Uncommon functional properties of the first piscine 26S proteasome from the Antarctic notothenioid Trematomus bernacchii

Marta Gogliettino*1, Marco Balestrieri*1 , Alessia Riccio*, Angelo Facchiano \dagger, Carmela Fusco*, Vincenzo Cecere Palazzo*, Mosè Rossi*, Ennio Cocca*2 and Gianna Palmieri*
*Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Via Pietro Castellino 111, 80131 Napoli, Italy \dagger Institute of Food Sciences, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy

Synopsis

Protein homoeostasis is a fundamental process allowing the preservation of functional proteins and it has a great impact on the life of the Antarctic organisms. However, the effect of low temperatures on protein turnover is poorly understood and the cold-adaptation of the degradation machinery remains an unresolved issue. As the 26S proteasome represents the main proteolytic system devoted to the controlled degradation of intracellular proteins, the purpose of the present study was to investigate the functions of this complex in the notothenioid Trematomus bernacchii, in order to better understand its role in the physiology of Antarctic fish. To this aim, we purified and characterized the 26 S proteasome from T. bernacchii and isolated the cDNAs codifying seven of the 14 subunits belonging to the proteasome 20 S core particle. Results provided evidences of the high resistance of the piscine 26 S proteasome to oxidative agents and of its 'uncommon' ability to efficiently hydrolyse oxidized bovine serum albumin (BSA), suggesting that this enzymatic complex could play a key role in the antioxidant defense systems in fish inhabiting permanently cold marine environments. These unique properties were also reflected by the 3D model analysis, which revealed a higher structural stability of the piscine complex respect to the murine template. Finally, a comparative analysis, performed in a variety of tissues collected from T. bernacchii and the temperate fish Dicentrarchus labrax, showed a lower protein retention in the cold-adapted fish, possibly due to a better efficiency of its degradation machinery.

Key words: 26S proteasome, Antarctic notothenioid Trematomus bernacchii, cold adaptation, oxidized protein degradation, protein degradation machinery.

Cite this article as: Bioscience Reports (2016) 36, e00320, doi:10.1042/BSR20160022

INTRODUCTION

In the last decades, several studies have been focused on the strategies adopted by polar fish to counteract the extreme temperature conditions of inhabiting sub-zero environments. Evolution in the Antarctic marine organisms has resulted in a series of physiological and biochemical adaptations that include antifreeze protein production, elevated blood osmotic concentrations, mitochondrial proliferation and thermal compensation of metabolic activity [1-4].

Protein homoeostasis represents a fundamental process which allows the preservation of all the functional cellular proteins and
it has a great impact on the life of marine Antarctic habitats [5]. However, managing of cold-related protein damage and adaptation of the protein degradation machinery in polar organisms remain a yet unresolved issue in the evolutionary biology.

Previous research on Antarctic notothenioids revealed the absence in these species of defense induction mechanisms represented by the heat shock response [6], thus suggesting that this restoring protein function has been lost, possibly due to the lack of a positive selection during evolution at stable sub-zero temperatures [6]. Furthermore, several studies have reported the in vitro denaturing effects of cold temperatures on 3D structures of proteins, although it is still unclear whether this is also reflected into higher levels of damaged proteins in vivo [7-10]. Low

[^0]temperatures alter either the rate of protein synthesis than the protein folding, resulting in not-functional conformations and an imbalance in the synthesis and degradation processes $[2,3]$. Therefore, a constant and dynamic regulation of these pathways is essential for cell viability in all living organisms as it is essential to elude the accumulation of damaged proteins that induce cytotoxic effects. The ubiquitin (Ub)-proteasome system (UPS) represents the main pathway responsible for breaking down proteins, which involves two successive steps: (1) tagging of the substrate by covalent attachment of multiple Ub molecules, and (2) degradation of the tagged protein into small peptides by 26 S proteasome with release of free and reusable Ub molecules [11,12]. The 26 S proteasome is a giant machine containing a proteolytic core particle $20 \mathrm{~S}(\mathrm{CP})$ capped at one or both ends by a 19 S regulatory particle (RP). The CP is a barrel-shaped complex of 28 subunits (alpha and beta) that harbours three distinct proteolytic active sites (beta 1 , beta 2 and beta 5), in the two central beta-rings [13-16]. Information on UPS in fish species is generally scarce and few data on the regulation of protein degradation processes specifically in Antarctic fish, are available [5,10,17].

Notothenioids represent 55% of the fish species in the Southern Ocean and in many coastal shelf areas they represent over 90% of the fish biomass [3,18]. A previous investigation on Ubconjugated protein levels, which have been considered a good indicator of the cellular protein integrity, provided evidences that the low temperatures of the Antarctic marine environments can significantly affect the protein functions [10], although more studies are still necessary to better understand the physiological constraints of maintaining protein homoeostasis in these polar species. Accordingly, in the last years, there has been a growing interest in studying the oxidative stress phenomena in fish inhabiting Antarctic oceans [19-21], which should have developed sophisticated antioxidant defense systems to counteract the side effects of life at low temperatures [17,20-22]. In mammals, a large body of evidences demonstrated that the 20 S proteasome is the main proteolytic factor able to efficiently remove oxidatively damaged proteins [13-16,23]. In contrast, $26 S$ proteasome turns out to be very poor at degrading these molecular species and there are no clear indications on the involvement of this enzymatic complex in antioxidant defense systems in eukaryotic organisms [24-26].

The present study was undertaken to investigate the proteasomes from the notothenioid Trematomus bernacchii, which belongs to the endemic class of fish in Antarctic waters, living at temperatures below $1.5^{\circ} \mathrm{C}$. To this aim, we purified and characterized the piscine 26 S proteasome and isolated the cDNAs codifying seven of 14 subunits of the 20S complex, in order to understand its role in the physiology of a red-blooded Antarctic fish. Our data demonstrated that the piscine 26 S proteasome was highly resistant to oxidative agents and able to efficiently hydrolyse oxidized bovine serum albumin (BSA), unlike the mammalian counterparts [24-26], suggesting that it could play a key role in the antioxidant defense systems. Unique properties were also found by the 3D models analysis, which revealed a higher structural stability of the piscine complex respect to the murine
template. Furthermore, a lower Ub-protein level was detected in a variety of T. bernacchii tissues respect to that observed in the temperate fish Dicentrarchus labrax, possibly due to a more efficient degradation machinery and/or a reduced ubiquitination process. Therefore, our results provided the first evidence on the role of the 26 S proteasome in the protein homoeostasis in a polar fish, suggesting that the cold adaptation could have stimulated an improvement in the molecular recognition events of the UPS pathway.

MATERIALS AND METHODS

Ethical procedures

The sample collection and experimental research conducted on the animals utilized in the present study were according to the law on activities and environmental protection in Antarctica approved by the Ministry of Foreign Affairs of the Republic of Italy (MAE), to comply with the 'Protocol on Environmental Protection to the Antarctic Treaty', Annex II, art.3. All procedures, including euthanasia, were reviewed and approved by MAE and performed in accordance with the European Communities Council Directive of 24 November 1986 (86/609/EEC).

Animal sampling

Specimens of T. bernacchii were fished in the vicinity of Mario Zucchelli Station, along the coast of Terra Nova Bay $\left(74^{\prime} 42^{\circ}\right.$ S, $164^{\prime} 07^{\circ} \mathrm{E}$), Antarctica, during the Italian XXVII and XXIX expeditions (December 2011 to January 2012 and January to February 2014 respectively). They were maintained in running seawater at $-2^{\circ} \mathrm{C}$ to $+1{ }^{\circ} \mathrm{C}$ until tissue sampling. D. labrax specimens were collected at a fish farm, where the water temperature was maintained at $18^{\circ} \mathrm{C}$. The animals were anesthetized with tricaine methanesulfonate (MS222, $300 \mathrm{mg} / \mathrm{l}$) for at least 30 min before being killed by truncation of the spinal cord. Tissues were dissected from adult specimens, and frozen immediately in liquid nitrogen. Blood was drawn from the caudal vein with heparinized syringes. Blood cells were collected by centrifugation at 3000 g for 5 min , washed in $1.7 \% \mathrm{NaCl}$, and then frozen in liquid nitrogen. Tissues and cells were stored at $-80^{\circ} \mathrm{C}$ until use.

Proteasome activity and Ub-protein levels

T. bernacchii and D. labrax hemolysates were obtained from erythrocytes by incubation in hypotonic solution $(25 \mathrm{mM}$ Tris $/ \mathrm{HCl}, \mathrm{pH} 7.5$) for 30 min on ice and centrifugation at $9200 g$ for 40 min at $4^{\circ} \mathrm{C}$. Tissue samples were homogenized in four volumes of ice-cold homogenization buffer $(10 \mathrm{mM}$ Tris $/ \mathrm{HCl}$, pH 7.5 , containing 150 mM NaCl) with an Ultra-Turrax T25 homogenizer (IKAWorks). The homogenates were centrifuged at 288000 g for 1.5 h at $4^{\circ} \mathrm{C}$ and the supernatant used for the next experiments. Total protein concentration of the tissue homogenates was determined using the Bradford protein assay [27] for
normalization of sample protein content. Equal amounts of total proteins from each tissue were used for dot blot analysis by spotting the samples through circular templates directly on to the nitrocellulose membrane. Following blocking, the membrane was incubated with Ub conjugates specific primary antibody HRP conjugate (1:2500, produced by Enzo Life Sciences) for 1 h at room temperature. Enhanced chemiluminescence and autoradiography (Amersham Biosciences) were used to displayed immune complexes formed and measured by densitometry analysis with ChemiDoc XRS (Bio-Rad Laboratories). Chemiluminescence was quantified using Quantity One Software (Bio-Rad Laboratories) and the acquisition data were performed under conditions to prevent saturation of the chemiluminescence signal. The chymotrypsin-like (CT-like) proteasomal activity for each tissue under analysis was revealed using the fluorogenic substrate N-succinyl-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin (LLVY, purchased for Sigma-Aldrich). The assays were monitored in a Perkin-Elmer LS 50B fluorimeter. The excitation and emission wavelengths were 380 nm and 460 nm respectively. The K_{m} determination of proteasome using LLVY as substrate was performed on pancreas, heart, muscle and trunk kidney protein extracts from T. bernacchii and D. labrax, after one purification step on Superose 6 gel filtration column following the procedure described below.

26S proteasome preparation

The proteasome active fractions, recovered after each purification step, were detected by measuring the CT-like activity using the specific fluorogenic substrate LLVY. The T. bernacchii hemolysates were loaded on a DEAE Sepharose Fast Flow column, previously equilibrated in 25 mM Tris $/ \mathrm{HCl}, \mathrm{pH} 7.5$ (Buffer A), and connected to an AKTA $_{\text {FPLC }}$ system (Amersham Biosciences). Bound proteins were eluted using an ionic strength gradient from 0 to 1 M NaCl in Buffer A at a flow rate of $1 \mathrm{ml} \cdot \mathrm{min}^{-1}$. The active fractions were pooled, dialysed extensively against 25 mM Tris/ $\mathrm{HCl}, \mathrm{pH} 7.5$ and 1 M ammonium sulfate (Buffer A) and then loaded on to a Phenyl Sepharose (Amersham) column, connected to an AKTA $_{\text {FPLC }}$ system (Amersham Biosciences), equilibrated in the same buffer. Bound proteins were eluted with a linear gradient $(0-100 \%)$ of 25 mM Tris $/ \mathrm{HCl}(\mathrm{pH} 7.5)$ (buffer B) at a flow rate of $1 \mathrm{ml} \cdot \mathrm{min}^{-1}$. The active fractions were pooled, dialysed against 25 mM Tris $/ \mathrm{HCl}(\mathrm{pH} 7.5)$ and then applied to a Superdex 200 PC 3.2/30 column connected to a SMART System (Pharmacia), equilibrated in 25 mM Tris $/ \mathrm{HCl}, \mathrm{pH} 7.5$ and 50 mM NaCl . Finally, active fractions were pooled and the purified proteasome was stored in 25 mM Tris $/ \mathrm{HCl} \mathrm{pH} 7.5$, containing 5% glycerol.

Molecular mass determination

Molecular mass of the native 26S proteasome was established by gel filtration chromatography on Superdex 200 and Superose 6 PC 3.2/30 columns (Pharmacia Biotech), connected to a SMART System, equilibrated in 25 mM Tris/HCl, pH 7.5 and 50 mM NaCl , and calibrated with molecular mass standards (26 S human proteasome $2100 \mathrm{kDa}, 20 \mathrm{~S}$ human proteasome 700 kDa ,

Apoferritin 443 kDa , porcine Acylpeptide hydrolase 300 kDa , bovine serum albumin 66.5 kDa , chymotrypsin 25 kDa). The protein concentration was determined with the Bradford assay method [27].

Enzyme assays

Enzyme assays were performed by spectroscopic fluorescence, using the typical substrates for the detection of the different proteasome activities: LLVY for CTlike activity, tert-butyloxycarbonyl-Leu-Arg-Arg-7-amido-4methylcoumarin (LRR, purchased from Boston Biochem) for trypsin-like (T-like) activity and tert-butyloxycarbonyl-Leu-Leu-Glu-7-amido-4-methylcoumarin (LLE, purchased from SigmaAldrich) for caspase-like (PGPH-like) activity. The release of fluorescent product [7-amino-4-methylcoumarin (AMC)] was monitored at 380 nm and 460 nm , as excitation and emission wavelengths respectively, using a Jasco FP-8200 spectrofluorometer, equipped with a thermostated cuvette compartment. All experiments were carried out in triplicate on three different protein preparations. The reaction mixture $(0.8 \mathrm{ml})$, containing the appropriate amount of enzyme in 50 mM Tris $/ \mathrm{HCl}$ buffer at optimal pH , temperature and SDS concentrations, was preincubated for 5 min . Then, the specific substrate was added and the release of product was measured. Calculated activities were based on the initial linear phase of release and all the enzymatic activities were expressed in arbitrary units.

pH, temperature and SDS effects on proteasome activities

For all assays, activities were measured as described above using LLVY, LRR and LLE as substrates. Effect of pH was determined between pH 5.0 and 10.0. Sodium acetate buffer (50 mM) was used for pH values ranging from 5.0 to 6.0 , replaced by Tris $/ \mathrm{HCl}(50 \mathrm{mM})$ buffer in the $6.5-9.0 \mathrm{pH}$ range and by CAPS at pH 10.0. Temperature effect was analysed between 15 and $60^{\circ} \mathrm{C}$. Relative activity was expressed as a percentage of the maximum of the enzyme activities under the standard assay conditions. The thermal stability was determined by measuring residual activities after incubation of the enzyme at various temperatures $\left(10^{\circ} \mathrm{C} ; 37^{\circ} \mathrm{C} ; 45^{\circ} \mathrm{C}\right)$. Temperatures below $10^{\circ} \mathrm{C}$ were not explored due to their dramatic influence on substrate solubility. For the SDS effect, the proteasome was preincubated with the detergent $(0-0.2 \%)$ at $37^{\circ} \mathrm{C}$ before addition of the adequate substrate. The relative activity was expressed as percentage of the activity respect to the control (0% SDS) under the standard assay conditions.

$K_{\mathbf{m}}$ determination

The temperature- K_{m} effects were determined at different temperatures using LLVY as substrate. All experiments were carried out in triplicate on two different protein preparations. Data were fitted to the Michaelis-Menten equation by a nonlinear regression with the GraphPad Prism software.

Western blot analysis

Samples were run on SDS/PAGE (12%) and then electroblotted on to PVDF membranes (ImmobilonTM, Millipore). Membranes were next incubated with the piscine anti-beta $1 /$ beta 5 (LSC111925 rabbit IgG, 1:1000, purchased from LifeSpan BioSciences) and piscine anti-Rpt1 (LS-C290473 rabbit IgG, 1:1000, purchased from LifeSpan BioSciences) primary antibodies (1 hat room temperature) and then with the HRP-conjugated secondary antibodies (1 h at room temperature). Immune complexes formed were visualized by enhanced chemiluminescence and autoradiography (Amersham Biosciences) and measured by densitometry analysis with ChemiDoc XRS (Bio-Rad Laboratories). Protein expression data were quantified with Quantity One Software (Bio-Rad Laboratories).

Gel electrophoresis

SDS/PAGE was carried out according to the procedure described by Laemmli [28]. Standard proteins (Broad Range) were from New England BioLabs. Polyacrylamide gel electrophoresis under non-denaturing conditions (Native-PAGE) was performed according to the method described by Holzl et al. [29]. Proteasome activity was detected by in-gel peptidase activity performed as previously reported [30] with some modifications. Specifically, the gel was immersed in 50 mM Tris $/ \mathrm{HCl}, \mathrm{pH} 9.0,0.02 \%$ SDS and $100 \mu \mathrm{M}$ LLVY at $37^{\circ} \mathrm{C}$. The fluorescence was detected 30 min after exposure to the fluorogenic peptide. For immunoblotting, proteins in native gels were transferred to PVDF membranes following the same protocols described in Western blot analysis section.

Degradation of oxidized BSA by proteasomes

BSA (purchased from Sigma-Aldrich) was used as a model of proteolytic substrate. The oxidized and unoxidized BSA were prepared as described by Fujino et al. [31]. The oxidant resistance of 26 S proteasome complex was tested with $\mathrm{H}_{2} \mathrm{O}_{2}$. Exposure of the proteasome ($8 \mu \mathrm{~g}$) to different $\mathrm{H}_{2} \mathrm{O}_{2}$ concentrations (1, 3, 5,10 and $50 \mu \mathrm{~mol} / \mathrm{mg}$ protein) was carried out for 24 h at $37^{\circ} \mathrm{C}$ in 20 mM Tris buffer, pH 7.5 and the reaction mixtures were subjected to native-PAGE analysis. Solutions of unoxidized ($3 \mu \mathrm{~g}$) and oxidized BSA $(10 \mu \mathrm{~g})$ were incubated with untreated and $\mathrm{H}_{2} \mathrm{O}_{2}$-treated 26 S proteasome (protein ratio of $200 \mu \mathrm{~g}$ substrate protein $/ 7 \mu \mathrm{~g}$ of proteasome) in $30 \mu \mathrm{l}$ of 50 mM Tris $/ \mathrm{HCl}, \mathrm{pH} 8.0$ at $37^{\circ} \mathrm{C}$ for 2 and 24 h . Then, the reaction mixtures were subjected to SDS/PAGE analysis.

Cloning

Total RNAs from several tissues of T. bernacchii were isolated according to the RNeasy Plus Universal Mini Kit (Qiagen) protocol. RNA concentrations were determined with a Qubit Fluorometer (Invitrogen). RNAs were then reverse transcribed with the SuperScript VILO MasterMix (Invitrogen). The cDNAs of the proteasome subunits under investigation were amplified by PCR with oligonucleotides designed on the homo-

Table 1 Primers used for the amplifications of the T. bernacchii proteasome subunits cDNAs

Primer	SEQUENCE	$\boldsymbol{T}_{\mathrm{m}}\left({ }^{\circ} \mathbf{C}\right)$
Alpha 4for	5'-GTAGTGGACCTCTTATTCTGTAGG-3'	58.4
Alpha 4rev	5'-CAATACAGGATTTGGTGACAGG-3'	58.1
Alpha 5for	5'-GACGCTTCCCCTGAAACAAG-3'	60.6
Alpha 5rev	5'-GTGACATTCAGCCCAGGTG-3'	60.1
Alpha 7 for	5'-GGCTTCACAAATTGCTAACTAGC-3'	59.5
Alpha 7rev	5'-CTCAAGTTATGATTTAGCTCTGCACA-3'	60.2
Beta 1for	5'-CCATATTGCAGTGATACAGCGAG-3'	60.5
Beta 1rev	5'-CTCAGTCCTTCCTCAGGGG-3'	60.1
Beta 2 for	5'-GTCGGGATACAGGGACCG-3'	60.8
Beta 2rev	5'-AGCGGTCACTTGGCGC-3'	62.8
Beta 3for	5'-CACAATAGCCAAGAAAAAGTGGAG-3'	59.3
Beta 3rev	5'-GTTCGTGTGGTGATCTTGTCC-3'	60.4
Beta 5for	5'-GGGAGTTTCAAAGATGGCTCT-3'	59.2
Beta 5rev	5'-TTGTACTGCTGGTGCAGCAT-3'	61.7

logues sequences from Gasterosteus aculeatus, Oreochromis niloticus, Xiphophorus maculatus, Takifugu rubripes and Danio rerio, and on the BLAST analysis of several SRA libraries from Notothenioidei (SRX088548, SRX089044-9, SRX373094-100, SRX305406, SRX306432, SRX306459, SRX306462-4).

The oligonucleotides are listed in Table 1. The amplifications were performed as follows: $94^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 40$ cycles of $94^{\circ} \mathrm{C}$ $(30 \mathrm{~s}), 58-62^{\circ} \mathrm{C}(30 \mathrm{~s})$ and $72^{\circ} \mathrm{C}(1 \mathrm{~min})$, and a final extension at $72^{\circ} \mathrm{C}$ for 10 min . The PCR products were analysed on 1% agarose gel, purified with the StrataPrep DNA Gel Extraction Kit (Stratagene) and cloned into the StrataClone PCR Cloning kit (Stratagene).

Sequence analysis

The sequences of the seven cloned cDNAs were determined with an ABI PRISM 3100 automated sequencer at PRIMM. The sequences were edited and analysed with the CLC Main Workbench 7.6 program (CLC bio, 2015) and deposited in the GenBank database under the accession numbers KP735942 (beta $1_{T b}$), KP735943 (beta $2_{T b}$), KP735944 (beta $5_{T b}$), KP735945 (alpha $4_{T b}$), KP735946 (alpha $5_{T b}$), KP735947 (alpha $7_{T b}$) and KP735948 (beta $3_{\text {Tb }}$).

The amino acid sequences of the T. bernacchii proteasome subunits were aligned with their homologues retrieved from databanks by use of the MUSCLE program.

Phylogenetic analysis

Phylogenetic and molecular evolutionary analyses for the three catalytic proteasome subunits (beta 1, beta 2 and beta 5) were carried out using MEGA version 6 [32]. The alignment containing all the amino acid sequences belonging to these three subtypes, together with the sequence of the proteasome beta subunit of the archaebacterium Thermoplasma acidophilum used as outgroup,
was tested by 'Find Best DNA/Protein Models (ML)' option to search the most appropriate evolutionary model. Maximum likelihood analysis was performed with the 'Construct/Test Maximum Likelihood Tree (ML)' option, using the parameters indicated by the evolutionary model (substitution model $\mathrm{LG}+\mathrm{G}$, gamma $=$ 3.7136) and the bootstrap test with 1000 replicates. Finally, a phylogenetic tree with the best bootstrap consensus was obtained [32].

Molecular modelling

Molecular modelling of the 20S seven protein subunits was performed in agreement with well established procedures applied in our labs [33]. The search for templates were performed by using BLAST at the NCBI web site. The best template structures were found belonging to the mouse proteasome (PDB code 3UNB). The subunits have been modelled as single chain, according to the related chain in 3UNB: alpha 4, chain B; alpha 5, chain D; alpha 7, chain C; beta 1, chain L; beta 2, chain J; beta 3, chain I; beta 5 , chain K . The percentage of sequence identity was in all cases $>80 \%$, thus making very simple the correct alignment of the target and template sequences. Modeller 9.12 [34] was used to create 10 models for each chain, and the best was selected on the basis of the model energy, evaluated by PROSA-web server [35] and the backbone stereochemistry, evaluated by PROCHECK software [36]. Models were also analysed for the presence of H-bonds by HBplus [37] and saltbridges, by using an original software that apply criteria similar to the online tool described by Paladino et al. [38] with specific filters for simplify the finding of intra- and inter-chain interactions. Presence and conservation of cysteines and amino acids involved in salt bridges were checked manually on the multiple alignments.

RESULTS AND DISCUSSION

Tissue levels of ubiquitinated proteins and proteasome activity in T. bernacchii and D. Iabrax

Protein degradation is a critical determinant of growth and it is influenced by the temperature in a fashion independent from that of protein synthesis [5,10]. In these cellular processes, UPS has emerged as a central player, but functional and structural information on this complex machinery in fish are still scarce. Therefore, to understand the effects of sub-zero environments on the accumulation of the ubiquitinated (Ub)-proteins, we compared the levels of these conjugates in a variety of tissues of the Antarctic fish T. bernacchii and the temperate species D. labrax. The same analysis was performed evaluating the total CT-like proteasome activity associated to the beta 5 catalytic subunit. Unexpectedly, the Ub-conjugated protein levels in D. labrax, quantified by Dot Blot densitometric analysis, were significantly higher than those detected in T. bernacchii in pancreas, trunk kidney, testicle, gills, muscle, heart and brain, as evidenced by the low ratio values

Figure 1 Analysis of Ub-conjugated protein levels and CT-like proteasomal activity in different tissues of \boldsymbol{T}. bernacchii and D. labrax
(A) Ub-conjugated protein levels in different tissues of T. bernacchii and D. labrax determined by Dot Blot densitometric analysis. Ubiquitin-conjugated protein levels are reported as relative intensity determined by comparing the dot blot values of the T. bernacchii tissues respect to the corresponding tissues of D. labrax. (B) CT-like proteasomal activity (beta 5 subunit) measured using LLVY as substrate and expressed in arbitrary units. The enzymatic units (U) corresponded to the maximal activity ($V_{\max }$) measured in each tissue protein extract. Data were expressed as mean from experiments performed in triplicates on three different protein preparations and all standard deviation values were lower than 5\%.
(less than 1) between the corresponding intensities in these tissues (Figure 1A). On the contrary, T. bernacchii showed higher levels of Ub-conjugate proteins in liver and cephalic kidney (ratio values more than 1) and comparable amounts in the remaining analysed tissues respect to D. labrax. In addition, the total CT-like activity of proteasome in D. labrax was generally higher than that measured in T. bernacchii in all the tissues under investigation except for the muscle and pancreas (Figure 1B), suggesting a potentially more efficacious degradation machinery in the temperate species.

These results seemed to be in contrast with those observed analysing the substrate affinity values (K_{m}) using the substrate LLVY, which is widely used for the detection of CT-like proteasome activity. The K_{m} values were only evaluated in pancreas, heart, muscle and trunk kidney, as the very complex protein extracts strongly affected this analysis. The substrate affinity of the proteasome appeared improved in T. bernacchii at least in pancreas and heart, possibly resulting in an increased efficiency of UPS pathway (Figure 1B). However, the K_{m} values were
similar in muscle and trunk kidney (K_{m} values ranging from 80 to $100 \times 10^{-6} \mathrm{M}$ and $60-80 \times 10^{-6} \mathrm{M}$ respectively) as typically evidenced among the orthologous enzymes [2]. These results were also confirmed on partially purified proteasome preparations (see Materials and Methods).

The obtained data revealed, for the first time, increased Ub-protein levels in a temperate fish, that could derive from a reduced cellular capacity in the degradation of ubiquitinated proteins respect to that observed in a cold-adapted species. In this case, an optimization of the thermodynamic parameters of the catalytic proteasome subunits (at least the beta 5), which results in an improvement of molecular recognition events, could contribute to maintain a high protein degradation efficiency.

Purification of proteasome from T. bernacchii erythrocytes

Since very little is known about the structural and functional properties of proteasome in fish, we first developed a strategy to isolate and characterize this enzymatic complex from T. bernacchii red blood cells (RBCs). Proteasome detection and enrichment at each purification step was followed by immunoblot analysis and measuring the proteolytic activity towards the fluorogenic substrate LLVY. Purification of the proteasome to homogeneity was ultimately achieved by sequential anion exchange, hydrophobic interaction and size exclusion chromatographies. During the hydrophobic step, the activity profile revealed the presence of two peaks (data not shown): peak 1, containing the most of proteolytic activity and peak 2 , containing high molecular mass contaminating proteins and the previously characterized protease APEH (acylpeptide hydrolase) [20]. For these reasons, peak 1 fractions were pooled and subjected to the next purification step. The protein homogeneity and its identification as the 26 S proteasome was confirmed by several analytical procedures: (1) gel filtration chromatography using two different size-exclusion columns, which revealed a molecular mass of about 1400 kDa for the purified holoenzyme, in agreement with those reported for the singlycapped 26S proteasome (19S-20S) eukaryal counterparts (data not shown) [13-15]; (2) native-PAGE, displaying a unique intermediate electrophoretic band (Coomassie blue-stained) between those observed for the human doubly- and singly-capped 26 S used as positive control [39] (Figure 2); indeed, as reported, the 26 S human isoform easily dissociates into the 20S catalytic core and the regulatory complex (19S) [15,16,40], in contrast with the piscine isoform, that appeared to be highly stable; (3) native-PAGE (Figure 2), followed by in-gel detection of CT-like activity, which revealed a single fluorescent signal for 26 S piscine isoform, corresponding to the Coomassie blue-stained band, under the assay conditions described in Materials and Methods. The same analysis, performed on the human 26 S isoform, allowed to detect only the activity band corresponding to the 20S isoform (Figure 2), in agreement with that reported for eukaryal proteasomes [39,30]; (4) SDS/PAGE analysis (Figure 2), showing a wide range of molecular masses, from 22 kDa to over 150 kDa , thus mirroring what was previously described for eukaryal 26 S
proteasomes [14,29,41]; (5) Western blot analysis, performed using anti-beta 1/beta 5 subunits; (6) native-PAGE followed by immunoblotting against Rpt1 (19S subunit) and beta 1/beta 5 (20S subunits), evidencing immunoreactive signals in correspondence to the Coomassie blue-stained bands (Figure 2).

The 26 S proteasome purification protocol is reported in Supplementary Table S1. The isoform was purified approximately 6 -fold, with an activity recovery of 0.1% and a CT-like specific activity of $37900 \mathrm{U} / \mathrm{mg}$. In addition, T-like and caspase-like (PGPH-like) hydrolysing activities were determined as 94750 and $60160 \mathrm{U} / \mathrm{mg}$ respectively [the enzymatic units (U) corresponded to the maximal activity $\left(V_{\max }\right)$ measured].

Interestingly, the standard procedure developed to purify the mammalian 20S proteasome, omitting the use of glycerol and ATP, was sufficient to purify the piscine 26 S isoform and preserve its integrity, thus suggesting a remarkable structural stability of T. bernacchii holoenzyme. Indeed, the presence of these two compounds in the purification buffers usually prevents the dissociation of the 26S proteasome into 19 S and 20 S particles [30].

SDS effect on 26S proteasome CT-, T- and PGPH-like activities

As reported, the catalytic sites of mammalian 26 S proteasomes are sequestered in the central hollow of its core particle 20S (Figure 3A) [14, 15,42]. The entry into this chamber occurs via a narrow channel delimited by the outer alpha rings. Indeed, the N -terminus of the neighbouring alpha subunits maintains the 20S proteasome into an auto-inhibited state by an intricate lattice of interactions, hindering access to the channel (Figure 3A) [42]. Nevertheless, the exposure to a mild chaotropic agent, such as SDS, can stimulate the opening of the alpha-channel gate, allowing greater access of protein substrates [42-44]. As shown by SDSmediated activation profiles reported in Figure 3(B), the effects of this denaturing compound on piscine 26 S proteasome were dependent on the type of subunit considered. The T-like activity improved at the lowest SDS concentration tested (0.001%) and then restored to the original level with a further SDS increase. By contrast, CT-like and PGPH-like hydrolysing activities needed higher levels of SDS to reach their maxima. Specifically, the best CT-like activity was detected at 0.02% SDS, whereas the effect of this agent on PGPH-like activity was maximal at 0.12% SDS. Therefore, the activation of the three catalytic subunits were reached at very different SDS concentrations, in contrast with that described for the eukaryal $26 S$ proteasomes [45,46]. In addition, it seems that the substrate used for T-like activity measurements was able to stimulate the gate opening without the contribution of high SDS concentrations, as already reported [45,46]. On the contrary, CT-like and PGPH-like activities needed increasing SDS amounts to allow the passage of the corresponding substrates by opening the entrance of the alpha-channel. Specifically, it appears that the optimal PGPH-like activity requires the maximum gate opening, which is triggered by an unusual high SDS concentration (0.12%), possibly reflecting a compact overall proteasome structure.

Figure 2 Native-PAGE, SDS/PAGE and Western blot analyses of the 26 proteasome from T. bernacchii (A) Native-PAGE of the purified T. bernacchii 26S (26S b), immunoblotted against 19S subunit Rpt1 or 20S subunits β_{5} / β_{1}. The commercially available 26S from human erythrocytes ($26 \mathrm{~S} h$) was used as positive control. (B) Native-PAGE of $26 \mathrm{~S} b$ followed either by in-gel detection of CT-like activity (β_{5} subunit), using the fluorogenic substrate LLVY, than Coomassie-blue stained. 26S h and 20S h were used as positive controls. The main proteasome species are indicated: 19S-20S-19S, doubly capped 26S; 19S-20S, singly capped 26S; 19S (regulatory complex) and 20S (catalytic core), free particles. (C) SDS/PAGE analysis of $26 \mathrm{~S} b$ in comparison with $26 \mathrm{~S} h$ and $20 \mathrm{~S} h$ used as controls. (D) SDS/PAGE of 26 S b immunoblotted against 20 S subunits β_{5} / β_{1}. The $26 \mathrm{~S} h$ was used as control. The results were representative of three independent experiments on three different protein preparations.

pH and temperature effects on CT-, T- and PGPH-like activities of 265 proteasome

In studies on the effects of pH on the hydrolysing activities, we found that all the synthetic peptides used were maximally degraded at neutral and weakly alkaline pH values (Figure 4A). Specifically, the degradation of LLVY (the substrate for CT-like activity) was optimal at pH 9.0 , whereas the complex had the highest activity at pH 8.5 and 7.0 towards LRR (the substrate for

T-like activity) and LLE (the substrate for PGPH-like activity) respectively. All the activities gradually decreased with lowering of pH , reaching about 10% of their optima at pH values close to 5.5 . The observed pH -activity profiles might be attributed to a change in ionic environment of the active sites and to a reduced access of the substrates to these sites.

To further characterize the piscine proteasome, we examined the effects of temperature on its enzymatic activities. As shown

Figure 3 Effect of SDS on the proteasomal CT-like, T-like and PGPH-like activities
(A) Schematic representation of the 26S proteasome. (B) The three different proteasome activities were measured after addition of increasing concentrations of SDS. The proteasome was preincubated 5 min with the detergent ($0-0.2 \%$) at $37^{\circ} \mathrm{C}$ before addition of the adequate substrate. The relative activity was expressed as percentage of the activity respect to the control (0% SDS). All experiments were performed in triplicate on three different protein preparations. T-like (beta 2), CT-like (beta 5) and PGPH-like (beta 1) activities are indicated in black, red and blue lines respectively.
in Figure 4(B), LLVY, LRR and LLE hydrolysing activities were maximal at 45,50 and $37^{\circ} \mathrm{C}$ respectively. These temperatures remained much above the optimal temperature for T. bernacchii, as it has also been observed for other proteases and enzymes from psychrophilic organisms [47,48]. This may suggest that the
in vitro analyses do not reproduce the physiological conditions as several factors may greatly affect the stabilization of the protein and the enzyme-substrate recognition in cells.

Next, we explored the thermostability at 10,37 and $45^{\circ} \mathrm{C}$ of the purified 26 S proteasome (Figures 4C-4E). A significant different thermal behaviour was observed for the three peptidase activities only at temperatures above $10^{\circ} \mathrm{C}$. Specifically, although the degradation of LLVY strongly decreased after 5 min of incubation at $37^{\circ} \mathrm{C}$, LLE and LRR activities exhibited higher stabilities. At $45^{\circ} \mathrm{C}$, all of them showed a gradual decline and a total inactivation was achieved for CT-like activity after 300 min of incubation.

Finally, the temperature-dependence of the Michaelis-Menten affinity constant (K_{m}), using LLVY as substrate, was investigated. As shown in Figure 4(F), the K_{m} of proteasome was relatively unaffected in the temperature range $10-50^{\circ} \mathrm{C}$, with the better values measured at the highest temperatures. This behaviour is in contrast with that observed with the typical cold-adapted enzymes [2,47], thus suggesting an incomplete adaptation to cold environments for the 26 S complex.

Degradation of oxidized BSA by the 26S proteasome

The production of free radicals and the consequential oxidative alteration of cell structures are ubiquitous in mammalian cells [49]. This phenomenon yields the irreversible oxidation of proteins leading to disruption of their structure and consequently to an impairment of their function. Consequently, it is necessary to remove these species in order to prevent severe metabolic disorders [49]. It is widely reported that the 20S proteasome represents the primary proteolytic system responsible for the degradation of damage oxidized proteins [13,25]. Indeed, in response to oxidative conditions or upon exposure to oxidants, the 26 S holoenzyme disassembles into 20S core and 19S regulatory particles, thus favouring the 20S-mediated degradation of oxidized proteins that are not poly-ubiquitylated [16]. In contrast, there are not clear evidences about the direct implication of eukaryal 26 S holoenzyme in antioxidant defense systems [24-26]. To better clarify the physiological role of 26 S proteasome in Antarctic fish inhabiting under permanently oxidative stress conditions, we examined the oxidized protein hydrolase activity of this complex in T. bernacchii. To this aim, we raised two important questions: (i) whether the piscine 26 S proteasome was susceptible to inactivation by oxidants, as reported in mammalian cells by Reinheckel et al. [40]; (ii) whether acclimation to cold temperatures could have affected the proteasome activity towards oxidized proteins.

Firstly, to test the resistance of the 26 S proteasome to oxidants, we exposed the isolated complex to different $\mathrm{H}_{2} \mathrm{O}_{2}$ concentrations (ranging from 0.3 to 150 mM) for 24 h at $37^{\circ} \mathrm{C}$ (Figure 5A). Surprisingly, even at high concentrations of $\mathrm{H}_{2} \mathrm{O}_{2}$ used, the piscine 26 S proteasome did not disassemble and remained active, in contrast with that reported for the mammalian counterparts [16,26], suggesting that the individual subunits and the overall proteasome structure in fish are more resistant and less susceptible to the damaging impact of $\mathrm{H}_{2} \mathrm{O}_{2}$ (Figure 5A). In addition, to explore the role of the piscine 26 S proteasome in response to the

Figure 4 Molecular properties of the purified T. bernacchii $\mathbf{2 6 S}$ proteasome
(A) pH and (B) temperature effects on the proteasome activities. Relative activity was expressed as percentage of the corresponding maximal activities. (C-E) thermoresistance of 26 S isoform at: (C) $10^{\circ} \mathrm{C}$, (D) $37^{\circ} \mathrm{C}$, (E) $45^{\circ} \mathrm{C}$; (F) temperature $-K_{m}$ profile of T. bernacchii 26 proteasome, using LLVY as substrate. T-like, CT-like and PGPH-like activities are indicated by square, triangle and diamond respectively. All experiments were performed in triplicate on three different protein preparations. Data were expressed as means \pm standard deviations. Standard deviation values lower than 5% were not shown
oxidative stress and consequently in the degradation of oxidized proteins, we carried out an experimental assay using as model substrate the BSA, a globular protein whose structure can be significantly modified by oxidative treatment [20,31]. Untreated and $\mathrm{H}_{2} \mathrm{O}_{2}$-treated 26 S proteasome were incubated at different times with BSA, previously submitted to oxidative treatment. The unoxidized BSA was used as negative control and the protein degradation was evaluated by SDS/PAGE analysis. As shown in Figure 5(B), the intensity of the oxidized BSA band decreased remarkably after 24 h incubation with the concomitant detection of lower molecular mass fragments, following the treatment with
both the unoxidized (left panel) and oxidized (right panel) 26S form. In contrast, when unoxidized BSA was used as substrate, no fragments were detected following the incubations. The obtained results were further confirmed by densitometric analysis of BSA electrophoretic bands (Figure 5C). It has been suggested that the susceptibility of oxidized BSA to proteasome degradation could be attributable to a conformational change that brings the cleavage sites, normally not exposed on the BSA surface, to the outer face of the molecule, where they become easily accessible to the enzyme upon oxidation [50]. Therefore, the hydrophobicity resulting from oxidation may represent a recognition

Figure 5 Effects of $\mathbf{H}_{2} \mathbf{O}_{2}$ exposure on the \boldsymbol{T}. bernacchii $\mathbf{2 6 S}$ proteasome
(A) Native-PAGE of T. bernacchii 26 S proteasome complex after treatment with $\mathrm{H}_{2} \mathrm{O}_{2}$. Purified 26 S proteasome was exposed to increasing $\mathrm{H}_{2} \mathrm{O}_{2}$ concentrations for 24 h at $37^{\circ} \mathrm{C}$ and the bands were visualized by Coomassie-blue stained. The experimental conditions for $\mathrm{H}_{2} \mathrm{O}_{2}$ treatment and native-PAGE are described in Materials and Methods section. (B, left panel) Unoxidized and oxidized BSA were incubated with 26 S proteasome at $37^{\circ} \mathrm{C}$ for the indicated periods; (B, right panel) Unoxidized and oxidized BSA were incubated with $\mathrm{H}_{2} \mathrm{O}_{2}$-treated 26 S proteasome at $37^{\circ} \mathrm{C}$ for the indicated periods. All the reaction mixtures were subjected to SDS/PAGE. (C) SDS/PAGE data are expressed as percentage density of BSA at the indicated incubation times compared with time 0 , and were obtained by densitometric analysis with ChemiDoc XRS and Quantity One software. Oxidized BSA levels after incubation with 26 S and $\mathrm{H}_{2} \mathrm{O}_{2}$-treated 26 S are indicated by diamonds and squares respectively. Unoxidized BSA incubated with 26 S and $\mathrm{H}_{2} \mathrm{O}_{2}$-treated 26 S are indicated by triangles and circles respectively. The experiments were performed in duplicate on two different protein preparations, and the average of the relative intensities of measurements, performed in triplicate, are expressed as means \pm standard deviations.
signal for the degradation of oxidized proteins by piscine 26 S proteasome.

Our data represent the first evidence of a direct involvement of the 26 S proteasome in the degradation of oxidized proteins and in the antioxidant defense systems in fish inhabiting permanently cold marine environments. Therefore, the cold-adaptation in T. bernacchii to a highly oxidative environments may have had a greater effect on the 26 S antioxidant capacity, making it more stable, less subject to disassembly and especially able to degrade oxidized proteins, differently from the isoform purified from mammalian cells $[16,40]$. However, further investigations are needed for a better understanding of the piscine 26 S proteasome-catalysed degradation pathways.

Cloning of the cDNAs of T. bernacchii 205 proteasome subunits

The rising number of sequencing projects of transcriptomes and genomes of teleosts has enriched the gene databases with sequence information of the fish proteasome subunits. However, the characterization of these sequences, mostly concerning the phylogenetic or expression analyses, has been scarce up to now [51-58]. Therefore, to gain insights into the molecular structure and evolution of the fish proteasomes, we decided to investigate the structure-function relationship of 20 S proteasome from T. bernacchii, an organism naturally adapted to conditions of low temperature and high oxygen concentration. Specifically, based on the 3D structures of mammalian 20S [59-61], the three catalytic subunits (beta 1, beta 2 and beta 5) and those in close

Table 2 cDNAs and the corresponding proteins of T. bernacchii proteasome subunits analysed in the present study, with relative nucleotide or amino acid lengths (in brackets) and GenBank accession numbers

cDNA (nt)	Proteasome subunit (aa)	GenBank accession number
Beta $1_{T b}(714)$	Beta $1_{\mathrm{Tb}}(237)$	KP735942
Beta $2_{T b}(600)$	Beta $2_{\mathrm{Tb}}(199)$	KP735943
Beta $5_{T b}(829)$	Beta $5_{\mathrm{Tb}}(271)$	KP735944
Alpha $4_{T b}(786)$	Alpha $4_{\mathrm{Tb}}(261)$	KP735945
Alpha $5_{T b}(726)$	Alpha $5_{\mathrm{Tb}}(241)$	KP735946
Alpha $7_{T b}(759)$	Alpha $7_{\mathrm{Tb}}(252)$	KP735947
Beta $3_{T b}(618)$	Beta $3_{\mathrm{Tb}}(205)$	KP735948

contact with them (alpha 4, alpha 5, alpha 7 and beta 3) were analysed. Starting from total RNA of T. bernacchii, the cDNAs of the seven aforementioned proteasome subunits, containing the entire coding regions, were amplified by RT-PCR using the oligonucleotides listed in Table 1 and the conditions described in Materials and Methods. The cDNAs, their predicted proteins and the relative accession numbers are listed in Table 2.

Phylogenetic analysis of T. bernacchii 20S proteasome catalytic subunits

The MUSCLE amino acid sequence alignments of the analysed T. bernacchii proteasome subunits with their homologues from organisms belonging to different kingdoms and phyla, are shown in the Supplementary Figures S1-S7. A common feature of the alignments for the non-catalytic subunits (alpha 4, alpha 5, alpha 7 and beta 3) is the very high sequence conservation (identity ranging from 87 to 100%) among those from fish, mammal and amphibian and even from phylogenetically more distant organisms (the sequence identity never fells below 45%). On the contrary, the alignments of the three catalytic subunits (beta 1, beta 2 and beta 5) showed a greater sequence variability, specifically in the N - and C -terminal regions. The beta 5 alignment revealed a significant sequence specificity among the different phylogenetic groups, accompanied by a low overall degree of conservation (the minimum sequence identity value was 35% among all the species). On the contrary, the remaining two catalytic subunits, beta 1 and beta 2, displayed a greater sequence conservation among fish, mammal and amphibian (identity ranging from 77 to 99%), which strongly dropped down when the other species were considered (the minimum identity value: 14%).

Following the procedure described in Materials and Methods and using the sequence of the unique beta subunit of proteasome from the archaebacterium T. acidophilum as outgroup (Supplementary Figure S8), a phylogenetic analysis for the three catalytic subunits was carried out and the tree with the best bootstrap consensus was built (Figure 6).

As expected, distinct clusters for the three subunits were revealed, with some discrepancies in the branch order within the individual organism subfamilies, which affected the rooting position in the tree of the sequences of D. rerio and O. niloticus within fish, Xenopus laevis within vertebrates, Drosophila melanogaster

beta 1
beta 2
beta 5

Figure 6 Phylogenetic analysis of the catalytic subunits of T. bernacchii 205 proteasome

The amino acid sequences of beta 1, beta 2 and beta 5 subunits of T. bernacchii were compared with their respective homologues from teleosts [D. rerio, O. niloticus and Notothenia coriiceps (the latter is an Antarctic Nototheniide)], mammals (Homo sapiens and M. musculus), amphibian (X. laevis), insect (D. melanogaster), nematode (C. elegans), plant (A. thaliana), whose species names and accession numbers are shown in the alignment of Supplementary Figure S8. The unique beta subunit sequence from the archaebacterium T. acidophilum was used as outgroup. A tree with the best bootstrap consensus is shown, with numbers at nodes representing the confidence limits computed by the bootstrap procedure (1000 replicates). The clusters relative to the three beta subfamilies are indicated.
and Caenorhabditis elegans within invertebrates and Arabidopsis thaliana within plants. Interestingly, the sequences of D. melanogaster beta 1 and C. elegans beta 2 clustered together with those of beta 5 subfamily, rather than with those of their respective groups. These anomalies, already described [62], represent a peculiarity within these clusters and are the result of evolutionary events involving this important enzyme complex, which make very difficult the phylogenetic analysis.

Molecular modelling of T. bernacchii proteasome subunits

The availability of the 3D structures of proteasome from different sources allowed to approach a molecular modelling analysis

Table 3 H-bonds, intra-chain salt bridges and cysteine residues in the proteasome subunits from T. bernacchif and M. musculus

	H-bonds		Intra-chain salt bridges		Cysteine residues	
	T. bernacchii	M. musculus	T. bernacchii	M. musculus	T. bernacchii	M. musculus
Alpha 4	208	204	10	11	5	5
Alpha 5	181	176	8	7	3	3
Alpha 7	162	157	12	15	3	3
Beta 1	169	177	9	8	4	4
Beta 2	158	151	10	8	3	3
Beta 3	159	153	5	5	5	5
Beta 5	176	172	6	7	9	3

of seven T. bernacchii proteasome subunits, whose cDNAs have been cloned in the present study (Table 2). Specifically, due to the high level of sequence identity ($>80 \%$) and sequence coverage ($>90 \%$) between the subunits of T. bernacchii and the corresponding proteins from Mus musculus, we chosen the 3D murine structure of 20 S proteasome as template. Interestingly, the beta 1 and beta 5 subunits from T. bernacchii presented dissimilarities in the N -terminal region, including 24 and 68 amino acids respectively, with no reference in the corresponding murine subunits.

According to the modelling procedures in use by our group (see Materials and Methods for details), we generated ten 3D models for each T. bernacchii subunits and then we selected the best structures in terms of stereochemical properties and energy evaluation. We report the values obtained with Procheck and ProsaWeb analyses in Supplementary Table S2. The obtained results clearly indicate a high quality and in some cases better energy parameters of the built models respect to the structures of the murine template, suggesting that the piscine subunits are well suited into their respective known fold. The 3D models of the seven subunits under investigation are reported in Figure 7. In addition, as shown in Table 3, a comparative analysis between T. bernacchii and mouse subunits was carried out, evaluating the number of some stabilizing factors, such as H-bonds, salt-bridges and cysteine residues. Specifically, although the increased H -bonds numbers suggested a higher stability for all the T. bernacchii subunits (other than the beta 1) respect to the corresponding mouse counterparts, a clear predominance in the number of the intrachain salt-bridges between the proteasome subunits of the two organisms was not observed (Table 3). On the other hand the cysteine residues, whose presence might suggest the formation of intra- or inter-chain disulfide bonds, are well conserved in the murine and piscine subunits, excepted for the beta 2 (the same total number is due to a couple of aligned cysteine residues and another one presents in different positions) and the beta 5 subunits (Table 3). Specifically, the T. bernacchii beta 5 has nine cysteine residues against the three in mouse. Four of them are in the N -terminal region of 68 amino acids that, as mentioned, is not included in the 3D model of this subunit, whereas the remaining five cysteine residues could be involved in the formation of inter-chains bonds, being not adjacent in the space.

Table 4 Analysis of inter-chain salt bridges in murine proteasome involving the seven subunits of interest

	Number of salt-bridges	Amino acids involved
Alpha 4	8	$\begin{aligned} & \text { Arg }^{2}, \text { Arg }^{7}, \text { Asp }^{56}, \text { Asp }^{115}, \text { Glu }^{107}, \\ & \text { Glu }^{180} \end{aligned}$
Alpha 5	12	$\begin{aligned} & \text { Asp }^{1}, \text { Glu }^{52}, \text { Glu }^{61}, \text { Asp }^{63}, \text { Asp }^{82} \\ & \text { Glu }^{102}, \text { Glu }^{117}, \text { Glu }^{118}, \text { Asp }^{119} \\ & \text { Glu }^{140} \end{aligned}$
Alpha 7	9	$\begin{aligned} & \text { Arg }^{4}, \operatorname{Arg}^{35}, \operatorname{Arg}^{56}, \text { Arg }^{80}, \text { Glu }^{98}, \text { Glu }^{99} \\ & \text { Asp }^{138}, \text { Lys }^{156} \end{aligned}$
Beta 1	8	$\begin{aligned} & \text { Asp }^{60}, \text { Lys }^{66}, \text { Lys }^{81}, \text { Arg }^{100}, \text { Asp }^{150} \\ & \text { Glu }^{184}, \text { Arg }^{185}, \text { Asp }^{213} \end{aligned}$
Beta 2	8	$\begin{aligned} & \text { Glu }^{49}, \text { Glu }^{58}, \text { Asp }^{90}, \text { Arg }^{93}, \text { Asp }^{144}, \\ & \text { Glu}^{165}, \text { Glu }^{166}, \text { Arg }^{170} \end{aligned}$
Beta 3	14	$\begin{aligned} & \text { Asp }^{58}, \operatorname{Arg}^{65}, \operatorname{Arg}^{79}, \operatorname{Arg}^{98}, \mathrm{Glu}^{150} \\ & \mathrm{Glu}^{154}, \mathrm{Glu}^{160}, \operatorname{Arg}^{176}, \operatorname{Arg}^{197}, \\ & \mathrm{Lys}^{200}, \text { Asp }^{204} \end{aligned}$
Beta 5	16	$\begin{aligned} & \operatorname{Arg}^{19}, \operatorname{Asp}^{51}, \operatorname{Arg}^{64}, \operatorname{Arg}^{69}, \text { Lys }^{81}, \operatorname{Lys}^{91}, \\ & \operatorname{Lys}^{106}, \operatorname{Arg}^{107}, \operatorname{Arg}^{120}, \operatorname{Asp}^{140}, \\ & \operatorname{Arg}^{141}, \operatorname{Arg}^{166}, \operatorname{Asp}^{197} \end{aligned}$

These analyses have been focused on the single modelled subunits, which are expected to be near in the quaternary structure of the piscine proteasome by similarity to the corresponding murine isoform; however, for illustrative purposes, we generated a putative assembly for T. bernacchii 20S proteasome, in order to have an idea on the spatial arrangements of the subunits under investigation within the protein complex (Supplementary Figure S9).

Nevertheless, the ability to create inter-chain salt-bridges, that could modulate the flexibility of the entire proteasome assembly, can be investigated by considering what inter-chain interactions are present in the murine proteasome, and verifying the conservation in T. bernacchii subunits of the involved residues. In Table 4 are reported the number of inter-chain salt-bridges observed in mouse proteasome for the chains of interest. Interestingly, all the amino acids involved in the murine proteasome salt-bridges are well conserved between the two species and they are all present in T. bernacchii, except for two residues of beta 5 chain, a Serine and a Glutamine, which are the Arg^{141} and the Asp ${ }^{197}$ in the

Figure 7 Schematic view of the backbone fold of seven proteasome subunits from T. bernacchif
Alpha helix, beta-strand and turn structures are indicated with red, cyan and green colours respectively. The positions of N - and C-termini are indicated by arrows. Models were generated as described in Materials and Methods section. Images have been created with Discovery Studio software.
corresponding subunit in mouse. Therefore, the T. bernacchii catalytic subunit beta 5 lacks the possibility to create two out of 16 inter-chain salt-bridges observed in the murine proteasome structure, with possible effects on the ability of the entire proteasome to adapt to substrates.

CONCLUSIONS

One of the most important physical effects related to the lowering temperature is the increase in the oxygen solubility in water. For this reason, the Antarctic marine environ-
ment represents a unique natural habitat that deeply affects the life of its organisms $[17,18]$. Specifically, the Antarctic fish have had to adopt alternative strategies essential for their survival, being permanently subjected to a higher oxidative stress than the temperate species [1,3-6]. Therefore, these organisms represent a fascinating model to study the biological processes involved in protein degradation and antioxidant defense mechanisms.

In such a context, the purpose of this work was to shed important light on understanding such processes in organisms adapted to living under cold-induced oxidative stress conditions, through the investigation on the main enzyme system involved in the degradation pathway of damaged and oxidized
proteins: the proteasome. To this aim, the Antarctic notothenioid T. bernacchii was used as biological model system.

The present study highlighted two significant findings: 1) the protein degradation machinery in the cold-adapted specie seems to be more efficient respect to that of the temperate fish. 2) The cold-adaptation in T. bernacchii may have had a greater effect on the 26 S antioxidant capacity, making it more stable, less subject to disassembly and especially able to degrade oxidized proteins, differently from the isoform purified from mammalian cells $[16,40]$. These unique functional properties were also reflected by the analysis of the 3D models of seven proteasome subunits, which revealed a higher structural stability of the piscine complex respect to the murine template.

Further investigations are needed in order to determine if the oxidative-resistance and the uncommon properties displayed by the T. bernacchii proteasome are the result of a cold adaptation or an intrinsic feature of the piscine isoforms.

AUTHOR CONTRIBUTION

Gianna Palmieri, Marta Gogliettino and Ennio Cocca performed conception and design of the study; Marta Gogliettino, Alessia Riccio, Carmela Fusco, Vincenzo Cecere Palazzo and Marco Balestrieri performed data acquisition; Gianna Palmieri, Ennio Cocca, Angelo Facchiano and Marco Balestrieri performed data analysis and interpretation; Gianna Palmieri and Marta Gogliettino drafted the manuscript; Gianna Palmieri, Ennio Cocca, Marco Balestrieri and Mosè Rossi did critical revision of the manuscript; and Gianna Palmieri, Ennio Cocca, Marta Gogliettino, Angelo Facchiano, Alessia Riccio, Vincenzo Cecere Palazzo, Carmela Fusco, Marco Balestrieri and Mosè Rossi approved the final version.

ACKNOWLEDGEMENTS

We gratefully acknowledge the logistic support provided to our research team at Mario Zucchelli Station.

FUNDING

This study was funded by the PNRA 2013/AZ1.20 project "The emergent role of new globins of Antarctic fish in the defense against oxidative and nitrosative stress". In addition, this research was funded by Regione Campania under POR Campania FESR 2007/20130.0. 2.1 - Rete delle Biotecnologie in Campania (FarmaBioNet project) and under Legge 5 L.R. 28/5/02 N.5. D. n. 73 22/12/2014 (Project: Inibitori di proteasi archaeali appartenenti alla famiglia delle PEBP).

REFERENCES

1 Chen, L., DeVries, A.L. and Cheng, C.-H.C. (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc. Natl. Acad. Sci. U.S.A. 94, 3811-3816 CrossRef PubMed

2 Somero, G.N. (2004) Adaptation of enzymes to temperature: searching for basic "strategies". Comp. Biochem. Physiol. B Biochem. Mol. Biol. 134, 321-333 CrossRef
3 Cheng, C.-H.C. and Detrich, III, H.W. (2007) Molecular ecophysiology of Antarctic notothenioid fishes. Phil. Trans. R. Soc. B 362, 2215-2232 CrossRef
4 O'Brien, K.M. and Mueller, I.A. (2010) The unique mitochondrial form and function of antarctic Channichthyid icefishes. Integr. Comp. Biol. 50, 993-1008 CrossRef PubMed
5 Lamarre, S.G., Blier, P.U., Driedzic, W.R. and Le Francois, N.R. (2010) White muscle 20S proteasome activity is negatively correlated to growth rate at low temperature in the spotted wolffish Anarhichas minor. J. Fish. Biol. 76, 1565-1575 CrossRef PubMed
6 Hofmann, G.E., Buckley, B.A., Airaksinen, S., Keen, J.E. and Somero, G.N. (2000) Heat shock protein expression is absent in the antarctic fish Trematomus bernacchii (family Nototheniidae). J. Exp. Biol. 203, 2331-2339 PubMed
7 Jaenicke, R. (1990) Protein structure and function at low temperature. Philos. Trans. R. Soc. Lond. B Biol. Sci. 326, 535-553 CrossRef PubMed
8 Jaenicke, R. (1991) Protein stability and molecular adaptation to extreme conditions. Eur. J. Biochem. 202, 715-728 CrossRef PubMed
9 Fujita, J. (1999) Cold shock response in mammalian cells. J. Mol. Microbiol. Biotechnol. 1, 243-255 PubMed
10 Todgham, A.E., Hoaglund, E.A. and Hofmann, G.E. (2007) Is cold the new hot? Elevated ubiquitin-conjugated protein levels in tissues of Antarctic fish as evidence for cold-denaturation of proteins in vivo. J. Comp. Physiol. B 177, 857-866 CrossRef PubMed
11 Hochstrasser, M. (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr. Opin. Cell Biol. 7, 215-223 CrossRef PubMed
12 Lecker, S.H., Goldberg, A.L. and Mitch, W.E. (2006) Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol. 17, 1807-1819 CrossRef PubMed
13 Sorokin, A.V., Kim, E.R. and Ovchinnikov, L.P. (2009) Proteasome system of protein degradation and processing. Biochemistry (Mosc) 74, 1411-1442 CrossRef PubMed
14 Kim, H.M., Yu, Y. and Cheng, Y. (2011) Structure characterization of the 26 S proteasome. Biochim. Biophys. Acta 1809, 67-79 CrossRef PubMed
15 da Fonseca, P.C.A., He, J. and Morris, E.P. (2012) Molecular model of the human 26 S proteasome. Mol. Cell 46, 54-66 CrossRef PubMed
16 Livnat-Levanon, N., Kevei, E., Kleifeld, O., Krutauz, D., Segref, A., Rinaldi, T., Erpapazoglou, Z., Cohen, M., Reis, N., Hoppe, T. and Glickman, M.H. (2014) Reversible 26S proteasome disassembly upon mitochondrial stress. Cell Rep. 7, 1371-1380 CrossRef PubMed
17 Regoli, F., Benedetti, M., Krell, A. and Abele, D. (2012) Oxidative challenges in polar seas. In Oxidative stress in aquatic ecosystems (Abele, D., Vazquez-Medina, J.P. and Zenteno-Savin, T., eds), Blackwell Publishing Ltd.
18 Eastman, J.T. (2004) The nature of the diversity of Antarctic fishes. Polar Biol. 28, 93-107 CrossRef
19 Abele, D. and Puntarulo, S. (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 138, 405-415 CrossRef PubMed
20 Gogliettino, M., Riccio, A., Balestrieri, M., Cocca, E., Facchiano, A., D’Arco, T.M., Tesoro, C., Rossi, M. and Palmieri, G. (2013) A novel class of bifunctional acylpeptide hydrolases: potential role in the antioxidant defense systems of the Antarctic fish Trematomus bernacchii. FEBS J. 281, 401-415 CrossRef PubMed
21 Riccio, A., Gogliettino, M., Palmieri, G., Balestrieri, M., Facchiano, A., Rossi, M., Palumbo, S., Monti, G. and Cocca, E. (2015) A new APEH cluster with antioxidant functions in the antarctic hemoglobinless icefish Chionodraco hamatus. PLoS One 10, e0125594 CrossRef PubMed

22 Benedetti, M., Nigro, M. and Regoli, F. (2010) Characterisation of antioxidant defences in three Antarctic notothenioid species from Terra Nova Bay (Ross Sea). Chem. Ecol. 26, 305-314 CrossRef
23 Ben-Nissan, G. and Sharon, M. (2014) Regulating the 20 S proteasome ubiquitin-independent degradation pathway. Biomolecules 4, 862-884 CrossRef PubMed
24 Höhn, T.J. and Grune, T. (2014) The proteasome and the degradation of oxidized proteins: Part III-redox regulation of the proteasomal system. Redox Biol. 2, 388-394 CrossRef PubMed
25 Davies, K.J.A. (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 8, 301-310 CrossRef
26 Aiken, C.T., Kaake, R.M., Wang, X. and Huang, L. (2011) Oxidative stress-mediated regulation of proteasome complexes. Mol. Cell. Proteomics 10, R110.006924 CrossRef PubMed
27 Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 CrossRef PubMed
28 Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 CrossRef PubMed
29 Holzl, H., Kapelari, B., Kellermann, J., Seemuller, E., Sumegi, M., Udvardy, A., Medalia, O., Sperling, J., Muller, S.A., Engel, A. and Baumeister, W. (2000) The regulatory complex of Drosophila melanogaster 26S proteasomes: Subunit composition and localization of a deubiquitylating enzyme. J. Cell Biol. 150, 119-130 CrossRef PubMed
30 Leggett, D.S., Glickman, M.H. and Finley, D. (2005) Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast. Methods Mol. Biol. 301, 57-70 PubMed
31 Fujino, T., Ishikawa, T., Inoue, M., Beppu, M. and Kikugawa, K. (1998) Characterization of membrane-bound serine protease related to degradation of oxidatively damaged erythrocyte membrane proteins. Biochim. Biophys. Acta 1374, 47-55 CrossRef PubMed
32 Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729 CrossRef PubMed

33 Marabotti, A. and Facchiano, A.M. (2005) Homology modeling studies on human galactose-1-phosphate uridylyltransferase and on its galactosemia-related mutant Q188R provide an explanation of molecular effects of the mutation on homo-and heterodimers. J. Med. Chem. 48, 773-779 CrossRef PubMed
34 Modeller 9.12. Program for comparative structure modelling by satisfaction of spatial restraints. http://salilab.org/modeller/ PubMed
35 Wiederstein, M. and Sippl, M.J. (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acid Res. 35, W407-W410 CrossRef
36 Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283-291 CrossRef
37 McDonald, I.K. and Thornton, J.M. (1994) Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777-793 CrossRef PubMed
38 Paladino, A., Costantini, S., Colonna, G. and Facchiano, A.M. (2008) Molecular modelling of miraculin: structural analyses and functional hypotheses. Biochem. Biophys. Res. Commun. 367, 26-32 CrossRef PubMed
39 Tai, H.C., Besche, H., Goldberg, A.L. and Schuman, E.M. (2010) Characterization of the brain 26 S proteasome and its interacting proteins. Front. Mol. Neurosci. CrossRef
40 Reinheckel, T., Sitte, N., Ullrich, O., Kuckelkorn, U., Davies, K.J. and Grune, T. (1998) Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem. J. 335, 637-642 CrossRef PubMed

41 Bousquet-Dubouch, M.P., Baudelet, E., Guérin, F., Matondo, M., Uttenweiler-Joseph, S., Burlet-Schiltz, O. and Monsarrat, B. (2009) Affinity purification strategy to capture human endogenous proteasome complexes diversity and to identify proteasome-interacting proteins. Mol. Cell. Proteomics 8, 1150-1164 CrossRef PubMed
42 Bajorek, M. and Glickman, M.H. (2004) Keepers at the final gates: regulatory complexes and gating of the proteasome channel. Cell. Mol. Life Sci. 61, 1579-1588 CrossRef PubMed
43 Forster, A., Whitby, F.G. and Hill, C.P. (2003) The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation. EMBO J. 22, 4356-4364 CrossRef PubMed
44 Orlowski, M. and Wilk, S. (2003) Ubiquitin-independent proteolytic functions of the proteasome. Arch. Biochem. Biophys. 415, 1-5 CrossRef PubMed
45 Ugai, S., Tamura, T., Tanahashi, N., Takai, S., Komi, N., Chung, C.H., Tanaka, K. and Ichihara, A. (1993) Purification and characterization of the 26 S proteasome complex catalyzing ATP-dependent breakdown of ubiquitin-ligated proteins from rat liver. J. Biochem. 113, 754-768 PubMed
46 Dutaud, D., Aubry, L., Sentandreu, M.A. and Ouali, A. (2006) Bovine muscle 20S proteasome: I. Simple purification procedure and enzymatic characterization in relation with postmortem conditions. Meat Sci. 74, 327-336 CrossRef PubMed
47 Brunialti, E.A., Gatti-Lafranconi, P. and Lotti, M. (2011) Promiscuity, stability and cold adaptation of a newly isolated acylaminoacyl peptidase. Biochimie 93, 1543-1554 CrossRef PubMed
48 Parravicini, F., Natalello, A., Papaleo, E., De Gioia, L., Doglia, S.M., Lotti, M. and Brocca, S. (2013) Reciprocal influence of protein domains in the cold-adapted acyl aminoacyl peptidase from Sporosarcina psychrophila. PLoS One 8, e56254 CrossRef PubMed
49 Kehrer, J.P., Robertson, J.D. and Smith, C.V. (2010) Free radicals and reactive oxygen species. In Comprehensive Toxicology. 2nd edn (McQueen, C., ed.), Elsevier Ltd, Amsterdam
50 Fujino, T., Kojima, M., Beppu, M., Kikugawa, K., Yasuda, H. and Takahashi, K. (2000) Identification of the cleavage sites of oxidized protein that are susceptible to oxidized protein hydrolase (OPH) in the primary and tertiary structures of the protein. J. Biochem. 127, 1087-1093 CrossRef PubMed
51 Tokumoto, M., Horiguchi, R., Nagahama, Y., Ishikawa, K. and Tokumoto, T. (2000) Two proteins, a goldfish 20 S proteasome subunit and the protein interacting with 26 S proteasome, change in the meiotic cell cycle. Eur. J. Biochem. 267, 97-103 CrossRef PubMed
52 Clark, M.S., Pontarotti, P., Gilles, A., Kelly, A. and Elgar, G. (2000) Identification and characterization of a beta proteasome subunit cluster in the Japanese pufferfish (Fugu rubripes). J. Immunol. 165, 4446-4452 CrossRef PubMed
53 Tsukamoto, K., Miura, F., Fujito, N.T., Yoshizaki, G. and Nonaka, M. (2012) Long-lived dichotomous lineages of the proteasome subunit beta type 8 (PSMB8) gene surviving more than 500 million years as alleles or paralogs. Mol. Biol. Evol. 29, 3071-3079 CrossRef PubMed
54 Sutoh, Y., Kondo, M., Ohta, Y., Ota, T., Tomaru, U., Flajnik, M.F. and Kasahara, M. (2012) Comparative genomic analysis of the proteasome $\beta 5$ t subunit gene: implications for the origin and evolution of thymoproteasomes. Immunogenetics 64, 49-58 CrossRef PubMed
55 Kasthuri, S.R., Umasuthan, N., Whang, I., Kim, E., Park, H.C. and Lee, J. (2013) Genomic structural characterization and transcriptional expression analysis of proteasome activator PA28 α and PA28 β subunits from Oplegnathus fasciatus. Fish Shellfish Immunol. 35, 1224-1234 CrossRef PubMed

56 Kasthuri, S.R., Umasuthan, N., Whang, I., Lim, B.S., Jung, H.B., Oh, M.J., Jung, S.J., Yeo, S.Y., Kim, S.Y. and Lee, J. (2014) Molecular characterization and expressional affirmation of the beta proteasome subunit cluster in rock bream immune defense. Mol. Biol. Rep. 41, 5413-5427 CrossRef PubMed
57 Salmerón, C., Navarro, I., Johnston, I.A., Gutiérrez, J. and Capilla, E. (2015) Characterisation and expression analysis of cathepsins and ubiquitin-proteasome genes in gilthead sea bream (Sparus aurata) skeletal muscle. BMC Res. Notes 8, 149
CrossRef PubMed
58 Rolland, M., Dalsgaard, J., Holm, J., Gómez-Requeni, P. and Skov, P.V. (2015) Dietary methionine level affects growth performance and hepatic gene expression of GH-IGF system and protein turnover regulators in rainbow trout (Oncorhynchus mykiss) fed plant protein-based diets. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 81, 33-41 CrossRef

59 Unno, M., Mizushima, T., Morimoto, Y., Tomisugi, Y., Tanaka, K., Yasuoka, N. and Tsukihara, T. (2002) The structure of the mammalian 20 S proteasome at 2.75 A resolution. Structure 10, 609-618 CrossRef PubMed
60 da Fonseca, P.C. and Morris, E.P. (2008) Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core. J. Biol. Chem. 283, 23305-23314 CrossRef PubMed
61 Huber, E.M., Basler, M., Schwab, R., Heinemeyer, W., Kirk, C.J., Groettrup, M. and Groll, M. (2012) Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell 148, 727-738 CrossRef PubMed
62 Volker, C. and Lupas, A.N. (2002) Molecular evolution of proteasomes. Curr. Top. Microbiol. Immunol. 268, 1-22 PubMed

Table S1: Purification procedure of 26S proteasome isoform from T. bernacchii red blood cells (RBCs)

Purification step	Total activity (U)	Total protein $(\mathbf{m g})$	Specific activity $(\mathbf{U} / \mathbf{m g})$	U/ml blood	Purification fold	Yield $(\%)$
Extract	645120	99.4	6490	586473	1	100
DEAE	303206	18.8	16128	-	2.5	47
Phenyl peak 1	30321	1.4	21658	-	3.3	4.7
Phenyl peak 2	23953	2.9	8260	-	1.3	3.7
Superdex 200 peak 1	758	0.02	37900	-	5.8	0.1

The proteasome activity was measured using LLVY as substrate and expressed assuming $\varepsilon=1 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}$

Table S2: Structural analysis of the ten models obtained for the seven proteasome subunits. Analyses have been performed with PROCHECK, PROSA web and Hbplus. Columns concerning the PROCHECK analysis report, as absolute numbers and percentage, the amino acids falling in the Ramachandran plot regions (most favoured, additional favoured, generously allowed, disallowed). PROSA web results report the Z-score obtained, which give a whole measure of the quality of the model in comparison to the value obtained for the template chain (last line for each table). The Hbplus column reports the number of H -bonds observed for each model. This is not a measure of model quality, but it is reported for a comparison among models and to the template chain.

Subunit alpha 4

Subunit alpha 5

Subunit alpha 7

Subunit beta 1

Subunit beta 2

Subunit beta 3

Subunit beta 5

		$\stackrel{20}{1}$		40				
Drosophila melanogaster＿NP＿652031	MQ－PDFDF	TD			TPVS－T	GTTIMAVEFD	GGVVIGADSR 34	
Caenorhabditis elegans＿NP－498806	MTSFTGITAV	ANATNEMAMF	KQAMKEVAAH	PEWMSSRQIE	RQRWNPYSME	gGstcalsge	NFAIVASDTR 70	
Arabidopsis thaliana＿NP＿191641	－－－－MTKQH	AN			WSPYDNN	GGTCVAIAGS	DYCVIAADTR 34	
Xenopus laevis＿NP＿001080435	MF－SSESI	LNRELNRSM－		－DYHYTGPVE	QRFNPYTFN	GGTVLALAGD	DFALVASDTR 54	
Mus musculus＿NP＿035315	－－ML－STAAY	RDVERELGM－		GPHGSAGPVQ	LRFSPYAFN	GgTVLAIAGE	DFSIVASDTR 55	
Homo sapiens＿NP＿002784	－MLSSTAMY	SAPGRDLGM－		EPHRAAGPLQ	LRFSPYVFN	GGTILAIAGE	DFAIVASDTR 56	
Danio rerio＿NP＿001003889	－－MI－SAQAY	GENGK－－M－		KEYHYTGPVE	HKFSPYAFN	GgTVLAVAGE	DFAIVASDTR	
Oreochromis niloticus＿XP＿003454565	－－ML－SSQHF	GDPGK－－M－		KDYHYTGPVE	HKFSPYAFN	GGTVLAVAGE	DFAIVASDTR 52	
Trematomus bernacchii	－－ML－SSQSY	QDPGK－－M－		QDYHYSGPVE	HRFSPYSFN	GgTVLAVAGE	DFAIVASDTB 52	
Notothenia coriiceps＿XP＿010781254	－ML－SSQSY	QDPGK－－M－		KDYHYSGPVE	HRFSPYSFN	GGTVLAVAGE	DFAIVASDTR 52	
Consensus	x Y	XDPGK－－M－		KDYHYXGPVE	HRFSPYSFN	gGtVLAVAGE	DFAIVASDTR	
Conservation 0\％					$\boxed{\square}$			
$\text { Sequence } \begin{gathered} 4,3 \mathrm{bits} \\ \hline 0.0 \mathrm{obits} \\ 0.0 \end{gathered}$	M_{80}			EMM̂̂́spóve		GGTvLAvAGE		
Drosophila melanogaster＿NP＿652031	TSSG－AYVAN	RVTDKLTRIT	DKVYCCRSGS	AADTQAIADI	VAYSLNYHEN	QTNKDALVFE	AASEFRNYCY 103	
Caenorhabditis elegans＿NP＿498806	MTQNDINILT	BDAEKIQILN	DNIILTTSGF	YGDVLQLKKV	LQSRLHKYRF	DYRSDMSVDL	CAELLSRNLY 140	
Arabidopsis thaliana＿NP＿191641	MSTG－YSILS	BDYSKIHKLA	DRAVLSSSGF	QADVKALQKV	LKSRHLIYQH	QHNKQMSCPA	MAQLLSNTLY 103	
Xenopus laevis＿NP＿001080435	LSEG－YSIHS	RNTPKCYKLT	DKTVIGCTGF	HADCLTLTKI	1EARLKMYKH	SNNKTMTSGA	IAAMLSTILY 123	
Mus musculus＿NP＿035315	LSEG－FSIHT	RDSPKCYKLT	DKTVIGCSGF	HGDCLTLTKI	IEARLKMYKH	SNNKAMTTGA	IAAMLSTILY 124	
Homo sapiens＿NP＿002784	LSEG－FSIHT	BDSPKCYKLT	DKTVIGCSGF	HGDCLTLTKI	IEARLKMYKH	SNNKAMTTGA	IAAMLSTILY 125	
Danio rerio＿NP＿－001003889	LSEG－YSIHS	RDSPKCYKLT	DTTVLGCSGF	HGDCLTLTKI	1EARLKMYKH	SNNKSMTSGA	IAAMLSTILY 121	
Oreochromis niloticus＿XP＿003454565	LSEG－YSIHS	BDSPKCYKLT	DTTVLGCSGF	HGDCLTLTKI	IDABLKMYKH	SNNKTMTSGA	IAAMLSTILY 121	
Trematomus bernacchii	LSEG－YSIHS	RDSPKCYKLT	DTTVIGCSGF	HGDCLTLTKI	IDARLKMYKH	SNNKTMTSNA	IAAMLSTILY 121	
Notothenia coriiceps＿XP＿010781254	LSEG－YSIHS	RDSPKCYKLT	DTTVIGCSGF	HGDCLTLTKI	IDABLKMYKH	SNNKTMTSNA	IAAMLSTILY 121	
Consensus	LSEG－YSIHS	RDSPKCYKLT	DXTVIGCSGF	HGDCLTLTKI	IEARLKMYKH	SNNKTMTSGA	IAAMLSTILY	
Conservation			\square			$\square \square \square \square \square$		
Sequence logo 0，0bits		RDOSPKCYKG ©		HAJC"F			$\widehat{T} A \overline{\text { AxM }}[\hat{S}$	
Drosophila melanogaster＿NP＿652031	SYR－ESLLAG	11VAGWDEQR	GGQVYSIPLG	GMLTRESCTI	GGSGSSFIYG		VREHYR 159	
Caenorhabditis elegans＿NP＿498806	YRRFFPYYTG	AILAGIDEHG	KGAVFSYDPI	GCIERLGYSA	SGAAEPMIIP	FLDCQIGHVT	LSEGYER 207	
Arabidopsis thaliana＿NP＿191641	FKRFFPYYAF	NVLGGLDEEG	KGCVFTYDAV	GSYERVGYGA	QGSGSTLIMP	FLDNQLKSPS	PLLLPKQDSN 173	
Xenopus laevis＿NP＿001080435	SRRFFPYYVY	N IIGGLDEEG	KGAVYSFDPV	GSYQRDAYKA	GGSASAMLQP	LLDNQIGYKN	－－－MQNVEQ 189	
Mus musculus＿NP＿035315	SRRFFPYYVY	NIIGGLDEEG	KGAVYSFDPV	GSYQRDSFKA	GGSASAMLQP	LLDNQVGFKN	－MQN VEH 190	
Homo sapiens＿NP＿002784	SRRFFPYYVY	NIIGGLDEEG	KGAVYSFDPV	GSYQRDSFKA	GGSASAMLQP	LLDNQVGFKN	MQN VEH 191	
Danio rerio＿NP＿－001003889	GRRFFPYYVY	NIIGGLDEEG	BGAVYSFDPV	GSYQRDTYKA	GGSASAMLQP	LLDNQIGFKN	MENVEH 187	
Oreochromis niloticus＿XP＿003454565	SRRFFPYYVY	NIIGGLDEEG	KGAVYSFDPV	GSYQRDTYKA	GGSASAMLQP	LLDNQIGFKN	MEGVEH 187	
Trematomus bernacchii	GRRFFPYYYY	N IIGGLDEHG	KGAVYSFDPV	GSYQRDTYKA	GGSASAMLQP	LLDNQIGFKN	MEGVQH 187	
Notothenia coriiceps＿XP＿010781254	GRRFFPYYVY	NIIGGLDEHG	KGAVYSFDPV	GSYQRDTYKA	GGSASAMLQP	LLDNQIGFKN	MEGVQH 187	
Consensus	SRRFFPYYVY	NIIGGLDEEG	KGAVYSFDPV	GS YQRDTYKA	GGSASAMLQP	LLDNQIGFKN	MEXV	
$\begin{aligned} & \text { ation } \\ & \text { ation } \end{aligned}$				$\square \square \\| \square \square]^{\square}$				
		$\hat{N} Y \check{T G U G U} G E \mathrm{E}$		G	GUSASSAML QT	ELUNQFḠFKN		
Drosophila melanogaster＿NP＿652031	PNMALEDCVT	FVKKAVQHAI	YHDGSSGGVV	RIGII－TKDG	IERRIFYNTE	SGASAVSSTP	SFISSE 224	
Caenorhabditis elegans＿NP＿498806	PELTLDRAIS	LMKDSFRGAA	EREISTGDKI	HLV IAEAGKP	VVVK	FLP	LRED 258	
Arabidopsis thaliana＿NP＿191641	TPLSEAEAVD	LVKTVFASAT	ERDIYTGDKL	EIMIL－KADG	1KTE	LMD	RKD 223	
Xenopus laevis＿NP＿001080435	LPLTLEKALK	LIKDVFISAA	ERDVYTGDAL	HISIV－TKDG	VREE	SIS	LRKD 239	
Mus musculus＿NP＿035315	VPLTLDRAMR	LVKDVFISAA	ERDVYTGDAL	BICIV－TKEG	1RE	TVP	LRKD 240	
Homo sapiens＿NP＿002784	VPLSLDRAMR	LVKDVFISAA	ERDVYTGDAL	RICIV－TKEG	1 R	TVS	LRKD 241	
Danio rerio＿NP＿－001003889	VPLTQEKAVQ	LVKDVFISAA	ERDVYTGDAL	KVCIV－SKEG	IKE	IVP	LRKD 237	
Oreochromis niloticus＿XP＿003454565	VPLTKDKAVQ	LVKDVFISAA	ERDVYTGDAL	RICVI－TKEG	INE	TIP	RKD 237	
Trematomus bernacchii	VPLTQERAVQ	LVKDVFISAA	ERDVYTGDAL	RLCII－TKEG	INEQ	TVP	LRKD 237	
Notothenia coriiceps＿XP＿010781254	IPLSQERAVQ	LVKDVFISAA	ERDVYTGDAL	RLCII－TKEG	INE	TVP	LRKD 237	
Consensus	VPLTLERAVQ	LVKDVFISAA	ERDVYTGDAL	RICIX－TKEG	XEE	－TVP	－LRKD	
Conservation	$\square \square \square \square \square \square \square \square$							
Sequence logo 0，0bits			ERDVYTGAL		Y领旨。	$=$	'RED	

		1	2	3	4	5	6	7	8	9	10
Drosophila melanogaster_NP_652031	1		15,02	21,25	21,26	21,57	21,09	19,84	21,83	21,83	21,83
Caenorhabditis elegans_NP_498806	2	41		35,25	36,82	37,98	36,43	37,21	37,21	38,76	38,37
Arabidopsis thaliana_NP_191641	3	51	92		42,80	43,03	43,27	44,40	44,40	43,15	43,57
Xenopus laevis_NP_001080435	4	54	95	104		78,33	77,18	79,17	80,42	78,75	78,33
Mus musculus_NP_035315	5	55	98	105	188		93,36	81,67	82,50	81,67	80,83
Homo sapiens_NP_002784	6	54	94	106	186	225		79,67	80,91	80,50	80,50
Danio rerio_NP_001003889	7	50	96	107	190	196	192		90,72	88,61	88,19
Oreochromis niloticus_XP_003454565	8	55	96	107	193	198	195	215		91,98	91,56
Trematomus bernacchii	9	55	100	104	189	196	194	210	218		98,73
Notothenia coriceps_XP_010781254	10	55	99	105	188	194	194	209	217	234	

Figure S1. MUSCLE alignment of proteasome subunit beta 1 amino acid sequences, with species names and accession numbers. The consensus sequence, the conservation histogram and the sequence logo are shown at the bottom of the alignment. The Table in the last page contains the pairwise comparison of the sequences, with the number of identities (below the diagonal) and percent identity (above the diagonal).

Caenorhabditis elegans_NP_493271	H 277
Arabidopsis thaliana_NP_193216	- 199
Drosophila melanogaster_NP_609804	- 201
Homo sapiens_NP_002785	201
Mus musculus_NP_036100	- 201
Xenopus laevis_NP_001084761	- 199
Trematomus bernacchii	- 199
Notothenia coriiceps_XP_010789577	- 199
Danio rerio_NP_001002609	- 199
Oreochromis niloticus_XP_003447226	- 199
Consensus 100\%	$-$
Conservation 0% 4,3bits	
Sequence logo	

		1	2	3	4	5	6	7	8	9	10
Caenorhabditis elegans_NP_493271	1		14,23	14,95	14,95	14,59	16,73	19,22	19,93	18,86	19,22
Arabidopsis thaliana_NP_193216	2	40		41,09	43,56	43,07	47,00	44,50	45,00	45,50	45,00
Drosophila melanogaster_NP_609804	3	42	83		49,75	50,25	55,72	52,24	53,73	53,23	51,74
Homo sapiens_NP_002785	4	42	88	100		96,52	81,59	77,11	77,11	81,09	78,61
Mus musculus_NP_036100	5	41	87	101	194		81,59	77,11	76,62	81,59	78,61
Xenopus laevis_NP_001084761	6	47	94	112	164	164		81,41	82,41	85,43	82,91
Trematomus bernacchii	7	54	89	105	155	155	162		97,49	90,45	89,45
Notothenia coriceps_XP_010789577	8	56	90	108	155	154	164	194		90,45	90,45
Danio rerio_NP_001002609	9	53	91	107	163	164	170	180	180		92,96
Oreochromis niloticus_XP_003447226	10	54	90	104	158	158	165	178	180	185	

Figure S2. MUSCLE alignment of proteasome subunit beta 2 amino acid sequences, with species names and accession numbers. The consensus sequence, the conservation histogram and the sequence logo are shown at the bottom of the alignment. The Table in the last page contains the pairwise comparison of the sequences, with the number of identities (below the diagonal) and percent identity (above the diagonal).

						${ }_{1}^{60}$		
Caenorhabditis elegans_NP_494913	MSIMSYTGGT	VVamagDec ${ }^{\text {d }}$	CIASDLRIGE	QMTTIATDQK	KVHKVTDKVY	VGLAGFQSDA	RTVLEKIM	
Arabidopsis thaliana_NP_565156	MSIFEYNGSA	VVAMVGKNCF	AIASDRRLGV	QLQTIATDFQ	RISKIHDHLF	IGLSGLATDV	QTLYQRLVFR 70	
Drosophila melanogaster_NP_649858	MSILAYNGGC	VVAMRGKDCV	AIATDHRFGI	QAQTISTDFK	KVFHIGPRMF	LGLTGLQTDI	LTVRDRLMFR 70	
Homo sapiens_NP_002786	MSIMS YNGGA	VmAMKGKNCV	A 1 AADRRFG1	QAQMVTTDFQ	KIFPMGDRLY	IGLAGLATDV	QTVAQRLKF	
Mus musculus _NP_036101	MSIMS YNGGA	VmAMKGKNCV	A 1 AADRRFGI	QAQMVTTDFQ	KIFPMGDRLY	IGLAGLATDV	QTVAQRLK	
Xenopus laevis_NP_001088741	MSIMSYNGGA	IMAMKGKDCV	A AAADRRFG \bar{V}	QAQMVTTDFQ	KIFPMGERLY	IGLAGLATDV	QTVAQRLK	
Danio rerio_NP_001123295	MSIMS YNGGA	VMAMRGKECV	AIASDRRFGI	QAQLVTTDFQ	KIFPMGERLY	IGLAGLATDV	QTVSQRLK	
Trematomus bernacchii	MSIMS YNGGA	VmAmRGKNCV	A 1 AADRRFG1	QAQMVTTDFQ	KIFPMGDKLY	IGLAGLATDV	QTVSQRLK	
Oreochromis niloticus_XP_003448021	MSIIMSYNGGA	VMAMRGKNCV	AIAADRRFGI	QAQMVTTDFQ	KIFPMGDRLY	IGLAGLATDV	QTVAQRLKFR 70	
Consensus	MSIMSYNGGA	VMAMRGKNCV	AIAADRRFGI	QAQMVTTDFQ	KIFPMGDRLY	IGLAGLATDV	QTVAQRLKFR	
Conservation			$\square]$	- [\|]			$\square]$	
$\text { Sequence } \underset{\substack{4,3 \mathrm{gifits} \\ \text { logobits }}}{\substack{\text { and }}}$		MAM KRKMEV	$\tilde{A} \mid A \AA A \mathbb{R} R \mathcal{F G}_{100}$		KYGFMGGERLE	$T G A G[A \subset D \hat{V}$	QIVARTLEKFR	
Caenorhabditis elegans_NP_494913	KNLYELRENR	NIKPQVLSEM	ISNLAYQHRF	GSYFTEPLVA	GLD-DTNKPY	ICCMDTIGCV	SAPRDFVAVG 139	
Arabidops is thaliana_NP_565156	HKLYQLREER	DMKPETFASL	VSAILYEKRF	GPFLCQPVIA	GLG-DDNKPF	ICTMDSIGAK	ELAKDFVVSG 139	
Drosophila melanogaster_NP_649858	KNLYETRENR	EMCPKPFSAM	MSSFLYEHRF	GPYFIEPVVA	GLDPKTMEPF	ICNMDLIGCP	NAPDDFVVAG 140	
Homo sapiens_NP_002786	LNLYELKEGR	QIKPYTLMSM	VANLLYEKRF	GPYYTEPVIA	GLDPKTFKPF	ICSLDLIGCP	MVTDDFVVSG 140	
Mus musculus _NP_036101	LNLYELKEGR	QIKPYTLMSM	VANLLYEKR	GPYYTEPVIA	GLDPKTFKPF	ICSLDLIGCP	MVTDDFVVSG 140	
Xenopus laevis_NP_001088741	LNLYELKEGR	QIKPKTFMSM	VANLLYERRF	GPYYIEPVIA	GLDPKTFQPF	ICSLDLIGCP	METEDFVVSG 140	
Danio rerio _NP_001123295	LNLYELKEGR	QIKPRTFMSM	VSNLLYERRF	GPYYIEPVIA	GLDPKTFEPF	ICSLDLIGCP	MVTEDFVVSG 140	
Trematomus bernacchii	LNLYELKEGR	QIKPKTFMSM	VSNLLYEKRF	GPYYIEPVIA	GIDPKTSEPF	ICSLDLIGCP	MVTEDFVVSG 140	
Oreochromis niloticus_XP_003448021	LNLYELKEGB	QIKPKTFMSM	VSNLLYERR	GPYYIEPVIA	GLDPKTFEPF	ICSLDLIGCP	MVTDDFVVSG 140	
Consensus	LNLYELKEGR	QIKPKTFMSM	VSNLLYEKRF	GPYYIEPVIA	GLDPKTFXPF	ICSLDLIGCP	MVTDDFVVSG	
onservation		[1]	\square	-	[]	[]		
Sequence logo	RNLVELREGR	TKD	V'A SATLVEERF	$G D V Y T E P V A_{180}$	GI'JPRTMRF			
Caenorhabditis elegans_NP_494913	TGQEYLLGVc	ENFWRENMKP	DELFEATAQS	ILSCLERDAA	SGWGAVVYTI	TKDKVNVSTI	KARMD 204	
Arabidops is thaliana_NP_565156	TASESLYGAC	EAMFKPDMEA	EELFETISQA	LLSSVDRDCL	SGWGGHVYVV	TPKEVKERIL	KGRMD 204	
Drosophila melanogaster_NP_649858	TCAEQLYGMC	ETLWKPDLEP	DQLFEVIAQS	IVNAFDRDAM	SGWGATVYII	EKDKITERTL	KTRMD 205	
Homo sapiens_NP_002786	TCAEQMYGMC	ESLWEPNMDP	DHLFETISQA	MLNAVDRDAV	SGMGVIVHII	EKDKITTRTL	KARMD 205	
Mus musculus _NP_036101	TCSEQMYGMC	ESLWEPNMDP	EHLFETISQA	mLnavdrdav	SGMGVIVHVI	EKDKITTRTL	KARMD 205	
Xenopus laevis_NP_001088741	TCSEQMYGMC	ESLWEPDMEP	EDLFETISQA	MLNAVDRDAV	SGMGVVVHVI	EKDKITTRTL	KARMD 205	
Danio rerio_NP_001123295	TCSEQMYGMC	ESLWEPDMKP	EDLFETISQA	MLNAVDRDAV	SGMG VVVHVI	EKDKITTRTL	KARMD 205	
Trematomus bernacchii	TCSEQMYGMC	ESLWEPDMEP	EDLFETISQA	MLNAVDRDAV	SGMGVVVHVI	EKDKITTRTL	KARMD 205	
Oreochromis niloticus_XP_003448021	TCSEQMYGMC	ESLWEPDMEP	DDLFETISQA	MLNAVDRDAV	SGMGVVVHVV	EKDKITTRTL	KARMD 205	
Consensus	TCSEQMYGMC	ESLWEPDMEP	EDLFETISQA	MLNAVDRDAV	SGMGVVVHVI	EKDKITTRTL	KARMD	
Conservation 0\%			,					
Sequence logoo.obits	CSEOMYGM	STKEEDMED	${ }_{E B}\|F F Y\| \hat{S} Q \hat{A}$	MLNAFORUA	$\operatorname{SGW}\left(M_{0} \bar{V}^{\circ} \\| H^{T} Y\right.$	EKDKY早洰RJL	$\overline{K A R M D}$	

		1	2	3	4	5	6	7	8	9
Caenorhabditis elegans_NP_494913	1		44,61	55,12	51,22	50,73	48,29	50,73	49,76	49,76
Arabidopsis thaliana_NP_565156	2	91		51,22	56,10	57,56	57,07	57,56	58,54	58,54
Drosophila melanogaster_NP_649858	3	113	105		63,90	62,44	63,90	64,88	64,88	66,34
Homo sapiens_NP_002786	4	105	115	131		98,54	91,22	90,24	91,22	93,17
Mus musculus _NP_036101	5	104	118	128	202		92,68	91,71	92,68	93,66
Xenopus laevis_NP_001088741	6	99	117	131	187	190		94,15	93,66	94,63
Danio rerio _NP_001123295	7	104	118	133	185	188	193		95,12	95,12
Trematomus bernacchii	8	102	120	133	187	190	192	195		96,10
Oreochromis niloticus_XP_003448021	9	102	120	136	191	192	194	195	197	

Figure S3. MUSCLE alignment of proteasome subunit beta 3 amino acid sequences, with species names and accession numbers. The consensus sequence, the conservation histogram and the sequence logo are shown at the bottom of the alignment. The Table in the last page contains the pairwise comparison of the sequences, with the number of identities (below the diagonal) and percent identity (above the diagonal).

		$\stackrel{20}{1}$		40		${ }_{1}^{60}$				
Caenorhabditis elegans_NP_493558	- MWGETFDDF	ENDEGEMAMA	KQNLIA -EPA	RAD-FTFA -	KLPLGI	QPVDFMKT - H	FAETAGKSMQ 60			
Drosophila melanogaster_NP_652014	MALAEIC-KI	SNAPYMRPNA	WSSADVEEEQ	KGLMCNLANP	YTLAAPPFEN	PLHNLNQIQA	NGDKTGVKIN 69			
Arabidopsis thaliana_NP_172765	MKL - . - - DT	SGFETSMPMI	\cdots-.-GFGSS	SDM-LD --	ELSSVPSFDL	P--RTKEFDG	FQKKAKDMLK 53			
Xenopus laevis_NP_001084323	MALLTMCGPT	QSHDWRMPL -	YGGTIS	PTIPFRVCNT	ELAVPPGYQP	A - -KFLQH-L	EEGVDDVKIE 62			
Mus musculus_NP_035316	MALASVL	- QRPMPVN	QHGFFGLGGG	ADL-LDLGPG	SPGDGLSLAA		WGVPEEPRIE 55			
Homo sapiens_NP_002788	MALASVL	-- ERPLPVN	QRGFFGLGGR	ADL-LDLGPG	SLSDGLSLAA	P - G	WGVPEEPGIE 55			
Danio rerio_NP_571226	MALSSIL-RN	ESADFSDPID	RSFAHGCGLN	QTN - LGFG - A	ALGDSPNFAV	K--T--L-G	EDDEPERKIE 61			
Oreochromis niloticus_XP_003457456	MALASVL-SG	DSADFSFDSS	QSFAFGGGPG	PSG-LGLE-G	TPGDSLSFSV	K--NPLCV-G	DDDGVERKIE 64			
Trematomus bernacchii	MALASVL-SS	DCAKFSFDNC	EPDSFGCAPG	QSG-LGFD-A	TPGDGLSFSV	R--NPLCA - V	EEDGVERKIE 64			
Notothenia coriiceps_XP_010781265	MALASVL-SS	DCAKFSFDNC	EPDSFGCAPG	QSG-LGFD-A	TPGDGLSFSV	R--NPLCA - V	DEDGVERKIE 64			
Consensus 100\%	MALASVL-SX	DSAXFSMPNX	QSXAFGCGPG	QXX-LGXG-X	TXGDGLSFXV	P--NPLCA-G	EXDGVERKIE			
Conservation \%	$\llbracket \square \square \square \square \square \square \square \square$		$\square \square \square \square \square \square \square \square \square \square \square$			-	$\square \square \square$			
Sequence logo 0,0bits										
							1			
Caenorhabditis elegans_NP_493558	FRKGTTTLAF	VYEPATPADK	GGIIVAVDSR	ASSGEYISSK	SVMK ILDIGD	RMVATMAGGA	ADCQFWTRIV 130			
Drosophila melanogaster_NP_652014	FDHGTTTLGF	KF- . . - K	GGVLLAVDSR	ATGGSYIGSQ	SMKK IVEINQ	FMLGTLAGGA	ADCVYWDRVL 132			
Arabidopsis thaliana_NP_172765	HAKGTTTLAF		GGVMVAADSR	ASMGGY\|SSQ	SVKKIIEINP	YMLGTMAGGA	ADCQFWHRNL 116			
Xenopus laevis_NP_001084323	PWHGTTTLAF	KF-.... Q	HGVIVAVDSR	ASAGSYISTI	KFNKVIEINP	YLLGTMSGSA	ADCQYWERLL 125			
Mus musculus_NP_035316	MLHGTTTLAF	KF	HGVIVAADSR	ATAGAYIASQ	TVKKVIEINP	YLLGTMAGGA	ADCSFWERLL 118			
Homo sapiens_NP_002788	MLHGTTTLAF	KF-....	HGVIVAADSR	ATAGAYIASQ	TVKKVIEINP	YLLGTMAGGA	ADCSFWERLL 118			
Danio rerio_NP_571226	FLHGTTTLAF	KF...... Q	HGVIVAVDSR	ATAGAYIASQ	TVKKVIEINP	YLLGTMAGGA	ADCSFWERLL 124			
Oreochromis niloticus_XP_003457456	FLHGTTTLAF	KF-.... Q	HGVIVAVDSR	ATAGSYIASQ	TVKKVIEINP	YLLGTMAGGA	ADCSFWERLL 127			
Trematomus bernacchii	FLHGTTTLAF	KFF..... Q	HGVIVAVDSR	ATAGAYIASQ	TVKKVIEINP	YLLGTMAGGA	ADCSFWERLL 127			
Notothenia coriiceps_XP_010781265	FLHGTTTLAF	KF $\cdots \cdots$ - ${ }^{\text {C }}$	HGVIVAVDSR	ATAGAYIASQ	TVKKVIEINP	YLLGTMAGGA	ADCSFWERLL 127			
Consensus	FLHGTTTLAF	KF-----Q	HGV I VAVDSR	ATAGAYIASQ	TVKKVIEINP	YLLGTMAGGA	ADCS FWERLL			
Conservation		\square			$\square \square \\| \square \square \square \mid \square$	$\square \square \square \square \square$	$\triangle \square \square^{\square}\\| \\|^{\square}$			
Sequence logo 0,0bits	FLHGTTUF		GGI'TVADDSR		$5 \bar{T} V K V I E / N$	YLGGTMĀGCA	ADČSFNEREL			

Caenorhabditis elegans_NP_493558	AKYCTLYELR	EKTSITVSAA	SKYFANTLYG	YRGQGLSVGS	MVAGYDKKGP	Q1FKVDSEGD	RCQLKVCSVG 200	
Drosophila melanogaster_NP_652014	SKECRLHELR	NKERISVAAA	SKIMANIAHE	YKGMGLSMGM	MLAGYDKRGP	GLYYVDSEGS	RTPGNLFSVG 202	
Arabidopsis thaliana_NP_172765	GIKCRLHELA	NKRRISVSGA	SKLLANMLYS	YRGMGLSVGT	M I AGWDETGP	GLYYVDNEGG	RLKGDRFSVG 186	
Xenopus laevis_NP_001084323	AKECRLYQLR	NNSRISVSAA	SKLMCNMMLQ	YRGTGLSVGS	MICGWDKKGP	GLYYVDDNGT	RLCGDIFSTG 195	
Mus musculus_NP_035316	ARQCRIYELR	NKERISVAAA	SKLLANMVYQ	YKGMGLSMGT	MICGWDKRGP	GLYYVDSEGN	RISGTAFSVG 188	
Homo sapiens_NP_002788	ARQCR I YELR	NKERISVAAA	SKLLANMVYQ	YKGMGLSMGT	MICGWDKRGP	GLYYVDSEGN	R ISGATFSVG 188	
Danio rerio_NP_571226	ARQCRIYELR	NKERISVAAA	SKLLANMVYQ	YKGMGLSMGT	MVCGWDKRGP	GLYYVDSEGN	RVCGGLFAVG 194	
Oreochromis niloticus_XP_003457456	ARQCRIYELR	NKERISVAAA	SKLLANMVYQ	YKGMGLSMGT	MVCGWDKRGP	GLYYVDSEGN	RVCGDLFAVG 197	
Trematomus bernacchii	ARQCR I YELR	NKERISVAAA	SKLLANMVYQ	YKGMGLSMG T	MVCGWDKRGP	GLYYVDSEGN	RVCGDLFAVG 197	
Notothenia coriiceps_XP_010781265	ARQCRIYELR	NKERISVAAA	SKLLANMVYQ	YKGMGLSMGT	MVCGWDKRGP	GLYYVDSEGN	RVCGDLFAVG 197	
Consensus	ARQCR I YELR	NKERISVAAA	SKLLANMVYQ	YKGMGLSMGT	MVCGWDKRGP	GL YYVDSEGN	RVCGDLFSVG	
Conservation	$\square \square \\| \square \square \square_{\square}^{\square}$	-	$\square \square \square \square \square \square \square$					
Sequence logo 0,Obits		$\overline{N K} \bar{E} \bar{R} \mid \bar{S} V A \bar{A} A$		$\operatorname{VGGMGLSMOT}$	MVCGWNKNRGO	$G L Y V D R E G E$		

Caenorhabditis elegans_NP_493558		- ADELGRDI	TYNPVE 284
Drosophila melanogaster_NP_652014	- QE	QLKQQAAK -	- 282
Arabidopsis thaliana_NP_172765	YPVAPATAEQ	VMEEATAE	274
Xenopus laevis_NP_001084323		- - TEEKNM -	271
Mus musculus_NP_035316		- - SSVSVP	264
Homo sapiens_NP_002788		- - SGSTP -	263
Danio rerio_NP_571226		- - QSEKA -	269
Oreochromis niloticus_XP_003457456		- -KDQA	271
Trematomus bernacchii	-------	- KSQA -	271
Notothenia coriiceps_XP_010781265		KSQA	271
Consensus 100\%	- -	- - KSQAA -	
Conservation $\begin{array}{r} 0 \% \\ \text { 4,3bits } \end{array}$		$\checkmark \square \square \square \square \square \square \square \square$	
Sequence logo			

		1	2	3	4	5	6	7	8	9	10
Caenorhabditis elegans_NP_493558	1		37,25	38,61	35,49	35,27	34,93	36,43	36,43	36,43	36,43
Drosophila melanogaster_NP_652014	2	111		47,59	46,29	49,65	49,65	51,42	53,55	52,13	52,13
Arabidopsis thaliana_NP_172765	3	117	138		45,96	50,87	51,92	49,30	50,35	49,30	49,30
Xenopus laevis_NP_001084323	4	104	131	131		52,90	52,54	55,43	55,80	53,62	53,26
Mus musculus_NP_035316	5	103	140	146	146		92,80	69,74	71,17	70,44	70,44
Homo sapiens_NP_002788	6	102	140	149	145	245		69,63	70,33	68,86	68,86
Danio rerio_NP_571226	7	106	145	141	153	189	188		80,51	80,88	80,51
Oreochromis niloticus_XP_003457456	8	106	151	144	154	195	192	219		88,93	89,30
Trematomus bernacchii	9	106	147	141	148	193	188	220	241		99,63
Notothenia coriceps_XP_010781265	10	106	147	141	147	193	188	219	242	270	

Figure S4. MUSCLE alignment of proteasome subunit beta 5 amino acid sequences, with species names and accession numbers. The consensus sequence, the conservation histogram and the sequence logo are shown at the bottom of the alignment. The Table in the last page contains the pairwise comparison of the sequences, with the number of identities (below the diagonal) and percent identity (above the diagonal).

		1	2	3	4	5	6	7	8	9	10
Drosophila melanogaster_NP_651843	1		44,88	50,78	50,76	51,89	52,27	52,65	52,65	52,27	51,89
Arabidopsis thaliana_NP_188850	2	114		55,34	56,49	56,11	56,11	55,73	55,73	56,11	56,49
Caenorhabditis elegans_NP_491520	3	130	140		62,84	63,22	63,60	62,84	63,22	62,84	62,45
Xenopus laevis_NP_001089811	4	134	148	164		96,55	96,93	93,87	93,49	95,40	95,40
Mus musculus_NP_036096	5	137	147	165	252		98,85	93,87	93,49	95,79	95,79
Homo sapiens_NP_002780	6	138	147	166	253	258		93,10	92,72	95,79	96,17
Notothenia coriiceps_XP_010770288	7	139	146	164	245	245	243		99,62	96,93	95,79
Trematomus bernacchii	8	139	146	165	244	244	242	260		96,55	95,40
Oreochromis niloticus_XP_003450834	9	138	147	164	249	250	250	253	252		98,85
Danio rerio_NP_999862	10	137	148	163	249	250	251	250	249	258	

Figure S5. MUSCLE alignment of proteasome subunit alpha 4 amino acid sequences, with species names and accession numbers. The consensus sequence, the conservation histogram and the sequence logo are shown at the bottom of the alignment. The Table in the last page contains the pairwise comparison of the sequences, with the number of identities (below the diagonal) and percent identity (above the diagonal).

Caenorhabditis elegans_NP_492765	MFLTRSEYDR	GVNTFSPEGR	LFQVEYAIEA	VKLgStsIgl	KTSEGVLLAA	STSKLMV	NDA		
Arabidops is thaliana_NP_188046	MFLTRTEYDR	GVNTFSPEGR	LFQVEYAIEA	IKLGStalgV	KTKEGVVLAV	EKRITSPLLE	PSSVEKIMEI 70		
Drosophila melanogaster_NP_-725669	MFLTRSEYDR	GVNTFSPEGR	LFQVEYAIEA	IKLGStAIGI	CTPEGVVLAV	EKRITSPLMV	PSTVEKIVEV 70		
Mus musculus_NP_036097	MFLTRSEYDR	GVNTFSPEGR	LFQVEYAIEA	IKLGStAIGI	QTSEGVCLAV	EKRITSPLME	PSSIEKIVEI 70		
Homo sapiens_NP_002781	MFLTRSEYDR	GVNTFSPEGR	LFQVEYAIEA	IKLASTAIGI	QTSEGVCLAV	EKRITSPLME	PSSIEKIVEI		
Xenopus laevis_BADP2871	MFLTRSEYDR	GVNTFSPEGB	LFQVEYAIEA	IKLGStAIGI	QTAEGVCLAV	EKRITSPLME	PSSIEKIVEI		
Trematomus bernacchii	MFLTRSEYDR	GVNTFSPEGR	LFQVEYAIEA	IKLGStAIGI	QTSEGVCLAV	EKRITSPLME	PNSIEKIVEI 70		
Notothenia coriiceps_XP_010766620	MFLTRSEYDR	GVNTFSPEGR	LFQVEYAIEA	IKLGStAIGI	QTSEGVCLAV	EKRITSPLME	PNSIEKIVEI 70		
Danio rerio_NP_991271	MFLTRSEYDR	GVNTFSPEGR	LFQVEYAIEA	IKLGStAIGI	QTSEGVCLAV	EKRITSPLME	PSSIEKIVEI 70		
Oreochromis niloticus_XP_003441568	MFLTRSEYDR	GVNTFSPEGB	LFQVEYAIEA	IKLGSTAIGI	QTSEGVCLAV	EKRITSPLME	PNSIEKIVEI 70		
Consensus	MFLTRSEYDR		LFQVEYAIEA		QTSEGVCLAV	EKRITSPLME	PSSIEKIVEI		
Conservation									
Sequence $\underset{\substack{4.3 \text { ghis } \\ \text { o.bobits }}}{\substack{0 \% \\ \hline}}$		$G J N T F D E C R$	FQNEVA\|EA	$\|K\| \hat{G} S T \bar{A}\|G\|$	QTEEGVELA	KRTTSDGM	PISSYEX\|VEF		
							140 1		
Caenorhabditis elegans_NP_492765 Arabidopsis thaliana NP 188046	DQHIGVTFAG	LIADSRTLVE	RAQIEAQNFW	FTYNRKIRVE	DVTQSVANLA	LQFGDDDVKA	SMSRPFG 137		
	DDHIGCAMSG	LIADARTLVE	HARVETQNHR	FSYGEPMTVE	StTQALCDLA	LRFGEGEEE-	SMSRPFG 136		
Arabidopsis thaliana_NP_188046 Drosophila melanogaster_NP_725669	DKHIGCATSG	LMADARTLIE	RARVECQNHW	FVYNERMSIE	SCAQAVSTLA	1QFGDSGDSD	GAAAMSRPFG 140		
Drosophila melanogaster_NP_725669 Mus musculus_NP_036097	DAHIGCAMSG	LIADAKTLID	KARVETQNHW	FTYNETMTVE	SVTQAVSNLA	LQFGEEDADP	G - AMSRPFG 138		
Homo sapiens_NP_002781	DAHIGCAMSG	LIADAKTLID	KARVETQNHW	FTYNETMTVE	SVTQAVSNLA	LQFGEEDADP	G- - AMSRPFG 138		
Xenopus laevis_BĀD42871	DAHIGCAMSG	LIADAKTLID	KARVETQNHW	FTYNETMTVE	SVTQAVSNLA	LQFGEEDADP	G- AMSRPFG 138		
Trematomus bernacchii	DTHIGCAMSG	LIADAKTLID	KARVETQNHW	FTYNETMTVE	SVTQAVSNLA	LQFGEEDADP	G- AMSRPFG 138		
	DTHIGCAMSG	LIADAKTLID	KARVETQNHW	FTYNETMTVE	SVTQAVSNLA	LQFGEEDADP	G - AMSRPFG 138		
Danio rerio_NP_991271Oreochromis niloticus_XP_003441568	DSHIGCAMSG	LIADAKTLID	KARVETQNHW	FTYNETMTVE	SVTQAVSNLA	LQFGEEDADP	G - AMSRPFG 138		
	DSHIGCAMSG	LIADAKTLID	KARVETQNHW	FTYNETMTVE	SVTQAVSNLA	LQFGEEDADP	G - AMSRPFG		
Consensus D	DAHIGCAMSG LIADAKTLID		KARVETQNHW	ftynetmive	SVTQAVSNLA	LQFGEEDADP G--AMSRPFG			
Conservation ${ }^{\text {100\% }}$									
$\text { Sequence } \begin{gathered} 4,3 \mathrm{sbits} \\ 0,0 \mathrm{bbits} \\ \hline \end{gathered}$	$D_{\underline{2}}^{n} \\| G C A \bar{M} \hat{S} G$	TADARTLYE	KARVE TQNTHIN				G A AMSRDFG		
Caenorhabditis elegans_NP_492765Arabidopsis thaliana NP 188046	VAMLFAGVDQ	EGAKLFHLDP	SGTFIDCKAK	SIGAASDGAE	QNLKEQYHDA	LTIKEGLKMA	LAILKQVMEE 207		
	VSLLIAGHDE	NGPSLYYTDP	SGTFWQCNAK	AIGSGSEGAD	SSLQEQFNKD	1TLQEAETIA	VSILKQVMEE 206		
	VAILFAGIEA	GQPQLWHMDP	SGTFVRHGAK	AIGSGSEGAQ	QNLQDLFRPD	LTLDEAIDIS	LNTLKQVMEE 210		
Drosophila melanogaster_NP_725669 Mus musculus_NP_036097	VALLFGGVDE	KGPQLFHMDP	SGTFVQCDAR	AIGSASEGAQ	SSLQE VYHKS	MTLKEAIKSS	LIILKQVMEE 208		
Homo sapiens_NP_002781	VALLFGGVDE	KGPQLFHMDP	SGTFVQCDAR	AIGSASEGAQ	SSLQE VYHKS	MTLKEAIKSS	LIILKQVMEE 208		
Xenopus laevis_BADP42871	VALLFGGADE	KGPQLFHMDP	SGTFVQCDAR	AIGSASEGAQ	SSLQEVYHKS	MTLKEAIKSS	LTILKQVMEE 208		
Trematomus bernacchii	VALLFGGFDE	KGPQLYHMDP	SGTFVQCDAR	AIGSASEGAQ	SSLQEIYHKS	MTLKDAIKSS	LTILKQVMEE 208		
Notothenia coriiceps_XP_010766620	VALLFGGFDE	KGPQL YHMPP	SGTFVQCDAR	AIGSASEGAQ	SSLQEIYHKS	MTLKDAIKSS	LTILKQVMEE 208		
Danio rerio_NP_991271	VALLFGGVDE	KGPQLYHMDP	SGTFVQCDAR	AIGSASEGAQ	SSLQEVYHKS	MTLKDAIKSS	LTILKQVMEE 208		
	VALLFGGVDE	KGPQLYHMDP	SGTFVQCDAR	AIGSASEGAQ	SSLQEVYHKS	MTLKEAIKSS	208		
- Consensus	VALLFGGVDE	KGPQL YHMDP	SGTFVQCDAR	AIGSASEGAQ	SSLQEVYHKS	MTLKEAIKSS	LTILKQVMEE		
Conservation	$\square\\|\square\\| \square \square \square \square \square$				\square				
	$\sqrt{A L L} \text { FGGEV }$	KGPQ LGHMDP	SGTFVQNEAR	Ā\|Ĝ̃ASEGAQ					
Caenorhabditis elegans_NP_492765 Arabidops is thaliana NP 188046	KLNSANVEVV	VIKPTVDAKG	BPIGEFTRVS	NEELDQVITS	L- 248				
	KVTPNNVDIA	KVAP - .-. A	YHLYT	PQEVEAVISR	- 237				
	KLNSTNVEVM	TMTK-.- - E	BE- - FYMFT	KEEVEQHIKN	1A 244				
Drosophila melanogaster_NP_725669 Mus musculus_NP_036097	KLNATNIELA	TVQP-.-. ${ }^{\text {G }}$	QN - - FHMFT	KEELEEVIKD	1-241				
Homo sapiens_NP_002781	KLNATNIELA	TVQP	QN - - FHMFT	KEELEEVIKD	1-241				
Xenopus laevis_BADP42871	KLNATNIELA	TIEP	KK- - FHMYC	KEELEEVIKD	1-241				
Trematomus bernacchii K	KLNATNIELA	IVEP--.-G	KT-- FHMFS	KEELEDVIKD	1-241				
Notothenia coriceps_XP_010766620	KLNATNIELA	IVEP-..-G	KT- - FHMFS	KEELEDVIKD	241				
Canio rerio_NP_991271	KLNATNIELA	TVEP--- - G	KT- - FHMYT	KEELEDVIKD	241				
	KLNATNIELA	TVEP---G		KEELEEVIKD	241				
	KLNATNIELA	TVEP----G	KT- - FHMFT	KEELEEVIKD					
Conservation			$\square_{\square} \quad \square \square \square \square \square$						
quence logo	KLNAATVYEL								

		1	2	3	4	5	6	7	8	9	10
Caenorhabditis elegans_NP_492765	1		52,82	55,95	60,64	60,24	60,24	59,84	59,84	59,84	60,64
Arabidops is thaliana_NP_188046	2	131		61,07	68,05	67,63	67,63	67,22	67,22	68,46	68,05
Drosophila melanogaster_NP_725669	3	141	149		70,08	69,67	69,26	68,44	68,44	69,26	68,85
Mus musculus_NP_036097	4	151	164	171		99,59	96,27	94,61	94,61	96,27	96,27
Homo sapiens_NP_002781	5	150	163	170	240		95,85	94,19	94,19	95,85	95,85
Xenopus laevis_BAD42871	6	150	163	169	232	231		94,61	94,61	96,27	96,68
Trematomus bernacchii	7	149	162	167	228	227	228		100,00	97,10	97,10
Notothenia coriceps_XP_010766620	8	149	162	167	228	227	228	241		97,10	97,10
Danio rerio_NP_991271	9	149	165	169	232	231	232	234	234		98,34
Oreochromis niloticus_XP_003441568	10	151	164	168	232	231	233	234	234	237	

Figure S6. MUSCLE alignment of proteasome subunit alpha 5 amino acid sequences, with species names and accession numbers. The consensus sequence, the conservation histogram and the sequence logo are shown at the bottom of the alignment. The Table in the last page contains the pairwise comparison of the sequences, with the number of identities (below the diagonal) and percent identity (above the diagonal).

		1	2	3	4	5	6	7	8	9	10
Caenorhabditis elegans_NP_492360	1		50,20	54,51	59,68	60,08	60,08	57,65	57,65	58,04	57,65
Drosophila melanogaster_NP_650910	2	128		51,57	58,17	57,77	58,17	59,52	59,52	60,56	61,35
Arabidopsis thaliana_NP_190694	3	139	131		65,61	66,01	66,01	65,75	65,75	66,54	65,75
Xenopus laevis_NP_001081054	4	151	146	166		96,37	96,77	87,30	87,30	87,25	87,65
Homo sapiens_NP_002783	5	152	145	167	239		98,79	86,90	86,90	86,85	88,05
Mus musculus_NP_036099	6	152	146	167	240	245		87,30	87,30	87,25	88,45
Notothenia coriiceps_XP_010783619	7	147	150	167	220	219	220		100,00	96,03	95,63
Trematomus bernacchii	8	147	150	167	220	219	220	252		96,03	95,63
Oreochromis niloticus_XP_003438172	9	148	152	169	219	218	219	242	242		98,01
Danio rerio_NP_998331	10	147	154	167	220	221	222	241	241	246	

Figure S7. MUSCLE alignment of proteasome alpha 7 subunit amino acid sequences, with species names and accession numbers. The consensus sequence, the conservation histogram and the sequence logo are shown at the bottom of the alignment. The Table in the last page contains the pairwise comparison of the sequences, with the number of identities (below the diagonal) and percent identity (above the diagonal).

Arabidopsis thaliana_NP_193216 Drosophila melanogaster NP- 609804 Homo sapiens_NP_002785 Mus musculus NP- 036100 Xenopus laevis_NP_00-038476 Trematomus bernacchi Notothenia coriiceps_XP_010789577 Danio rerio_NP_001002609 Oreochromis niloticus XP 003447226 Caenorhabditis elegans_NP_498806 Arabidops is thaliana_NP_191641 Xenopus laevis_NP_001080435 Mus musculus_NP_035315 Homo sapiens_NP_002784 Danio rerio_NP_001003889 Oreochromis niloticus_XP-003454565 Trematomus bernacch ch Notothenia coriiceps_XP 010781254 Caenorhabditis elegans_NP_493271 Thermoplasma acidophilum_NP_394085 Drosophila melanogaster_NP_652031 Caenorhabditis elegans_NP_493558 Drosophila melanogaster_NP_652014 Arabidopsis thaliana NP 172765 Xenopus laevis NP 00108432 Mus musculus_NP_035316 Homo sapiens_NP_002788 Danio rerio_NP_571226 Oreochromis niloticus_XP_003457456 Trematomus bernacchii Notothenia coriiceps_XP_010781265 Consensus Conservation

Sequence logo

Arabidopsis thaliana_NP_193216 Drosophila melanogaster_NP_609804 Homo sapiens_NP_002785 Mus musculus_NP_036100 Xenopus laevis_NP_001084761 Trematomus bernacch coriiceps XP 010789577 Danio rerio_NP_001002609 Oreochromis niloticus_XP_003447226 Caenorhabditis elegans_NP_498806 Arabidopsis thaliana_NP_19164 Xenopus laevis_NP_001080435

Mus musculus NP 035315
Homo sapiens NP-00278
Danio rerio_NP_001003889 Oreochromis niloticus_XP_003454565 Trematomus bernacch Notothenia coriiceps_XP_010781254 Caenorhabditis elegans_NP_493271 Thermoplasma acidophilum_NP_394085 Drosophila melanogaster_NP-652031 Caenorhabditis elegans_NP_-493558 Drosophila melanogaster_NP_652014 Arabidopsis thaliana_NP_172765 Xenopus laevis_NP_001084323

Mus musculus_NP_035316 Homo sapiens NP 002788 Danio rerio NP 571226 niloticus_XP_003457456 Oreochromis niloticus_XP_003457456
Trematomus bernacchii
Notothenia coriiceps XP 010781265 Consensus Conservation Sequence logo

80

$V E$	FGLVG - - - NGFAIVAA	DTSAVHS-IL	M	A	
- - METL	LGIKG - . - - PDFVMLAA	DTTHARS-11	VMKEDQNKIH	KVSDSLLIST	VGESGDTEQF 56
-MEYL	IGIQG $\cdots \cdots$ - - PDYVLVAS	DRVAASN-IV	QMKDDHDKMF	KMSEKILLLC	VGEAGDTVQF 56
- - MEYL	IGIQG - . - - PDYVLVAS	DRVAASN-1V	QMKDDHDKMF	KMSEKILLLC	VGEAGDTVQF 56
MF	IG\|QG $-\cdots-$ NDFVLVAA	DTVCANS	QMKHDMDKMF	KMSEKILLLC	VGEAGDTVQF 56
$\cdots \mathrm{MEYL}$	VGIQG - PNFVLVAA	DNVAASS	QMKHDQDKMF	KLSEKILLLC	VGEAGDTAQF 56
EYL	VG\|QG - . - - PDFVLVAA	DNVAASS	QMKHDQDKMF	KLSEK ILLLC	VGEAGDTAQF 56
	IGIQG - . - - PDFVLVAA	DNVAASS	QMKHD YDKM	KLSEKILLLC	VGEAGDTVQF 56
EYL	IGIQG $\cdots \cdot \cdots$	DNVAASS	QMKHDYDKM	KLSEKILLLC	VGEAGDTVQF 56
-.-GGST CA	CAISG- . - - ENFAIVAS	DTRMTQNDIN	ILTRDAEKIQ	ILNDNIILTT	SGFYGDVLQL 107
GTC	VAIAG - . - - SDYCVIAA	DTRMSTG - YS		KLADRAVLSS	SGFQADVKAL 70
G T	LALAG - . . - DDFALVAS	DTRLSEG - YS	1HSRNTPKC	KLTDKTVIGC	TGFHADCLTL 90
G	LA\|AG $\cdots \cdots$ - - EDFSIVAS	DTRLSEG-FS	IHTRDSPKC	KLTDKTVIGC	SGFHGDCLTL 91
-.-GGTI L	LA\|AG - . - - EDFA IVAS	DTRLSEG - FS	1 HTRDSPKC	KLTDKTVIGC	SGFHGDCLTL 92
- - GG	LAVAG - . - - EDFAIVAS	DTRLSEG - YS	1HSRDSPKC	KLTDTTVLGC	SGFHGDCLTL 88
.....GGTV L	LAVAG - . - - EDFA IVAS	DTRLSEG - YS	1HSRDSPKC	KLTDTTVLGC	SGFHGDCLTL 88
- - GGTV L	LAVAG - . - - EDFAIVAS	DTRLSEG - YS	$1 H S R D S P K C$	KLTDTTVIGC	SGFHGDCLTL 88
..... GGTV L	LAVAG - . - - EDFAIVAS	DTRLSEG - YS	1HSRDSPKC	KLTDTTVIGC	SGFHGDCLTL 88
V	VAVAF- - - - KGGLVMGA	DSRATAG	I ADKHCEKVH	KLTESIYACG	AGTAADLDQV 101
T	VGITL - . - - KDAVIMAT	ERR	1 MHKNGKKL	QIDTYTGMTI	AGLVGDAQVL 63
M	MAVEF - . - - - DGGVVIGA	DSRTSS	VANRVTDKLT	RITDKVYCCR	SGSAADTQAI 70
SMQFRKGTTT L	LAFVYEPATP ADKGGIIVAV	DSRASS	ISSKSVMKIL	DIGDRMVATM	AGGAADCQFW
KINFDHGTTT L	LGFKF- - - - KGGVLLAV	DSRATGG - SY	IGSQSMKK IV	EINQFMLGTL	AGGAADCVYW
MLKHAKGTTT	LAFIF- . - - KGGVMVAA	DSRASMG - GY	ISSQSVKKI	EINPYMLGTM	AGGAADCQFW
KIEPWHGTTT	LAFKF- - - - QHGVIVAV	DSRASA	ISTIKFNKV	EINPYLLGTM	SGSAADCQYW
RIEMLHGTTT	LAFKF- . - - LHGVIVAA	DSRATAG - AY	IASQTVKKVI	EINPYLLGTM	AGGAADCSFW
GIEMLHGTTT	LAFKF - . . - RHGVIVAA	DSRATAG - AY	IASQTVKKV	EINPYLLGTM	AGGAADCSFW
KIEFLHGTTT	LAFKF - . . - QHGVIVAV	DSRATAG - AY	I ASQTVKKV	EINPYLLGTM	AGGAADCSFW
KIEFLHGTTT	LAFKF-... - QHGVIVAV	DSRATAG - SY	IASQTVKKVI	EINPYLLGTM	AGGAADCSFW 123
KIEFLHGTTT	LAFKF - QHGVIVAV	DSRATAG - AY	IASQTVKKV	EINPYLLGTM	AGGAADCSFW
KIEFLHGTTT	LAFKF- . - - QHGVIVAV	DSRATAG - AY	IASQTVKKVI	EINPYLLGTM	AGGAADCSFW
-GTTT L	LAIXG--- - EDFVIVAA	DXRASXG-IY	IMSRDVXKVX	KLNDKILLTC	XGXAGDCLQX
					$\square \square \square \square$

 Drosophila melanogaster_NP_609804 Homo sapiens_NP_002785 Mus musculus_NP_036100
Xenopus laevis NP 001084761
Trematomus bernacchi
Notothenia coriiceps XP 010789577 Danio rerio_NP_001002609 Oreochromis niloticus_XP_003447226 Caenorhabditis elegans_NP_498806 Arabidopsis thaliana_NP_191641 Xenopus laevis NP 001080435 Mus musculus_NP_035315 Homo sapiens NP-00278 Danio rerio_NP_001003889 Oreochromis niloticus_XP_003454565

Trematomus bernacchi
Notothenia coriiceps_XP_010781254
Caenorhabditis elegans_NP_493271 Thermoplasma acidophilum_NP_394085 Drosophila melanogaster_NP_-652031 Caenorhabditis elegans NP- 493558 Drosophila melanogaster_NP_-652014 Arabidopsis thaliana_NP_172765 Xenopus laevis_NP_001084323 Mus musculus_NP_035316 Homo sapiens_NP_002788

G	
PVNYAGHGYG	AIFASS
KAPFAAHGYG	AFLTLSILDR
KAPFAAHGYG	AFLTLS
KTRFAAHGYG	AYLTLSILD
KAPFAAHGYG	AFLTLSILDQ
KAPFAAHGYG	AYLTLSILDQ
APFAAHGYG	AFLTLS
KAPFAAHGYG	AYLTLS
RLGYSASGAA	EPMIIPFLDC
RVGYGAQGSG	STLIMPFLDN
RDAYKAGGSA	SAMLQPLLDN
RDSFKAGGSA	SAMLQPLLDN
RDSFKAGGSA	SAMLQPLLDN
RDTYKAGGSA	SAMLQPLLDN
-FPFTAQGSG	SYAAITILER
-DIYASTGSG	SPFVYGVLES
RESCTIGGSG	SSFIYGFVRE
LKVCSV-GSG	SLNAYGILDN
GNLFSV-GSG	SLYAYGVLDS
GDRFSV-GSG	SPYAYGVLDS
GDIFST-GSG	NSYAYGVMDS
GTAFSV-GSG	SVYAYGVMDR
GATFSV-GSG	SVYAYGVMDR
GGLFAV-GSG	SMYAYGVVDS
GDLFAV-GSG	SMYAYGVMDS
GDLFAV-GSG	SMYAYGVIDS
GDLFAV-GSG	SMYAYGVIDS

CILEIRSRLV IAPPNFVIKİ 18 -BSDMS VEEAIELVDK CILEIRSRLV IAPPNFVIKI 181
HPNIT QAEADVFKK CIAEIQRRVV VNLKNFTVAV 182
-TPTIS BEEAVELLAK CLEELKKRFI UNLPTESVRI 182

IAPPNFVIKI 181
VNLKNFTVAV
182 TPTIS EERAVELLRK CLEELQKRFI LNLPTFSVAV 182 KPDLT BEDAVELLKK CISELQKRFI LNLPSFTVAV 182 KPDLT REEAVDLLKK CIEELRKRFI LNLPSETVEI 182 KPDLT REEAVDLLKK CIEELRKRFI MNLPSFTVRL 182 BPDLT EEEAVDLLKK CLEELNKBFI LNLPSETVRL 182 BPDLS EDEAVDLLKK CVEELKKRFI LNLPSFTVAL 182 EGYERPELT LDRAISLMKD SFRGAAEEEI STGDKIHLVI 241 PKQDSNTPLS EAEAVDLVKT VFASATEBDI YTGDKLEIMI 207 QNVEQLPLT LEKALKLIKD VFISAAERDV YTGDALHISI 223
QNVEHVPLT LDRAMRLVKD VFISAAERDV YTGDALRICI 22 QNVEHVPLS LDBAMBLVKD VF EGVEVPLT KDKAVQLVKD V FISAAERDV FISAAERDV FISAAERDV VFISAAERDV VFISAAERDV ALEAGMHGDN AVQHAIYHDG AVQHAIYHDG AIMHATYRDS AIYHATFRDA SIYHATFRDG
AISYATHRDA AIYQATYRDA A IYQATYRDA A IYQATYRDA A I YQATYRDA AIYQATYRDA $A \| Y Q A T Y R D A$
$A I Y Q A T Y R D A$ AIYQATYRDA $\begin{array}{ll:l}1 G B A L R & C & 224 \\ \text { YTGDALR } & C & 225\end{array}$ $\begin{array}{ll:l:l}\text { TGDALR I } & 225 \\ \text { TGDAI KVC: } & 221\end{array}$ $\begin{array}{llll}\text { YTGDALKVC I } & 221 \\ \text { YTGDALR ICV } & 221\end{array}$ YTGDALRLC 221 YTGDALRLCI 221 ASGNSLNLVI 223 ASGGMIDVAV 185 SSGGVVRIGI 193 GSGGVCNLCH 249 YSGGIIRVYH 251 ASGGVASVYH 235 YSGGCVNLYH 244 YSGGAVNLYH 237 YSGGQVNLYR 237 YSGGQVNLYH 246 YSGGQVNLYH 246
YSGGQVNLYH 246 YSGGQVNLYH 246 YSGGAXNXYI

		300	${ }^{320}$			
Arabidopsis thaliana_NP_193216	V- DKDGAREY	GW	RISTADA			199
Drosophila melanogaster_NP_609804	V-DKDGVRDL	PI	SAASLAA			201
Homo sapiens_NP_002785	1-DKNGIHDL	D- .-. - - ${ }^{\text {N }}$	SFPKQGS			201
Mus musculus_NP_036100	1-DKDGIHNL	E- - - - - $\mathrm{N}^{\text {I }}$	AFPKRDS			201
Xenopus laevis_NP_001084761	1-DKDGIHDL	D- - - - - S	PASSL			199
Trematomus bernacchii	1-DKEGIHD	E	KLCSGAK			199
Notothenia coriceps_XP_010789577	1-DKEGIHD	E	KLSSGAK			199
Danio rerio_NP_001002609	1-DKDG\|HD	ME	KLPVGBK			199
Oreochromis niloticus_XP_003447226	1-DKEGIH	DL	EKLTLGAK			199
Caenorhabditis elegans_NP_498806	AEAGKPV	VV	KFLPLRED			258
Arabidops is thaliana_NP_191641	L-KADG	KT	ELMDLRKD			223
Xenopus laevis_NP_001080435	V-TKDGV	RE	ESISLRKD			239
Mus musculus_NP_035315	V-TKEG	RE	ETVPLRKD			240
Homo sapiens_NP_002784	V-TKEG	RE	ETVSLRKD			241
Danio rerio_NP_001003889	V-SKEG	E	EIVPLRKD			237
Oreochromis niloticus_XP_003454565	1-TKEG।	NE	ETIPLRKD			237
Trematomus bernacchii	1-TKEG	NE	QTVPLRKD			237
Notothenia coriceps_XP_010781254	1-TKEGI	NE	QTVPLRKD			237
Caenorhabditis elegans_NP_493271	IEPSETVFKG	PIVPEFCKRP	EPNDLVYKFQ	AGATKVLKHK	TYKYDVVESM	DITH 277
Thermoplasma acidophilum_NP_394085	ITRKDGYVQL		QIESRIRKLG	LIL		211
Drosophila melanogaster_NP_652031	1-TKDGIERR	IFYNTESGAS	AVSSTPSFIS			224
Caenorhabditis elegans_NP_493558	1-TPTEKIRL	P-.-.-. PM	DVSKLWYEFA	DELGRDITYN	PVE	284
Drosophila melanogaster_NP_652014	1-KEDGWVN	S-- - - - NT	DCMELHYMYQ	EQLKQQAAK		282
Arabidopsis thaliana_NP_172765	V-GPEGWTKL	S - - - - - GD	DVGELHYHYY	PVAPATAEQV	MEEATAE	274
Xenopus laevis_NP_001084323	M-KEDGWVK	QF	DVSDLLHKFT	EEKNM -		271
Mus musculus_NP_035316	V-REDGWIRV	S-.-. - - SD	NVADLHDKYS	SVSVP		264
Homo sapiens_NP_002788	V-REDGWIRV	S - - - - - SD	NVADLHEKYS	GSTP		263
Danio rerio_NP_571226	V-HSEGWERV	S - - - - - QE	DVLQLHQKYQ	SEKA		269
Oreochromis niloticus_XP_003457456	V-HSEGWTRI	S - - - - - QD	DVLVLHHQYK	DQA		271
Trematomus bernacchii	V-HSEGWTRV	S - - - - - QE	DVLMLHQQYK	SQA		27
Notothenia coriiceps_XP_010781265	V-HSEGWTRV	S - - - - - QE	DVLMLHQQYK	SQA		--- 271
Consensus	I-DKEGI	NE	XVXSLRKD			
Conservation 0% 4,3bits	"					
equence logo 0,0bits						

Figure S8. MUSCLE alignment of the catalytic proteasome subunits, with species names and accession numbers, utilized for the phylogenetic analysis.

Figure S9. Theoretical assembly of the seven modelled chains of T. bernacchii proteasome (in red, alpha helices; in cyan, beta strands). The assembly is based on the reference structure of mouse whole proteasome (PDB code: 3UNB). The simple backbone (in grey) of the corresponding mouse chains is shown for the remaining chains (not modelled).

[^0]: Abbreviations: BSA, bovine serum albumin; CP, proteasome core particle; CT-like, chymotrypsin-like activity; LLE, tert-butyloxycarbonyl-Leu-Leu-Glu-7-amido-4-methylcoumarin; LLVY, N -succinyl-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin; LRR, tert-butyloxycarbonyl-Leu-Arg-Arg-7-amido-4-methylcoumarin; PGPH-like, caspase-like activity; T-like, trypsin-like activity; UPS, ubiquitin-proteasome system.
 1 These authors contributed equally to this work
 2 To whom correspondence should be addressed (email ennio.cocca@ibbr.cnr.it).

