.960	-
Control source	population-based control	42	16,644	26,788	49.7%	< 0.001	0.756	-
	hospital-based control	9	2,658	4,258	12.4%	0.331	0.027	0.86 (0.75, 0.98)

Abbreviations: OR, odds ratio; CI, confidence interval. -, OR (95% CI) data was not provided, when *P* value of association >0.05.

Table S4. Data of subgroup analysis under C/T+T/T vs. C/C model

		Sample	size		Heteroge	eneity	Associat	Association	
Factor	Subgroup	Study	Case	Control	\mathbf{I}^2	P	P	OR (95% CI)	
Race	Caucasian	27	13,158	20,678	15.3%	0.240	0.355	-	
	African	3	796	1,104	0.0%	0.909	0.796	-	
	Asian	20	4,325	6,562	59.3%	< 0.001	0.282	-	
Cancer type	Urinary system cancer	4	1,725	1,768	70.2%	0.018	0.255	-	
	esophageal cancer	8	2,131	3,907	33.7%	0.159	0.491	-	
	lung cancer	5	2,417	2,575	0.0%	0.500	0.624	-	
	head and neck cancer	14	5,863	10,581	62.0%	0.001	0.177	-	
	gastric cancer	3	762	1,175	0.0%	0.722	0.334	-	
	blood cancer	3	906	1401	64.2%	0.061	0.686	-	
	colorectal cancer	3	735	3,732	0.0%	0.845	0.077	-	
	brain cancer	9	2,998	5,030	71.8%	< 0.001	0.605	-	
	glioma	5	1,735	1,884	81.7%	< 0.001	0.793	-	
Control source	population-based control	42	16,644	26,788	52.9%	< 0.001	0.347	-	
	hospital-based control	9	2,658	4,258	0.0%	0.556	0.114	-	

Abbreviations: OR, odds ratio; CI, confidence interval. -, OR (95% CI) data was not provided, when *P* value of association >0.05.

Table S5. Data of subgroup analysis under carrier T vs. C model

		Sample	size		Heteroge	neity	Associat	ion
Factor	Subgroup	Study	Case	Control	\mathbf{I}^2	P	P	OR (95% CI)
Race	Caucasian	27	13,158	20,678	0.0%	0.820	0.530	-
	African	3	796	1,104	0.0%	0.916	0.877	-
	Asian	20	4,325	6,562	40.9%	0.030	0.159	-
Cancer type	Urinary system cancer	4	1,725	1,768	55.6%	0.080	0.658	-
	esophageal cancer	8	2,131	3,907	0.0%	0.563	0.348	-
	lung cancer	5	2,417	2,575	0.0%	0.718	0.676	-
	head and neck cancer	14	5,863	10,581	43.5%	0.041	0.020	0.92 (0.85, 0.99)
	gastric cancer	3	762	1,175	0.0%	0.820	0.483	-
	blood cancer	3	906	1,401	44.6%	0.164	0.853	-
	colorectal cancer	3	735	3,732	0.0%	0.820	0.160	-
	brain cancer	9	2,998	5,030	58.1%	0.014	0.694	-
	glioma	5	1,735	1,884	72.9%	0.005	0.259	-
Control source	population-based control	42	16,644	26,788	28.4%	0.047	0.723	-
	hospital-based control	9	2,658	4,258	0.0%	0.771	0.404	-

Abbreviations: OR, odds ratio; CI, confidence interval. -, OR (95% CI) data was not provided, when P value of association >0.05.

Table S6. Publication bias result

Constinuedale	Study	Begg's T	Test	Egger's	test
Genetic models	(number)	P	Z	P	t
allele T vs. C	54	0.189	1.31	0.118	1.59
T/T vs. C/C	50	0.763	0.30	0.651	-0.46
T/T vs. C/C+C/T	50	0.688	0.40	0.440	-0.78
C/T vs. C/C	54	0.303	1.03	0.117	1.59
C/T+T/T vs. C/C	54	0.144	1.46	0.084	1.76
carrier T vs. C	54	0.179	1.34	0.087	1.75