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MiRNA polymorphisms had potential to be biomarkers for hepatocellular cancer (HCC) sus-
ceptibility. Recently, miRNA single nucleotide polymorphisms (SNPs) were reported to be as-
sociated with HCC risk, but the results were inconsistent. We performed a systematic review
with a meta-analysis for the association of miRNA SNPs with HCC risk. Thirty-seven studies
were included with a total of 11821 HCC patients and 15359 controls in this meta-analysis.
We found hsa-mir-146a rs2910164 was associated with a decreased HCC risk in the re-
cessive model (P=0.017, OR = 0.90, 95% confidence interval (CI) = 0.83–0.98). While
hsa-mir-34b/c rs4938723 was related with an increased HCC risk in the co-dominant model
(P=0.016, odds ratio (OR) = 1.19, 95%CI = 1.03–1.37). When analyzing the Hepatitis B
virus (HBV)-related HCC risk, hsa-mir-196a-2 rs11614913 was associated with a decreased
HBV-related HCC risk in the co-dominant and allelic models. And hsa-mir-149 rs2292832
was found to be associated with a decreased HBV-related HCC risk in the dominant and
recessive models. In conclusion, hsa-mir-146a rs2910164 and hsa-mir-34b/c rs4938723
could be biomarkers for the HCC risk while hsa-mir-196a-2 rs11614913 and hsa-mir-149
rs2292832 had potential to be biomarkers for HBV-related HCC risk.

Introduction
MiRNAs are 19–24 nts short nucleotide sequences, which could complementarily combine with multi-
ple target sequences and one miRNA could regulate multiple different target genes [1]. Single nucleotide
polymorphisms (SNPs) are the common variations in the genetic polymorphisms and are known as the
potential biomarkers for predicting the cancer risk [2]. If there is a variation in miRNA gene, it could af-
fect the quality and quantity of mature miRNA and even affect hundreds of targetted genes regulated by
the changed miRNA [3]. There are two types of miRNA-SNP: pri-miRNA SNPs and pre-miRNA SNPs.
pri-miRNA SNPs are located over approximately 500–3000bp of the miRNA gene, while pre-miRNA
SNPs are found in a 60–70bp region. The function of miRNA-SNPs depends on its location; therefore,
pri-miRNA SNPs may have more important roles than pre-miRNA SNPs.

Hepatocellular cancer (HCC) is now the second leading cause of cancer deaths worldwide [4]. In HCC
patients, approximately 50% are related with Hepatitis B virus (HBV) [5,6], and HBV is still the major
cause of HCC, especially in Asia-Pacific and Sub-Saharan Africa [7]. The etiology of HBV-related HCC is
reported different from that of no chronic HBV infection, which is mainly caused by the HBV, host-related
such as SNPs, and the dietary and lifestyle factors [8]. Thus, the prediction for the HCC risk, especially
the HBV-related HCC risk is essential to prevent the incidence of HCC and increase the early diagnosis
of HCC.

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Until now, several miRNA-SNPs have been reported to be associated with many tumors such as gastric cancer [9],
esophageal cancer [10], breast cancer [11], and neuroblastoma [12]. And miRNA-SNPs were also related with HCC
risk [13,14] and could be biomarkers for the precaution for HCC risk, but system analysis or update meta-analysis
for all the miRNA-SNPs associated with HCC risk was rare, especially the latest research progress. In addition, many
studies supplied data about the HBV-related HCC risk, but few meta-analyses considered this important factor with
the etiology of HCC incidence. In the present study, we systematically reviewed published data and comprehensively
analyzed and integrated all individual studies for miRNA-SNPs and HCC and/or HBV-related HCC risk. On the basis
of systematic review, we conducted a meta-analysis to combine all the available studies and to investigate for the five
highly studied miRNA-SNPs whether miRNA polymorphisms contribute to the risk of HCC and/or HBV-related
HCC risk.

Methods
Publication search
The present study was carried out on the basis of Preferred Reporting Items for Systematic Reviews and
Meta-analysis (PRISMA) [15]. Studies reporting on the association between the miRNAs polymorphism
and HCC risk were identified by entering the following search terms into PubMed and Web of Science:
‘miRNA’; and ‘polymorphisms/variants/variation/single nucleotide polymorphism/SNPs’; ‘hepatocellular’; and ‘can-
cer/carcinoma/tumor/neoplasm’ published until 23 February 2018. Two independent investigators (B.-g.W. and Q.X.)
performed this literature search. Eligible studies met the following criteria: (i) investigate the relationship between
miRNA-SNPs and HCC risk and (ii) case–control study. Articles were excluded based on the following criteria: (i)
duplicated articles or data; (ii) not relevant to HCC risk or miRNA-SNPs; (iii) functional studies; and (iv) lack of
available data.

Data extraction
Two investigators (B.-g.W. and Q.X.) extracted the data independently and reached consensus regarding all the items.
Study descriptions were derived from the full text including the author’s name, year of publication, country of ori-
gin, source of control groups, genotyping method, total number of the case and control groups and each genotype.
Considering parts of the studies supplied data concerning HBV related HCC risk, we collected them for a subgroup
analysis.

False-positive report probability analysis and trial sequential analysis
The False-positive report probability (FPRP) values at different prior probability levels for all significant findings
were calculated as published reference studies [16-18]. Briefly, 0.2 was set as FPRP threshold and assigned a prior
probability of 0.1 for an association with genotypes under investigation. A FPRP value <0.2 denoted a noteworthy
association.

TSA was performed as described by user manual for trial sequential analysis [18]. After adopting a level of sig-
nificance of 5% for type I error and of 30% for type II error, the required information size was calculated, and TSA
monitoring boundaries were built [19,20].

Statistics analysis
Hardy–Weinberg equilibrium (HWE) was calculated for control group using the Chi-square test and P<0.05 was
considered to be significant disequilibrium. The strength of the association between the miRNA polymorphism and
HCC risk was estimated by odds ratios (ORs) with 95% confidence intervals (CIs). In the absence of between-study
heterogeneity for Q-statistic I2 < 50%, fixed-effect model was reported to conserve statistical power, otherwise, the
random-effect model was used [19,20]. Risk of publication bias across studies were assessed by Begg’s rank correlation
and the Egger’s linear regression, and if P>0.10 was considered to be lack of publication bias [21]. Sensitivity analysis
was conducted by eliminating studies one by one. All analyses were conducted using Stata software 11.0 and the
results were considered statistically significant when the P-value was less than 0.05.

Results
Characteristics of the eligible studies
As shown in the flow diagram in Figure 1, a total of 165 articles were included in this systematic review, and finally,
37 researches, 11821 HCC patients and 15359 controls were involved in our meta-analysis after multiple steps of

2 c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 1. Studies identified in this meta-analysis based on the criteria for inclusion and exclusion

selection (Figure 1). The characteristics of each included study and the genotype frequency distributions of each SNPs
are presented in Table 1 . We also listed the genotype of HBV-related HCC group as data for the subgroup analysis.
Then, HWE was calculated and P of HWE in control group for several studies did not reach genetic equilibrium,
then, studies for PHWE<0.05 were excluded in the following analysis.

Quantitative data synthesis of miRNA SNPs
We found hsa-mir-146a rs2910164 was associated with a decreased HCC risk in the recessive model (P=0.017, OR =
0.90, 95%CI = 0.83–0.98; Table 2 and Figure 2). While hsa-mir-34b/c rs4938723 was related with an increased HCC
risk in the co-dominante model (P=0.016, OR = 1.19, 95%CI = 1.03–1.37). In the stratified analysis, individuals
carrying hsa-mir-146a rs2910164 variant genotype were associated with a decreased HCC risk in the Asian popu-
lation subgroup (P=0.017, OR = 0.90, 95%CI = 0.83–0.98) while individuals carrying hsa-mir-196a-2 rs11614913
variant genotype were related with a decreased HCC risk in the Caucasian population subgroup (P=0.005, OR =
0.44, 95%CI = 0.25–0.78).

When analyzing the HBV-related HCC risk, we found that hsa-mir-196a-2 rs11614913 was associated with a de-
creased HBV-related HCC risk in the co-dominant and allelic models (CT compared with CC: P=0.003, OR =
0.75, 95%CI = 0.62–0.91; TT compared with CC: P=0.036, OR = 0.61, 95%CI = 0.39–0.97; T compared with C:
P=0.031, OR = 0.80, 95%CI = 0.65–0.98). And hsa-mir-149 rs2292832 was found to be associated with a decreased
HBV-related HCC risk in the dominant and recessive models (dominant: P=0.049, OR = 0.28, 95%CI = 0.08–0.99;
recessive: P=0.012, OR = 0.28, 95%CI = 0.10–0.75, Table 3 and Figure 3).

Other miRNA SNPs and HCC risk
The association of some polymorphisms with HCC risk could not be evaluated because of the limited number of
studies (such as hsa-mir-101-1 rs7536540 and hsa-let-7i rs10877887). We reviewed these miRNA SNPs that have
been studied for HCC cancer risk (Table 4). These may prove informative in the future study of HCC-associated
miRNA polymorphism biomarkers.

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Table 1 Characteristics of literature included for this meta-analysis for HCC risk (Continued)

Number First author Year Country Ethnicity

Source of

control groups

Genotyping

method hsa-miRNA Sample size Case Control HBV-related HCC

P of HWE in

control group Citation
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23 Bing Zhou 2014 China Asian NM Sequenom hsa-mir-146a 266 281 40 153 73 30 154 97 24 89 40 0.007a [69]

hsa-mir-196a-2 266 281 93 139 34 66 160 55 57 80 16 0.019b

hsa-mir-499 266 281 184 59 23 204 61 16 <0.001a

24 Juan Zhou 2012 China Asian NM PCR-RFLP hsa-mir-146a 186 483 33 86 67 71 254 158 0.056 [70]

hsa-mir-499 186 483 141 41 4 371 100 12 0.100

25 Hong-Zhi Zou 2013 China Asian HB PCR-RFLP hsa-mir-499 185 204 136 44 5 139 52 13 54 14 3 0.060 [71]

26 Xi-Dai Long 2016 China Asian HB Real-time PCR hsa-mir-146a 1706 2270 464 858 384 639 1187 444 0.011c [46]

hsa-mir-196a-2 1704 2270 484 867 353 718 1138 414 0.318

hsa-mir-499 1706 2270 1073 492 141 1460 598 212 <0.001c

hsa-mir-149 1706 2270 1104 395 207 1503 512 255 <0.001c

27 Rui Wang 2014 China Asian PB Sequenom hsa-mir-149 172 267 21 68 83 36 105 126 16 50 57 0.066 [72]

28 Jia-Hui Qi 2014 China Asian PB HRM-PCR hsa-mir-146a 314 406 0 165 149 3 244 159 <0.001a [73]

hsa-mir-196a-2 314 406 45 209 60 71 214 121 0.156

hsa-mir-499 314 406 195 117 2 301 101 4 0.157

29 Yanyun Ma 2014 China Asian HB Sequenom hsa-mir-499 981 969 724 241 16 765 179 25 558 189 13 <0.001b [74]

30 Yifang Han 2013 China Asian PB and HB

mixed

qPCR hsa-mir-34b/c 1013 999 451 444 118 456 424 119 0.183 [22]

qPCR hsa-mir-196a-2 1017 1009 207 505 305 220 485 304 0.310 [75]

31 Myung Su

Son

2013 Korea Asian HB PCR-RFLP hsa-mir-34b/c 157 201 69 75 13 110 74 17 0.371

32 Yan Xu 2011 China Asian PB PCR-RFLP hsa-mir-34b/c 502 549 204 236 62 266 229 54 0.647 [36]

33 L.L. Chen 2016 China Asian HB PCR-RFLP hsa-mir-34b/c 286 572 102 146 38 272 267 33 0.002a [76]

34 Pornpitra

Pratedrat

2015 Thailand Asian PB Real-time PCR hsa-mir-101-1 104 95 37 51 16 39 43 13 0.835 [77]

hsa-mir-149 104 95 11 27 66 9 24 62 0.010c

35 Olfat Shaker 2017 Egypt Caucasian NM Real-time PCR hsa-mir-101-1 36 32 14 12 10 11 20 1 0.029c [78]

36 Z.Y. Sui 2016 China Asian HB Sequencing let-7i 89 95 25 64 55 40 0.482 [79]

37 Fang Huang 2011 China Asian HB qPCR let-7i 1261 1319 542 564 155 581 585 153 0.756 [80]

Abbreviations: HB, hospital based; HRM-PCR, high resolution melting-PCR; NM, not mentioned; PB, population based; PCR-RFLP, PCR-restriction fragment length polymorphism;
PIRA-PCR, primer introduced restriction analysis–PCR.
qPCR, quantitative polymerase chain reaction. The bold values used in ’P of HWE in control group’ means studies did not reach genetic equilibrium and were excluded in the following
analysis.
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Table 2 Meta-analysis of the association between common SNPs and HCC risk

Stratification n

Heterozygote compared with

wild-type Mutation homozygote compared with wild-type Dominant model Recessive model Allelic model

OR (95%CI) P I2 (%) OR (95%CI) P I2 (%) OR (95%CI) P I2 (%) OR (95%CI) P I2 (%) OR (95%CI) P I2 (%)

hsa-mir-146a 15 0.98 0.812 20.4 0.90 0.297 59.41 0.94 0.472 50.01 0.90 0.017 40.7 1.05 0.315 61.21

rs2910164 G/C (0.88–1.10) (0.73–1.10) (0.80–1.11) (0.83–0.98) (0.95–1.16)

Asians 14 0.97 0.636 22.4 0.89 0.306 62.31 0.93 0.383 52.11 0.90 0.017 44.9 1.06 0.272 63.21

(0.87–1.09) (0.71–1.11) (0.78–1.10) (0.83–0.98) (0.96–1.18)

Caucasian 1 1.18 0.430 NA 0.96 0.920 NA 1.45 0.491 NA 0.91 0.823 NA 0.92 0.619 NA

(0.79–1.76) (0.39–2.32) (0.78–1.69) (0.38–2.18) (0.67–1.27)

hsa-mir-196a-2 14 1.00 0.992 53.41 0.86 0.179 73.51 0.96 0.636 64.91 0.88 0.122 72.11 1.06 0.244 74.01

rs11614913 C/T (0.87–1.15) (0.70–1.07) (0.83–1.12) (0.74–1.04) (0.96–1.18)

Asians 12 0.99 0.929 50.21 0.92 0.420 73.21 0.97 0.703 63.91 0.92 0.305 72.01 1.05 0.400 74.11

(0.87–1.14) (0.70–1.07) (0.83–1.13) (0.78–1.08) (0.94–1.16)

Caucasian 2 1.17 0.743 82.81 0.44 0.005 0.0 0.99 0.976 83.01 0.47 0.005 0.0 1.19 0.517 73.81

(0.46–2.97) (0.25–0.78) (0.40–2.42) (0.28–0.79) (0.70–2.02)

hsa-mir-499 13 1.10 0.376 67.41 1.04 0.850 58.31 1.11 0.410 76.71 1.04 0.829 48.63 0.92 0.418 81.01

rs3746444 A/G (0.89–1.37) (0.71–1.51) (0.87–1.40) (0.75–1.43) (0.74–1.13)

Asians 11 1.14 0.264 70.71 1.07 0.779 63.91 1.15 0.315 79.41 1.04 0.861 56.01 0.89 0.367 83.41

(0.90–1.45) (0.67–1.71) (0.88–1.40) (0.68–1.57) (0.70–1.14)

Caucasian 2 0.87 0.448 0.0 1.00 0.993 2.5 0.91 0.613 11.1 1.09 0.632 0.0 1.000 1.000 41.1

(0.58–1.29) (0.65–1.55) (0.63–1.31) (0.77–1.54) (0.80–1.26)

hsa-mir-149 7 0.97 0.696 16.6 1.03 0.882 68.21 0.99 0.962 56.61 1.03 0.828 61.11 1.02 0.670 73.41

rs2292832 C/T (0.82–1.14) (0.72–1.47) (0.77–1.28) (0.81–1.30) (0.93–1.12)

hsa-mir-34b/c 3 1.19 0.016 52.62 1.15 0.221 20.4 1.25 0.065 58.61 1.06 0.580 0.0 0.87 0.100 54.21

rs4938723 T/C (1.03–1.37) (0.92–1.44) (0.99–1.58) (0.86–1.31) (0.74–1.03)

The results were in bold, if P<0.05.
1, means the heterogeneity exists and random-effect model based on DerSimonian and Laird method was used, otherwise, a fixed-effect model based on the Mantel–Haenszel method was
employed.
2, Pheterogeneity is 0.121 which is higher than 0.10, thus fixed model is used.
3, Pheterogeneity is 0.025 which is lower than 0.10, thus random model is used.
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Table 3 Meta-analysis of the association between common SNPs and HBV related-HCC risk

Stratification n Heterozygote compared with wild-type n

Mutation homozygote compared with

wild-type n Dominant model n Recessive model n Allelic model

OR (95%CI) P I2 (%) OR (95%CI) P I2 (%) OR (95%CI) P I2 (%) OR (95%CI) P I2 (%) OR (95%CI) P I2 (%)

hsa-mir-146a 6 1.05 0.627 21.9 6 0.86 0.178 8.8 6 0.99 0.950 39.2 7 0.87 0.066 0.0 7 0.95 0.281 26.3

rs2910164 G/C (0.86–1.28) (0.69–1.07) (0.82–1.20) (0.75–1.01) (0.86–1.05)

Asians 5 0.97 0.813 0.0 5 0.85 0.161 24.9 5 0.92 0.434 24.4 6 0.87 0.067 0.0 6 0.93 0.144 12.6

(0.78–1.22) (0.68–1.07) (0.75–1.13) (0.75–1.01) (0.83–1.03)

Caucasian 1 1.46 0.105 NA 1 1.05 0.930 NA 1 1.40 0.132 NA 1 0.91 0.862 NA 1 1.25 0.232 NA

(0.92–2.31) (0.37–2.94) (0.90–2.18) (0.33–2.53) (0.87–1.80)

hsa-mir-196a-2 4 0.75 0.003 9.5 4 0.61 0.036 62.31 5 0.86 0.444 76.41 5 0.86 0.429 70.51 4 0.80 0.031 60.41

rs11614913 C/T (0.62–0.91) (0.39–0.97) (0.58–1.27) (0.58–1.26) (0.65–0.98)

Asians 3 0.76 0.009 38.1 3 0.70 0.153 62.31 4 0.94 0.805 80.51 4 0.97 0.861 68.51 3 0.85 0.130 58.01

(0.62–0.93) (0.43–1.14) (0.59–1.50) (0.66–1.42) (0.68–1.05)

Caucasian 1 0.70 0.174 NA 1 0.35 0.007 NA 1 0.59 0.034 NA 1 0.42 0.019 NA 1 0.61 0.006 NA

(0.41–1.17) (0.16–0.75) (0.36–0.96) (0.21–0.87) (0.43–0.87)

hsa-mir-499 4 0.81 0.351 52.41 4 0.85 0.769 68.11 5 1.08 0.833 85.61 4 0.90 0.818 55.51 5 0.90 0.633 76.11

rs3746444 A/G (0.52–1.27) (0.28–2.56) (0.55–2.12) (0.36–2.24) (0.59–1.38)

hsa-mir-149 3 0.37 0.059 88.71 3 0.14 0.071 95.61 3 0.28 0.049 93.31 4 0.28 0.012 91.51 3 0.38 0.057 96.01

rs2292832 C/T (0.13–1.04) (0.02–1.18) (0.08–0.99) (0.10-0.75) (0.14–1.03)

The results were in bold, if P<0.05.
1, means the heterogeneity exists and random-effect model based on DerSimonian and Laird method was used, otherwise, a fixed-effect model based on the Mantel–Haenszel method
was employed.
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Figure 2. Forest plot of ORs for the association of hsa-mir-146a and hsa-mir-34b/c polymorphism with HCC risks

(A) hsa-mir-146a polymorphism stratified by ethnicity in recessive model; (B) hsa-mir-34b/c polymorphism in co-dominant model

(heterozygote compared with wild-type).

Figure 3. Forest plot of ORs for the association of hsa-mir-196a-2 and hsa-mir-149 polymorphism with HCC risks

(A) hsa-mir-196a-2 polymorphism stratified by ethnicity in co-dominant model (heterozygote compared with wild-type); (B)

hsa-mir-196a-2 polymorphism stratified by ethnicity in co-dominant model (mutation homozygote compared with wild-type); (C)

hsa-mir-149 polymorphism in dominant model; (D) hsa-mir-149 polymorphism in recessive model.

Heterogeneity
Heterogeneity between studies was observed in Table 2. Some comparisons showed slight or moderate heterogeneity
between studies. We subsequently conducted sensitivity analyses by estimating sensitivity before and after removal of
each study from the analysis (Supplementary Table S1). The most influencing single study was the study conducted
by Han et al. [22] for hsa-mir-34b/c rs4938723. However, sensitivity analysis results ranged from insignificant to

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Table 4 Other SNPs conferring in the studies of HCC risk

Number hsa-mirNA SNP Results Citation

1 hsa-mir-646 rs6513497 The variant allele decreased HCC risk [81]

2 hsa-mir-122 rs4309483 The variant allele increased HCC risk in HBV carriers [48]

3 hsa-mir-378 rs1076064 The variant allele decreased HCC risk in HBV carriers [82]

4 hsa-mir-501 rs112489955 The variant allele decreased HCC risk [47]

5 hsa-mir-608 rs4919510 No association [72]

6 hsa-mirNA3152 rs13299349 The variant allele increased HCC risk [83]

7 hsa-mirNA449b rs10061133 The variant allele increased HCC risk [83]

8 hsa-mir-106b-25 rs999885 The variant genotype increased HCC risk in HBV persistent carriers [84]

9 hsa-mir-199a rs74723057 No association [85]

10 hsa-mir-301b rs384262 No association [73]

11 hsa-mir-423 rs6505162 No association [74]

12 hsa-mir-221 rs17084733 No association [78]

13 hsa-mir-1269a rs73239138 The variant allele increased HCC risk [86]

statistically significant for the allele comparison because the ORs (95%CI) were 0.87 (0.73–1.03) before removal of
the study by Han et al. [22] and 0.79 (0.67–0.92) after removal of that study.

Publication bias
We used Begg’s and Egger’s tests to evaluate the potential publication bias of included studies. For hsa-mir-149
rs2292832, a significant P<0.05 was observed in the three genetic models (Table 5), indicating potential publica-
tion bias. As reported, this may be due to language bias, a flawed methodological design for smaller studies or a lack
of publication of small trials with opposing results [9].

FPRP analyses and trial sequential analysis
We calculated the FPRP values for all observed significant findings in the overall HCC risk. With the assumption of
a prior probability of 0.1, the FPRP values in the hsa-mir-146 rs2910164 recessive model for the overall risk and the
Asian subgroups, and in the hsa-mir-196a-2 rs11614913 recessive model for the Caucasian subgroup were all <0.20,
suggesting that these significant associations were noteworthy (Table 6).

Amongst the positive results we found, the recessive model for hsa-mir-146a was adopted for the trial sequential
analysis to strengthen the robustness of our findings. According to TSA result, the required information size was
15021 subjects to demonstrate the issue (Figure 4). Until now, the cumulative z-curve has not crossed the trial moni-
toring boundary before reaching the required information size, indicating that the cumulative evidence is insufficient
and further trials are necessary.

Discussion
Until now, there was only one similar meta-analysis published [23] and we had many advantages than theirs. First,
the latest update date, we searched until 23 February 2018 and there were 37 studies included in this meta-analysis.
Second, we considered the available data for the HBV-related HCC risk and supplied more promising SNP sites for
the precaution of HBV-related HCC risk. Third, we listed all the genotypes of the case and control groups and con-
sidered the P-value of HWE. There existed two problems for the research state quo: in the studying field of miRNA
polymorphisms, (i) the major genotype has not the more frequencies than the minor one, which made the meta re-
sults negative. For example, hsa-mir-149 A>G SNP was reported as 13, 36, 139 for AA, AG, GG genotype by Chu
et al. [24] and as 210, 49, 12 for AA, AG, GG genotype by Kou et al. [25], while the genotyping method for them
was the same. Here, we suppose the reasons for this phenomenon are the geographical and ethnicity cause and the
unstable genotyping method. (ii) The Hardy–Weinberg principle was a basic law for the genetic studies. We found
several studies did not mention HWE when the PHWE<0.05. In our meta-analysis, we checked the P-value of HWE
in the control group and if PHWE<0.05, the SNP should be discarded in further analysis. In addition, we followed
main directions from the guidelines for the miRNA terminology [26].

The position of miR-SNPs included pri-, pre-, and/or mature miRNA, and the function of the miR-SNPs depended
on its position [27]. The pre-miR-SNPs included hsa-mir-146a rs2910164, hsa-mir-196a-2 rs11614913, hsa-mir-499
rs3746444, hsa-mir-149 rs2292832, and hsa-mir-27a rs895819. Others were all pri-miR-SNPs.

10 c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Table 5 The results of Begg’s and Egger’s tests for the publication bias

Comparison type Begg’s test Egger’s test

Z value P-value t value P-value

hsa-mir-146a rs2910164 G/C

Heterozygote compared with wild-type −0.64 0.520 0.71 0.490

Mutation homozygote compared with wild-type 0.05 0.961 −0.47 0.648

Dominant model −0.54 0.586 0.43 0.673

Recessive model 1.14 0.255 −1.44 0.173

Allelic model −0.94 0.347 0.80 0.435

hsa-mir-196a-2 rs11614913 C/T

heterozygote compared with wild-type 0.49 0.622 0.38 0.710

mutation homozygote compared with wild-type −1.15 0.250 1.33 0.209

Dominant model −0.05 0.956 0.84 0.418

Recessive model −1.04 0.298 1.30 0.216

Allelic model 0.60 0.547 −1.08 0.300

hsa-mir-499 rs3746444 A/G

Heterozygote compared with wild-type −1.59 0.113 1.78 0.103

Mutation homozygote compared with wild-type −0.73 0.464 0.17 0.865

Dominant model −1.22 0.222 1.25 0.237

Recessive model −0.61 0.542 0.43 0.673

Allelic model 1.22 0.222 −0.86 0.410

hsa-mir-149 rs2292832 T/C

Heterozygote compared with wild-type 0.75 0.453 −1.08 0.331

Mutation homozygote compared with wild-type 1.95 0.051 −3.08 0.028

Dominant model 1.05 0.293 −1.26 0.263

Recessive model 1.65 0.099 −2.80 0.038

Allelic model −1.95 0.051 2.66 0.045

hsa-mir-34b/c rs4938723 T/C

Heterozygote compared with wild-type 1.57 0.117 −1.44 0.387

Mutation homozygote compared with wild-type 0.52 0.602 −0.21 0.867

Dominant model 0.52 0.602 −0.99 0.504

Recessive model 0.52 0.602 −0.04 0.977

Allelic model −0.52 0.602 0.63 0.641

The bold numeric means significant as <0.100.

Table 6 FPRP values for the associations between hsa-miRNA polymorphisms and HCC risk

Variables OR (95%CI) P1 Power2 Prior probability

0.25 0.1 0.01 0.001 0.0001

hsa-mir-146 rs2910164

Recessive model

Overall 0.90 (0.83–0.98) 0.017 0.888 0.054 0.147 0.655 0.950 0.995

Asians 0.90 (0.83–0.98) 0.017 0.870 0.055 0.150 0.659 0.951 0.995

hsa-mir-196a-2 rs11614913

Mutation homozygote compared with
wild-type

Caucasian 0.44 (0.25–0.78) 0.005 0.152 0.090 0.228 0.765 0.970 0.997

Recessive model

Caucasian 0.47 (0.28–0.79) 0.005 0.726 0.020 0.058 0.405 0.873 0.986

hsa-mir-34b/c rs4938723

Heterozygote compared with wild-type

Overall 1.19 (1.03–1.37) 0.016 0.353 0.120 0.290 0.818 0.978 0.998

PB, source of controls is population-based.
1Chi-square test was adopted to calculate the genotype frequency distributions.
2Statistical power was calculated using the number of observations in the subgroup and the OR and P-values in this table.
The bold numeric values were considered significant as <0.20.

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. The required information size to demonstrate the relevance of hsa-mir-146a polymorphism with risk of HCC

(recessive model)

In this disordered reported circumstance, we still found hsa-mir-146a rs2910164 and hsa-mir-34b/c rs4938723
had potential to be biomarkers for the HCC risk in these five common miR-SNPs. First, we found hsa-mir-146a
rs2910164 was associated with a decreased risk of HCC. The mature hsa-mir-146a could function for cancer cell
proliferation, apoptosis, invasion, and metastasis [28-31]. miR-SNP rs2910164 is a G to C variation located at the +4
base of the passenger strand of hsa-mir-146a-3p. In addition, this SNP decreases the minimum free energy (MFE)
from −41.80 kcal/mol for the G allele to −38.80 kcal/mol for the C allele, suggesting a less stable secondary structure
for the variant C allele. Jazdzewski et al. [32] reported that the variant (C) genotype shows lower levels of the onco-
geneic hsa-mir-146a expression, all the above may be the reasons the variant C had a protective role for HCC risk.
Second, we found that hsa-mir-34b/c rs4938723 was associated with an increased HCC risk. This rs4938723 located
within the typical CpG island region of pri-hsa-mir-34b/c, and methylation of hsa-mir-34b/c CpG islands were re-
ported to be associated with several cancers [33-35]. The T→C variation of this polymorphism has been predicted
to create a GATA-binding site and could affect the transcription factor GATA activity and further affect the mature
hsa-mir-34b/c expression [36], which may be the reason for the rs4938723 associated with HCC risk.

The etiology of HBV-related HCC was not caused by one particular driver mutation but involved several oncogenic
pathways [37,38]. It included TP53 pathway [39], Wnt signaling [37], cell cycle [40,41], oxidative stress [39,42], epige-
netic regulator [40], and so on. Thus, many miRNAs play important role for these oncogenic pathways in HBV-related
HCC [43,44]. We found in this meta-analysis, hsa-mir-196a-2 rs11614913 and hsa-mir-149 rs2292832 were associ-
ated with decreased HBV-related HCC risks. However, there is no report about the hsa-mir-196a-2 and hsa-mir-149
involved in the process of HBV-related HCC. Some other miRNAs like hsa-mir-125 were found to be associated with
HBV-related HCC [45]. The results we found could be a clue for the particular miRNA involved in the pathogenic
process and it also need to be verified in the future studies.

Some promising miR-SNPs were summarized in Table 5. Several SNPs were associated with HCC risk and related
functional studies were also reported. For example, Long et al. [46] screened 48 pre-miRNA SNPs and found only
hsa-mir-1268a rs28599926 affected HCC risk. And this polymorphism was associated not only with higher portal
vein tumor risk and tumor dedifferentiation, but also with increasing the mutation risk of TP53 gene and modifying
the targetted ADAMTS4 gene expression [46]. Several miR-SNPs were also found to affect the miRNA or gene ex-
pression, like hsa-mir-501 SNP and hsa-mir-122 SNP [47,48]. These are all the potential functional polymorphism
biomarkers for the future HCC studies.

Advantages and limitations
This meta-analysis still had several limitations. First, only studies written in English and Chinese were searched in
our analysis, while reports in other languages or some other ongoing studies were not available. Second, the pooled
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sample size was relatively limited and thus limited for the subgroup analysis. More studies are still required to pool
together to make the analysis more reliable.

Summary and future directions
In summary, we found hsa-mir-146a rs2910164 was associated with a decreased HCC risk in the recessive model.
While hsa-mir-34b/c rs4938723 was related with an increased HCC risk in the co-dominant. When analyzing the
HBV-related HCC risk, hsa-mir-196a-2 rs11614913 was associated with a decreased HBV-related HCC risk in the
co-dominant and allelic models, and hsa-mir-149 rs2292832 was found to be associated with a decreased HBV-related
HCC risk in the dominant and recessive models. In conclusion, hsa-mir-146a rs2910164 and hsa-mir-34b/c
rs4938723 could be biomarkers for the HCC risk while hsa-mir-196a-2 rs11614913 and hsa-mir-149 rs2292832 had
potential to be biomarkers for HBV-related HCC risk.
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Table S1. ORs (95% CI) of sensitivity analysis. 

Excluding literature  

heterozygote vs. 

wild-type 

mutation 

homozygote 

vs. wild-type Dominant model 

Recessive 

model allelic model 

one by one OR (95% CI)  OR (95% CI) OR (95% CI)  OR (95% CI)  OR (95% CI)  

miR-146a rs2910164 G/C 

     Overall 0.98(0.86-1.11) 0.89(0.73-1.12) 0.94(0.80-1.11) 0.92(0.81-1.03) 1.05(0.95-1.16) 

Hikmet Akkiz (2011) 0.96(0.83-1.10) 0.89(0.72-1.11) 0.93(0.78-1.10) 0.92(0.81-1.04) 1.06(0.96-1.17) 

Yin-Hung Chu (2014) 0.96(0.84-1.10) 0.87(0.70-1.08) 0.92(0.78-1.09) 0.90(0.80-1.02) 1.07(0.96-1.18) 

Ning Cong (2014) 0.99(0.87-1.13) 0.92(0.75-1.14) 0.97(0.82-1.13) 0.93(0.82-1.05) 1.04(0.94-1.14) 

Yu-Xia Hao (2013) 0.97(0.94-1.11) 0.89(0.71-1.11) 0.94(0.79-1.11) 0.92(0.81-1.05) 1.05(0.95-1.17) 

Won Hee Kim (2012) 0.96(0.84-1.10) 0.88(0.71-1.09) 0.93(0.79-1.09) 0.91(0.80-1.04) 1.06(0.95-1.17) 

D. Li (2015) 0.96(0.84-1.11) 0.86(0.70-1.07) 0.92(0.78-1.09) 0.90(0.80-1.01) 1.07(0.97-1.18) 

Xinhong Li (2015) 0.96(0.83-1.10) 0.86(0.70-1.06) 0.92(0.78-1.08) 0.90(0.80-1.01) 1.07(0.97-1.18) 

Y.F. Shan (2013) 0.97(0.84-1.11) 0.87(0.70-1.08) 0.93(0.79-1.10) 0.90(0.80-1.10) 1.07(0.96-1.18) 

Yu Xiang (2012) 0.98(0.86-1.13) 0.91(0.73-1.13) 0.95(0.81-1.13) 0.92(0.81-1.04) 1.04(0.94-1.16) 

Teng Xu (2008) 1.01(0.89-1.15) 0.93(0.75-1.15) 0.98(0.84-1.15) 0.93(0.82-1.06) 1.03(0.93-1.15) 

Pingping Yan (2015) 0.98(0.85-1.13) 0.90(0.72-1.13) 0.95(0.80-1.12) 0.92(0.81-1.04) 1.05(0.94-1.16) 

Jun Zhang (2013) 0.97(0.83-1.12) 0.90(0.71-1.14) 0.94(0.78-1.13) 0.93(0.81-1.06) 1.05(0.94-1.17) 

L.H. Zhang (2016) 1.01(0.90-1.14) 0.95(0.80-1.13) 0.99(0.87-1.13) 0.94(0.85-1.03) 1.02(0.94-1.18) 

Xin-wei Zhang (2011) 0.95(0.82-1.10) 0.88(0.70-1.12) 0.93(0.78-1.11) 0.92(0.80-1.05) 1.06(0.94-1.18) 

Juan Zhou (2012) 1.00(0.87-1..14) 0.89(0.71-1.12) 0.95(0.81-1.13) 0.90(0.80-1.02) 1.06(0.95-1.17) 

miR-196a-2 rs11614913 C/T 

     Overall 1.00(0.87-1.15) 0.86(0.70-1.07) 0.96(0.83-1.12) 0.88(0.74-1.04) 1.06(0.96-1.18) 

H. Akkiz (2011) 1.02(0.88-1.18) 0.91(0.73-1.12) 0.99(0.85-1.15) 0.91(0.77-1.07) 1.04(0.94-1.15) 

Yin-Hung Chu (2014) 1.01(0.88-1.17) 0.84(0.67-1.06) 0.97(0.82-1.13) 0.85(0.71-1.01) 1.06(0.96-1.20) 



Yu-Xia Hao (2013) 1.03(0.90-1.18) 0.90(0.72-1.11) 1.00(0.86-1.16) 0.89(0.75-1.06) 1.04(0.94-1.16) 

Won Hee Kim (2012) 1.00(0.86-1.16) 0.85(0.68-1.06) 0.96(0.82-1.12) 0.86(0.72-1.03) 1.07(0.96-1.20) 

Juan Li (2016) 1.00(0.87-1.17) 0.89(0.72-1.11) 0.98(0.84-1.14) 0.91(0.77-1.07) 1.05(0.94-1.16) 

Xinhong Li (2015) 0.97(0.85-1.12) 0.81(0.66-1.00) 0.93(0.80-1.07) 0.84(0.72-0.99) 1.10(0.99-1.21) 

XIAO-DONG LI (2010) 1.02(0.88-1.17) 0.89(0.72-1.11) 0.99(0.85-1.15) 0.90(0.76-1.07) 1.04(0.94-1.16) 

Eman A Toraih (2016) 0.98(0.85-1.12) 0.87(0.70-1.08) 0.94(0.81-1.10) 0.89(0.75-1.05) 1.07(0.96-1.19) 

Jun Zhang (2013) 1.04(0.91-1.19) 0.88(0.71-1.11) 1.00(0.86-1.16) 0.87(0.73-1.05) 1.05(0.94-1.17) 

L.H. Zhang (2016) 1.00(0.64-1.16) 0.86(0.68-1.08) 0.96(0.81-1.14) 0.88(0.73-1.05) 1.06(0.95-1.19) 

Xin-wei Zhang (2011) 1.01(0.86-1.16) 0.84(0.66-1.08) 0.96(0.81-1.14) 0.85(0.71-1.03) 1.07(0.96-1.21) 

Xi-Dai Long (2016) 0.98(0.84-1.15) 0.83(0.66-1.03) 0.94(0.80-1.11) 0.85(0.71-1.01) 1.09(0.97-1.21) 

Jia-Hui Qi (2014) 0.97(0.85-1.11) 0.87(0.69-1.09) 0.95(0.81-1.11) 0.92(0.78-1.08) 1.06(0.95-1.18) 

Yifang Han (2013) 0.99(0.85-1.15) 0.84(0.66-1.07) 0.95(0.80-1.12) 0.86(0.71-1.04) 1.08(0.96-1.21) 

miR-499 rs3746444 A/G 

     Overall 1.10(0.89-1.37) 1.04(0.71-1.51) 1.11(0.87-1.40) 1.04(0.75-1.42) 0.92(0.74-1.13) 

Hikmet Akkiz (2011) 1.11(0.88-1.40) 1.02(0.66-1.58) 1.11(0.86-1.43) 1.01(0.69-1.48) 0.92(0.72-1.16) 

Yin-Hung Chu (2014) 1.03(0.86-1.24) 0.97(0.70-1.35) 1.02(0.84-1.25) 1.00(0.76-1.32) 0.98(0.83-1.17) 

Won Hee Kim (2012) 1.15(0.92-1.42) 1.08(0.73-1.59) 1.15(0.90-1.47) 1.07(0.77-1.48) 0.88(0.71-1.10) 

D. Li (2015) 1.13(0.90-1.41) 1.09(0.73-1.63) 1.14(0.89-1.46) 1.09(0.77-1.52) 0.89(0.71-1.11) 

Xinhong Li (2015) 1.09(0.86-1.38) 0.99(0.66-1.49) 1.09(0.84-1.42) 0.99(0.70-1.41) 0.93(0.73-1.17) 

Y.F. Shan (2013) 1.14(0.91-1.42) 1.10(0.75-1.62) 1.15(0.90-1.47) 1.09(0.79-1.51) 0.88(0.71-1.09) 

Eman A Toraih (2016) 1.13(0.91-1.41) 1.08(0.72-1.61) 1.14(0.89-1.46) 1.06(0.75-1.49) 0.89(0.71-1.12) 

Yu Xiang (2012) 1.07(0.86-1.34) 0.93(0.66-1.31) 1.06(0.83-1.35) 0.95(0.71-1.28) 0.96(0.77-1.19) 

Pingping Yan (2015) 1.10(0.86-1.39) 1.01(0.66-1.54) 1.10(0.84-1.43) 1.00(0.70-1.44) 0.92(0.73-1.17) 

L.H. Zhang (2016) 1.11(0.88-1.41) 1.04(0.69-1.56) 1.12(0.86-1.45) 1.03(0.73-1.46) 0.91(0.72-1.15) 

Juan Zhou (2012) 1.10(0.87-1.39) 1.05(0.70-1.56) 1.11(0.85-1.44) 1.05(0.74-1.47) 0.91(0.72-1.15) 

Hong-Zhi Zou (2013) 1.12(0.89-1.41) 1.11(0.76-1.62) 1.14(0.89-1.46) 1.10(0.80-1.51) 0.89(0.71-1.10) 



Jia-Hui Qi (2014) 1.05(0.85-1.30) 1.05(0.71-1.55) 1.06(0.83-1.35) 1.05(0.75-1.46) 0.94(0.75-1.18) 

miR-149 rs2292832 C/T 

     Overall 0.97(0.81-1.17) 1.03(0.72-1.47) 0.99(0.74-1.29) 1.03(0.81-1.30) 0.98(0.82-1.19) 

Won Hee Kim (2012) 0.98(0.79-1.21) 0.98(0.67-1.45) 0.98(0.74-1.29) 0.97(0.76-1.23) 1.02(0.84-1.24) 

JIAN-TAO KOU (2014) 1.02(0.81-1.28) 1.08(0.70-1.67) 1.04(0.76-1.43) 1.06(0.80-1.39) 0.96(0.77-1.20) 

Xinhong Li (2015) 0.91(0.75-1.09) 0.95(0.65-1.38) 0.93(0.71-1.21) 0.99(0.76-1.27) 1.02(0.84-1.24) 

M.F. Liu (2014) 1.03(0.86-1.24) 1.16(0.86-1.55) 1.07(0.87-1.33) 1.12(0.92-1.35) 0.92(0.80-1.07) 

X.H. Wang (2014) 0.93(0.79-1.11) 0.94(0.66-1.33) 0.93(0.73-1.19) 0.98(0.76-1.27) 1.03(0.85-1.24) 

Pingping Yan (2015) 0.99(0.79-1.25) 1.08(0.70-1.68) 1.03(0.74-1.31) 1.06(0.80-1.41) 0.96(0.77-1.20) 

RUI WANG (2014) 0.97(0.78-1.20) 1.02(0.67-1.54) 0.98(0.74-1.31) 1.03(0.77-1.36) 0.99(0.80-1.22) 

miR-34b/c rs4938723 T/C 

     Overall 1.25(1.00-1.57) 1.17(0.90-1.53) 1.25(0.99-1.58) 1.06(0.86-1.31) 0.87(0.73-1.03) 

Yifang Han (2013) 1.41(1.13-1.76) 1.43(1.00-2.06) 1.41(1.14-1.75) 1.22(0.86-1.72) 0.79(0.67-0.92) 

Myung Su Son (2013) 1.17(0.93-1.48) 1.19(0.81-1.76) 1.18(0.91-1.54) 1.08(0.83-1.41) 0.89(0.72-1.10) 

Yan Xu (2011) 1.25(0.83-1.86) 1.03(0.78-1.34) 1.21(0.84-1.75) 0.98(0.76-1.26) 0.91(0.74-1.13) 

 


