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The ability to control stem cell function is the key to stem cell-based therapy and living tis-
sue regeneration. In natural conditions, histone deacetylases (HDAC) are regarded as the
important defining epigenetic reprogramming for stem cell differentiation. To date, human
adipose-derived stem cells (hADSCs) have been widely utilised for bone tissue engineering
applications. The present study aimed to examine the effect of a novel HDAC2&3-selective
inhibitor, MI192, on hADSCs epigenetic reprogramming for regulating its osteogenic po-
tential in vitro. The results confirmed that MI192 treatment reduced the hADSCs viability in
a time and dose-dependent manner. The optimal concentration and pre-treatment time of
MI192 for hADSCs osteogenic induction was 30 μM and 2 days representatively. A quantita-
tive biochemical assay confirmed that the pre-treatment with MI192 (30 μM) for 2 days signif-
icantly enhanced hADSCs alkaline phosphatase (ALP) specific activity (P<0.05) compared
with that of the valproic acid (VPA) pre-treatment group. Real-time PCR analysis revealed
that MI192 pre-treatment up-regulated hADSCs gene expressions of osteogenic markers
(e.g., Runx2, Col1, and OCN) under the osteogenic induction. DNA flow cytometric anal-
ysis indicated that two days’ pre-treatment with MI192 (30 μM) resulted in G2/M arrest in
hADSCs and this G2/M arrest was reversible. Our results suggest that MI192 is capable
of epigenetic reprogramming of hADSCs via HDAC inhibition for controlling the cell cycle,
resulting in enhancing hADSCs osteogenic differentiation, which indicates the potential of
using MI192 for promoting bone tissue regeneration.

Introduction
Over the last decade, skeletal tissue engineering has become one of the most popular emerging technolo-
gies for tackling the clinical need in orthopaedics [1,2]. Due to the ethical concerns of using embryonic
stem cells for clinical treatment [3], mesenchymal stem cells (MSCs) are generally accepted as one of the
most promising cell candidates for bone tissue engineering [4,5]. However, to date, the inefficiency of
stem cell therapies in clinical trials has led to the search for alternative approaches for meeting the clinical
requirement [6,7]. Therefore, the ability to control stem cells’ lineage-specific differentiation is funda-
mental for the future of tissue regeneration [8,9]. In natural human development, it is well known that
epigenetic modifications (such as the acetylation process of histone and non-histone proteins) can con-
trol DNA accessibility and chromatin structure, affecting cell gene expression patterns and, consequently,
cell functions. The cell’s epigenetic makeup can be formed in response to the cell’s environment and is

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

1

https://orcid.org/0000-0002-0144-2826
mailto:X.B.Yang@leeds.ac.uk
mailto:yanjin@fmmu.edu.cn


Bioscience Reports (2023) 43 BSR20221635
https://doi.org/10.1042/BSR20221635

known to be passed down across cell generations. Thus, influencing a cell’s epigenetic makeup could be a safe way of
controlling stem cell behaviour.

It is well known that both histone acetyltransferases (HATs) and histone deacetylases (HDACs) dynamically reg-
ulate the acetylation process of cells. HAT results predominantly in the presence of the acetylated lysine in the his-
tone tails, ‘opening’ the structure of human chromatin, ‘allowing’ and/or ‘activating’ gene transcription. In contrast,
HDAC activity removes the acetyl groups, which leads to a more ‘condensed’ and/or ‘closed’ chromatin structure,
which ‘stops’ gene transcription (e.g. gene silencing) [10–12]. In general, HDAC has been clarified as four categories:
Class I, including HDAC-1,-2,-3, and -8, are primarily localised in nuclear; Class IIa (e.g. HDAC-4,-5,-7, and-9) are
between the nucleus and cytoplasm, and Class IIb (HDAC-6 and -10) are localised mainly in the cytoplasm. Class
III HDACs (sirtuins, SIRT1–SIRT7) are structurally different [13]. Of note, HDAC3 is different from the other Class
I HDACs, as it can appear in both the cell’s nucleus and the cytoplasm of cells. HDAC3 forms a well-characterised
protein complex, which can be recruited to specific promoters leading to the deacetylation of histones [14]. HDAC3
can also regulate gene expression and inflammatory response by interacting with other Class II HDACs [15,16]. In
the cytoplasm, HDAC3’s role is still not completely clear, and it is thought to be involved in signal transduction and/or
mitosis [17,18]. Lu et al. (2018) reported that HDAC3 has the potential to promote liver regeneration via the activator
of the transcription 3 (STAT3) signalling pathway [19].

It is well known that the histone deacetylase inhibitors (HDACis) can readjust the balance between the HAT and
HDAC enzyme’s activities in both tumour and normal cells, resulting in the accumulation of acetylated histone and
non-histone proteins. This, in turn, alters the regulation of the cell cycle, cellular gene expression, migration, prolifer-
ation, differentiation, angiogenesis, apoptosis, and many other cellular processes [12,20]. There is a range of HDACs
available in the market that has been used for various clinical treatments for cancers and non-cancerous diseases
[21–23]. However, most studies related to HDACs/HDACis are in the field of cancer therapy. There is strong evi-
dence to show that HDACis arrest tumour cell growth and prompts apoptosis [24,25].

Over the last few years, HDACis have been reported to inhibit human MSC proliferation but also promote
osteogenic differentiation and osteoblast maturation in vitro [22,26–28]. For example, trichostatin A (TSA), a
pan-HDAC inhibitor, has been shown to accelerate matrix mineralisation in different types of MSCs [29,30]. Sodium
butyrate (NaB) can enhance periodontal ligament fibroblasts’ osteogenic differentiation [31]. The other reports
showed that TSA, Entinostat (MS-275), and VPA could up-regulate osteogenic the gene expression of osteogenic
markers [32–34].

Karantzali and co-workers (2008) reported that the inhibition of HDACis can diminish stem cell self-renewal.
This may be due to the inhibition of HDACs can up-regulate stem cells to the expression of different differentiation
markers, resulting in the acceleration of stem cell lineage-specific differentiation [35–39]. However, it was reported
that VPA could promote normal hematopoietic stem cell proliferation and self-renewal [40,41]. Specifically, HDAC3
regulated several non-histoneproteins, including nuclear factor-κB (NF-κB) subunit RelA, cell cycle inhibitor p21 and
p53 [42,43]. Although the full mechanisms of how the HDACis regulate stem cell lineage-specific differentiations are
still unclear. However, the potential to utilise HDACis to control stem cell fate is evident [26,38,44].

MI192 is a novel benzamide family HDAC2 and HDAC3-selective inhibitor [45,46]. It has a terminal benzamide
structure that is known to chelate Zn2+ ions, which can be found at the HDAC active site [14]. In our previous study, we
showed that the MI192 enhanced the human dental pulp stromal cells’ osteogenic differentiation capacity [47]. Several
studies showed that MI192 has dose-dependent inhibition for interleukin-6 (IL-6), and peripheral blood mononuclear
cells (PBMC) in rheumatoid arthritis (RA) patients but not in healthy control [45,48,49]. High concentrations of
MI192 can inhibit tumour necrosis factor (TNF) production in cancerous cells [49]. However, the effect of MI192 on
human adipose-derived MSC’s osteogenic potential has not been reported.

To date, human bone marrow has been accepted as one of the most popular stem cell sources for tissue engineering
[6,50]. Some papers directly compared MSCs derived from bone marrow with that from the adipose tissue, showing
that human adipose tissue-derived stem cells (hADSCs) are higher proliferative, although bone marrow MSCs may
have greater osteogenic and chondrogenic potential [51–53], Importantly, adipose tissue is a more readily available
and highly accessible stem cell source for scalable tissue engineering purposes [54–60].

Thus, the present study aimed to investigate the potential of using MI192, the novel HDAC2/3-selective inhibitor,
to promote osteogenic differentiation of hADSCs in vitro.
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Materials and methods
Cell culture and reagents
HDAC2/3-selective inhibitor, N-(2-aminophenyl) benzamide derivatives known as MI192, was produced at Prof
Ronald Grigg’s group, University of Leeds. PA sodium salt was purchased from Sigma (Cat No: P4543). MI192 was
solubilised in dimethyl sulfoxide (DMSO) (Sigma-Aldrich, U.K.), and the final concentration of DMSO in the culture
medium was lower than 0.1%. VPA was dissolved in 1× phosphate-buffered saline (PBS). Human adipose-derived
stem cells (hADSCs) were purchased from Invitrogen (Catalogue no. R7788-115) following isolation from human
adipose tissue collected during liposuction procedures. Before cryopreservation, the hADSCs were expanded for one
passage in MesenPRO RS™ medium. The hADSCs were checked by the manufacturer with flow cytometry to con-
firm that the cells expressed positively for CD29, CD44, CD73, CD90, CD105, and CD166 but negatively for CD14,
CD31, CD45, and Lin1 [61]. The multipotential identity of the hADSCs used in the present study was confirmed
using tri-lineage differentiation methods and flow cytometry analysis (data were shown in Supplementary Figures
S1 and S2). The results were consistent with the literature [25,62]. The hADSCs were expanded in basal medium,
which contain α-modified minimal essential medium (αMEM) (Lonza BioWhittaker, Belgium) supplemented with
5% fetal bovine serum (FBS) (BioSera, Sussex, UK) and 1% penicillin-streptomycin (Sigma, P0781). hADSCs were
passaged when they reached about 80% confluence. Passage 5 (P5) cells were then used for all experiments.

Culture of hADSCs with different concentrations of MI192
hADSCs (P5) were seeded in a 12-well plate (2000/cm2) and cultured in basal medium for one day. Then, hADSCs
in the exponential growth phase were treated with different concentrations of MI192 (1, 10, and 100 μM) in basal
medium (n=3) for up to 5 days. Osteogenic induction medium (OS) (basal medium in supplement with 100 nM
dexamethasone, 10 mM b-glycerophosphate, and 0.2 mM ascorbic acid-2-phosphate) [63,64] culture was used as the
positive control, and basal medium culture was used as the negative control. At different time points (e.g., days 1, 3,
and 5), cell phenotype change, proliferation, and osteogenic differentiation were assessed under inverted microscopy
or via alkaline phosphatase (ALP) staining. The population doubling time was calculated as previously reported [65].

Measuring the cytotoxic effect of MI192 on hADSCs
hADSCs (P5) were seeded in 96-well plates (2000/cm2) and cultured in basal medium for one day. Then, hADSCs
were treated with different concentrations of MI192 (1–50 μM) in basal medium (n=3) for 1, 2, and 3 days. Basal
medium alone (untreated wells) was used as the control. The CytoTox 96® Non-Radioactive Cytotoxicity Assay kit
(Promega, Cat. no: G9260) was used according to the manufacturer’s instructions. Briefly, the prepared reagent (100
μl per well) was added directly to the medium of the plate (including the control wells). The plate was then incubated
for 30 min at 37◦C, and the fluorescence was then measured in a Varioskan Flash Multimode Microplate Reader
(Model 3001, Thermo Scientific) by exciting the samples at 488 nm with an emission reading set at 520 nm.

Optimisation of the MI192 concentration for pre-treatment of hADSCs
undergoing osteogenic induction
hADSCs (P5) were seeded in a 12-well plate (2000/cm2) as described previously and cultured in a basal medium for
one day. A lower range of MI192 concentrations (10, 20, 30, and 40 μM) and a higher range of MI192 concentrations
(e.g., 50, 80, 100, 150, and 200 μM) was used to pre-treat the hADSCs for 2 days. Old media was then discarded,
and the cells were cultured in OS for a further 5 days. Osteogenic differentiation of hADSCs was confirmed by ALP
staining.

Optimisation of the best time of MI192 pre-treatment for hADSCs
undergoing osteogenic induction
After one day of seeding in a 24-well plate (as described previously), hADSCs (P5) were pre-treated with the optimal
concentration (30 μM) of MI192 for 1, 2, and 4 days. Then, the old media were discarded, and the cells were cultured
in OS for a further 5 days. Osteogenic differentiation of hADSCs was confirmed by ALP staining. ALP staining on
another batch of hADSCs pre-treated with MI192 for 2 days and osteogenic induction for 5 days (data were shown
in Supplementary Figure S3).
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Optimisation of the combination of pre-treatment period and
concentration of MI192 for osteogenic induction – quantitative
ALP-specific activity
hADSCs (P5) were seeded (2000/cm2) in a 24-well plate as described above and cultured in a basal medium for
one day. A range of MI192 concentrations (20, 30, 40, and 50 μM) was used to pre-treat the hADSCs for 1 and 2
days. Then, the old media were replaced with OS for a further 7 days. The cells were then lysed for a quantitative
alkaline phosphatase specific activity (ALPSA) assay using the 4-nitrophenyl colourimetric phosphate liquid system
(Sigma-Aldrich, Cat. no: 4264-83-9) as previously described [50]. The total DNA quantity was assessed by ultrasensi-
tive fluorescent nucleic acid stain Quant-iT™ PicoGreen® DNA quantification assay (Invitrogen, Life Technologies,
Cat. no: P7581). ALPSA for each well was calculated using the total ALP quantity divided by the total DNA content
of the same well (nmol ALP/hour/μg of DNA) [50].

Cell cycle analysis
hADSCs (P5) in the exponential growth phase were pre-treated with 30 and 80μM of MI192 for 2 days. A commercial
product – valproic acid (VPA, 2 mM) [66] and basal medium culture were used as the controls (n=3). The hADSCs
were collected separately and washed twice with 1× PBS prior to being fixed in cold 70% alcohol at 4◦C for 24 h. Then,
the cells were stained with propidium iodide (100 μg/ml; Sigma, St Louis, MO) at 4◦C for 30 min and subjected to
Elite ESP flow cytometry (Beckman Coulter Inc, Fullerton, CA). Cell cycle analysis was performed on at least three
independent synchronisation experiments [67].

Real-time RT-PCR
hADSCs (P5) were seeded in a T25 flask (2 × 105 cells per flask) and cultured in basal medium for one day at 37◦C, 5%
CO2. Then, hADSCs were pre-treated with 30μM MI192 and 2 mM VPA in basal medium for a further 2 days (n=3).
Basal medium alone was used as a control. The old media were then discarded, and the cells were cultured in OS for up
to 15 days. At different time points (days 0, 5, 10, and 15), the cells were collected, and total RNA was extracted using
TRIzol reagent (Invitrogen Life Technology, Carlsbad, CA). First-strand cDNA syntheses were performed according
to the manufacturer’s protocol. Quantitect Sybr Green Kit (Toyobo, Osaka, Japan) and ABI Prism 7500 Sequence
Detection System (Applied Biosystems) were used for Real-Time PCR. Primer sequences used were:

1) Runt-related transcription factor 2 (RUNX2)(GenBank accession no. NM004348.3): sense,
5′-CACTGGCGCTGCAACAAGA-3′; antisense, 5′-CATTCCGGAGCTCAGCAGAATAA-3′.

2) Collagen typeI (COL1)(GenBank accession no. NM000088): sense, 5′-CCCGGGTTTCAGAGACAACTTC-3′;
antisense, 5′-TCCACATGCTTTATTCCAGCAATC-3′.

3) Osteocalcin (OCN)(GenBank accession no. NM000711):sense, 5′-CCCAGGCGCTACCTGTATCAA-3′; anti-
sense, 5′-GGTCAGCCAACTCGTCACAGTC-3′.

4) β-Actin (Gen Bank accession no. NM001101):sense, 5′-TGGCACCCAGCACAATGAA-3′;antisense,
5′-CTAAGTCATAGTCCGCCTAGAAGCA-3′.

β-Actin was used as an internal control. Amplification occurred after denaturing at 95◦C for 30 s, followed by 35
cycles at 95◦C for 10 s and 64◦C for 30 s. The gene expression levels were normalised according to the level of β-actin
expression.

hADSCs were pre-treated with 30 μM MI192 for 2 and 5 days, and relative mRNA expression of
HDAC2 and HDAC3 in hADSCs was examined (data were shown in Supplementary Figure S4). Primer se-
quences used were: (1) histone deacetylase 2 (HDAC2): sense, 5′- CTGCTACTACTACGACGGTGAT-3′;
antisense, 5′- CAGTGGCTTTATGGGGCCT-3′. (2) histone deacetylase 3 (HDAC3): sense, 5′-
AGTTCTGCTCGCGTTACACA-3′; antisense, 5′- CAGAAGCCAGAGGCCTCAAA-3′.

ALP staining
The cells were fixed in 98% ethanol for 30 min before being stained using an alkaline phosphatase (ALP) staining kit
(Naphthol AS-MX phosphate alkaline solution, Sigma 855; Fast Violet B salt, Sigma 201596-5G).
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HDAC activity
Cells were cultured in one 96-well plate (1 × 104 cells per well) in basal medium containing MI192 at a range of
concentrations (1, 10, 30 and 50 μM). Basal medium alone was used as the control. At 48 h, the HDAC activity in the
cells was measured post-treatment immediately using an InSitu HDAC Activity Fluorometric Assay Kit (Cambridge
BioSciences, Cambridge, U.K.), according to the manufacturer’s instructions as per our previous study [47] (data were
shown in Supplementary Figure S5).

Western blot
Proteins from cells were lysed with a RIPA lysis buffer containing 1 mM PMSF (Beyotime), referring to the man-
ufacturer’s instruction. Then, the concentration was measured by BCA Protein Assay Kit (Beyotime). The proteins
were separated by 10% sodium dodecyl sulfate (SDS) polyacrylamide gels and transferred to polyvinylidene difluo-
ride membranes (Sigma-Aldrich). The membranes were blocked in 6% skim milk for 2 h and then incubated with
primary antibodies at 4◦C overnight and finally with the secondary antibody (1:6000; Bioworld, Nanjing, China) for
1 h. The following primary antibodies were used: anti-β-actin (1: 6000; Proteintech™, WuHan, China), anti-RUNX2
(1:1000; Cell Signaling Technology, MA, U.S.A.), anti-osteocalcin (OCN) (1:1000, Proteintech™). The visualisation
of the protein bands was used with an enhanced chemiluminescence kit (Beyotime) (the full uncropped and unedited
versions of the Western blot were shown in Supplementary Figure S6).

Alizarin red staining
The cells were fixed overnight at 4◦C in 10% neutral buffered formalin and rinsed with tap water several times. Af-
ter bleaching pigmentation with 3% H2O2 solution, the cells were stained with 1 mg/ml alizarin red stain/1% KOH
and then sequentially washed with 20% glycerol/1% KOH, 40% glycerol/1% KOH, and 60% glycerol/1% KOH. Im-
ages of stained cells were obtained using a stereo microscope (SMZ1500) (Nikon, Tokyo, Japan). Mineralisation was
calculated using the ImageJ densitometry program.

Statistics
Values are expressed as mean +− SD. Experiments were performed at least three times, and the results of representative
experiments are presented except where otherwise indicated. Statistical analysis was performed by analysis of variance
and an independent samples t-test with SPSS software (v16.0) or using ANOVA multiple comparisons test with Tukey
modification. P<0.05 is considered a significant difference.

Results
MI-192 was cytotoxic at high concentrations and inhibited hADSCs
proliferation
This batch of hADSCs’ mean doubling time is 42 h in basal media culture and 50 h at early stages in osteogenic
medium culture. The population doubling time of hADSCs in the presence of 1, or 10 μM of MI192 were 80 and 90
h. On day one, there was no significant difference in cell density between the lower concentration of MI192 (1 and 10
μM) compared with both control groups. On day 3 and 5, the 1 and 10 μM groups showed that the reduction of cell
density was dose-dependent. In contrast, the higher concentrations (e.g., 100 μM) MI192 appeared to be cytotoxic
to the cells from day 1, an effect which became more severe/obvious on day 3 and 5 (Figure 1).

The cytotoxicity of MI192 was also confirmed with Cyto Tox-Fluor™ cytotoxicity assay, which showed that after
1 day of pre-treatment with MI192 (1, 10, 20, 30, 40, and 50 μM), there was no statistically significant difference
(P>0.05) between the test groups and the basal medium group (Figure 2). However, after 2 days of pre-treatment
with MI192, the 50 and 40 μM groups showed an extremely statistically significant difference (P≤0.001) with more
cytotoxic to the cells compared with that of the basal medium group. There were also statistically significant cytotoxic
in the lower concentrations, with 30 μM (P≤0.01), 20 and 10 μM (P≤0.05) compared with the control group. There
was no significant difference between the 1 μM of MI192 group and the basal medium group (P>0.05). After 3 days
of pre-treatment, all higher concentrations of MI192 (10–50 μM) groups showed extremely significant (P≤0.001)
cytotoxic compared with the control group. Even 1 μM of MI192 group was also significantly more cytotoxic than
the basal medium group (P≤0.01).

Treatment with 1–50 μM MI192 for 48 h led to a significant reduction in hADSCs HDAC activity compared with
that of the untreated cells in a dose-dependent manner (P≤0.001) (data were shown in Supplementary Figure S5).
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Figure 1. Morphological changes of hADSCs after 5 d MI192 treatment

MI192 were tested for their ability to inhibit the proliferation of hADSCs. MI192 prevented cell growth in a concentration-dependent

manner, although high concentrations are required to achieve a maximal effect. However, there was no significant difference in cell

proliferation between the basal medium group and osteogenic medium group; scale bars: 50 μm.

Figure 2. Cytotoxicity of MI192 on hADSCs assessed with CytoTox-Fluor™ cytotoxicity assay

One day of pre-treatment with MI192 (1–50 μM), there were no statistically significant (P>0.05) between the test groups and the

basal medium control group. However, after 2 days of pre-treatment with MI192, the 50 μM and 40 μM groups showed extremely

statistically significant (P≤0.001) cytotoxic compared with the basal medium control. There were also statistically significant cy-

totoxic in the lower concentrations, with 30 μM (P≤0.01), 20 and 10 μM (P≤0.05) compared with the control group. There was

no significant difference between the 1 μM MI192 group and the control group (P>0.05). After 3 days of pre-treatment, all higher

concentrations of MI192 (10–50 μM) groups showed extremely significant (P≤0.001) cytotoxic compared with the control group.

Even 1 μM MI192 group was also significantly more cytotoxic than the control group (P≤0.01). *P≤0.05, **P≤0.01, and ***P≤0.001.

High concentration of MI192 inhibited hADSCs osteogenic differentiation
After 5 days of culture with different concentrations of MI192 (1, 10, and 100 μM) in basal medium, ALP staining
showed that 1, 10, and 100 μM of MI192 group showed reduced ALP staining compared with the OS positive control
group, and the basal medium negative control group. OS positive control group showed an enhanced ALP staining
compared with basal medium group. There was no positive ALP staining in the 100 μM of MI192 group (Figure 3).

The optimal concentration of MI192 pre-treatment for osteogenic
induction – ALP staining
Since the side effects (e.g., cytotoxicity) of MI192 were correlated to the culture period, this experiment aimed to
optimise the concentration of MI192 for pre-treatment of hADSCs. After 2 days of pre-treatment with different con-
centrations of MI192 in basal medium followed by 5 days of osteogenic culture, 20–200 μM groups enhanced ALP
positive staining with the highest staining between 30 and 50μM. A higher concentration of MI192 (>50μM) showed
some signs of cytotoxicity and reduction of cell densities (Figure 4). Considering the maximum osteogenic effect, with
the minimum side effects, 30 μM was selected as the optimal concentration of MI192 for the pre-treatment.

6 © 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 3. Effect of MI192 on osteogenic differentiation of hADSCs

Through 5 days of MI192 effect at three concentrations (1, 10, and 100 μM), as well as basal medium and osteogenic medium

induction, ALP staining showed that MI192 decreases self-osteogenic differentiation of hADSCs; scale bars: 50 μm.

Figure 4. Best concentration of MI192 pre-treatment for osteogenic induction of hADSCs

After 2 days of pre-treatment with different concentrations of MI192 in basal medium followed by 5 days of osteogenic culture,

20–200 μM groups enhanced ALP positive staining with the highest staining between 30 and 50 μM. Considering the maximum

osteogenic effect, with the minimum side effects, 30 μM was selected as the optimal concentration of MI192 for the pre-treatment.

The optimal pre-treatment period with MI192 for osteogenic induction –
ALP staining
To determine the optimum period of the pre-treatment of MI192, 30 μM of MI192 was used to pre-treat the hADSCs
for 1, 2, or 4 days prior to being cultured in OS for a further 5 days. ALP staining showed that the group that was
pre-treated with 30 μM of MI192 for 2 days markedly increased the ALP stain intensity compared with that in the
groups that were pre-treated for 1 day or 4 days (Figure 5). Therefore, hADSCs were pre-treated with 30 μM of MI192
for 2 days were used as the optimal method for the final experiments.

The optimal pre-treatment period and concentration of MI192 for
osteogenic induction – ALP-specific activity
ALP was quantitatively assessed with a biochemical assay and normalised to DNA content, giving the ALP-specific
activity (ALPSA). hADSCs were pre-treated with a range (20–50 μM) of MI192 doses for different treatment periods
(1 or 2 days). In the 1-day pre-treatment groups, the osteogenic medium positive control group showed a statistically
significant increase (P≤0.05) in ALPSA over the basal medium negative control group (Figure 6). However, there
was no significant difference between the MI192 pre-treated groups and the osteogenic medium positive control or
between the test groups (P>0.05). In comparison, after 2 days of pre-treatment, all MI192 pre-treated cells have a

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 5. Best period for pre-treatment of MI192 for osteogenic induction of hADSCs

MI192 (30 μM) was used for pre-treatment for 1, 2, and 4 days, and the induction of osteogenic differentiation of hADSCs was done

without the addition of MI192. Osteogenic differentiation was estimated by alkaline phosphatase (ALP) staining after 5 days. The

pre-treatment of MI192 for 2 days markedly increased osteogenic differentiation, and the pre-treatment for 1 day or 4 days was

less than 2 days.

Figure 6. Specific ALP quantification in hADSCs pretreated with MI192

ALP was quantitatively assessed with a biochemical assay and normalised to DNA content, giving the ALPSA. hADSCs were

pre-treated with a range (20–50 μM) of MI192 doses for different treatment periods (1 or 2 days); *P≤0.05, **P≤0.01, and ***P≤0.001.

statistically significant incensement of ALPSA over the osteogenic medium positive control. About 30 μM of MI192
pre-treatment group had the highest level of ALPSA of all groups. In addition, the ALPSAs in both 30 and 20 μM
MI192 groups were statistically significantly higher than that of the osteogenic control groups (P≤0.001 and P≤0.01,
respectively). The ALPSAs in both 50 and 40 μM of MI192 groups were statistically significantly higher than that
of the osteogenic control groups (P≤0.05). Interestingly, when compared between the same pre-treatment concen-
trations of MI192 over the two different pre-treatment periods, there was a significant enhancement of ALPSA in
the cells pre-treated by 30 μM of MI192 for 2 days compared with that of the cells pre-treated with the same MI192
concentration for 1 day (P≤0.01).

MI192 pre-treatment arrested hADSCs cell cycle and induced apoptosis
After pre-treatment for 2 days with 30, 80 μM of MI192, and 2 mM VPA, FACS cell cycle progression analysis results
showed that there was a significant reduction of G0G1-phase cells in the group that was pre-treated with 30 μM of
MI192 compared with the basal medium control (P<0.05). However, there was no significant difference between 80
μM if MI192 pre-treatment group and the basal medium group (P>0.05).

8 © 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. hADSCs treated with MI192 showing cell cycle arrest and reduction of cell viability

(A) hADSCs treated for 2 days with 30 μM of MI192, 2 mM VPA, 80 μM MI192, and control were analysed by FACS for cell cycle

progression. A significant reduction of S-phase cells along with an increase in the number of G2/M cells in the samples that were

treated with 30 or 80 μM MI192 as compared with the basal controls. However, with 2 mM VPA treatment, a significant reduction of

S-phase cells along with no significant variation in the number of cells in the G2/M or G0G1 phase. The upper half images represent

the cell cycle diagram of four groups. (B) FACS analyses suggested that 80 μM of MI192 could induce apoptosis or cytotoxicity.

Debris was 29.5%. These data revealed a significant increase in the number of apoptotic cells in the cultures that were treated with

the high concentrations of MI192 compared with that of the control (P≤0.05). *P≤0.05.

In the meantime, there was a significant reduction of cells in the S-phase in the groups that were pre-treated with
30 μM (2.68%), 80 μM (2.58%) MI192, and 2 mM VPA (3.93%) compared with the basal medium control (7.39%).
However, there was no significant difference between 30 and 80 μM of MI192 pre-treatment groups (P>0.05).

In contrast, the groups pre-treated with 30 or 80 μM of MI192 increased the number of G2/M cells compared with
that of 2 mM VPA positive and basal medium negative controls (P<0.05). There was also a significant increase in cell
numbers in G2/M phases in the 30 μM of MI192 pre-treatment group compared with that in the 80 μM of MI192
pre-treatment group (P<0.05) (Figure 7A).
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FACS analyses showed a higher percentage of debris in the 80 mM of MI192 pre-treatment group (29.5%). In
comparison, the 30 μM of MI192 group has much low debris (2.7%), which is similar to the VPA group (1.0%) and
the negative control (2.2%) (Figure 7B).

Effect of MI192 pre-treated on hADSCs osteogenic gene expression
Quantitative real-time PCR analysis (Figure 8) showed that MI192 pre-treatment for 2 days (day 0) down-regulated
the gene expression of RUNX2, COL1, and OCN compared with VPA (P<0.05, respectively) and basal medium
alone controls (P<0.05, respectively). In comparison, VPA treatment for 2 days significantly up-regulated RUNX2
(P<0.05) while down-regulating COL1 and OCN gene expression (P<0.05) compared with the basal medium group.

As expected, at 5 days, the cells in OS for 5 days had up-regulated the gene expression of RUNX2, COL1, and OCN
compared with basal medium (P<0.05) alone (Figure 8). MI192 pre-treatment caused significant up-regulation of
RUNX2 and OCN compared with the OS groups (P<0.05). It also caused significant up-regulation of COL1 gene
expression compared with the basal medium alone group (P<0.05). However, there was no significant difference in
COL1 gene expression (P>0.05) between the MI192 pre-treatment group and the two controls of VPA pre-treatment
and OS without MI192 pre-treatment.

On day 10, MI192 pre-treatment resulted in significant up-regulation of RUNX2, COL1, and OCN compared
with the basal medium groups (P<0.05). There was a 4-fold increase for RUNX2, an 11-fold increase for COL1, and
a 4-fold increase in OCN expression when comparing the MI192 pre-treatment group and the basal medium alone
group. In contrast, the VPA pre-treatment group had only about 2-fold increase in all three genes compared to basal
medium control.

On day 15, cells pre-treated with MI192 significantly up-regulated gene expression of RUNX2, COL1, and OCN
compared with the basal medium control (P<0.05). Similarly, both the VPA pre-treated group and OS culture group
had significantly up-regulated expression of RUNX2, COL1, and OCN compared with the basal medium control
(P<0.05). However, there was no significant difference between the MI192 pre-treated group and the positive control
VPA and OS groups (P>0.05).

Effect of MI192 pre-treatment on RUNX2 and OCN proteins and
mineralisation
Western blot was run to detect the expression of RUNX2 and OCN in hADSCs, and representative bands of the pro-
teins were shown in each panel. Pre-treatment with 30 μM of MI192 led to increased expression of RUNX2 and OCN
significantly compared with other groups (+P<0.01, respectively) (Figure 9A). The effects of MI192 pre-treatment
on hADSCs extracellular matrix calcium deposition were identified via Alizarin red staining. MI192 substantially
enhanced hADSCs alizarin red staining for calcium deposition compared with that in the basal medium culture and
the other two groups (Figure 9B). Following semi-quantitative analysis, it was confirmed that the MI192 pre-treated
group exhibited a significant increase in the mineralised nodule areas of four groups after 3 weeks (*P<0.05).

Discussion
It is well understood that there is a major clinical need for innovative approaches to the restoration of bone structure
and function [68,69]. Bone tissue engineering seeks to address this, and it has been generally accepted that bone tissue
engineering requires three basic elements: cells, biomaterial scaffolds, and growth factors [70–72]. Although there is
an increasing trend to consider mechanical simulation and the microenvironment as a fourth element in functional
tissue engineering [73,74].

As discussed earlier, human adipose-derived stem cells are one of the most attractive stem cell sources for bone
tissue regeneration [75–77]. Although many different protocols have been developed for controlling cell proliferation
and differentiation [58,78], it is still a massive challenge to find methods that are simple, safe, cost-effective, and mimic
biological/physiological processes of controlling stem cell behaviour for clinical applications. The present study was
undertaken to investigate if altering a cell’s epigenetic makeup can aid in the control of stem cells, with osteogenic
differentiation as a long-term goal. We have examined the effect of an HDAC2/3 selective inhibitor MI192 on hADSCs
proliferation and osteogenic differentiation in vitro.

In the present study, the population doubling time of hADSCs at passage 5 in basal medium and OS on normal
cell culture plastic was 42 and 50 h, respectively. As expected, osteogenic culture increased the cell doubling time,
and this was within the ranges reported in the literature [79]. However, when the cells were cultured in 1, 10 μM of
MI192, the PDTs were further increased to 80 and 90 h, respectively. However, a higher concentration of MI192 and
a longer treatment period showed a cytotoxic effect on the hADSCs. After 3 days of pre-treatment, even 1 μM of
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Figure 8. Gene expression in osteogenic induction of MI192 pre-treated hADSCs

Real-time PCR analysis further indicated an increased expression of RUNX2, COL1, and OCN in MI192 and VPA groups, as com-

pared with non-induced controls. There was an 0.5- to 2.5-fold increase in the mRNA levels of RUNX2 in the cells obtained from

MI192 pre-treated group versus only the osteogenic group during the osteogenic induction 5 or 10 days. Furthermore, the mRNA

level of COL1 was higher in MI192 pre-treated group than in other groups after 10 days of osteogenic induction. Moreover, the

mRNA level of OCN was higher in MI192 pre-treated group than only the osteogenic group during the osteogenic induction of 5

or 10 days. However, MI192 treatment significantly up-regulated the gene expression of RUNX2, COL1, and OCN compared with

that of the basal medium along control group (P<0.05) at day 15; *P≤0.05.
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Figure 9. Effect of 30 μM of MI192 pre-treatment for 2 days on the expression of RUNX2 and OCN proteins in hADSCs

(Western blot) and calcium accumulation at day 21 (Alizarin red)

(A) Western blot: the expression of RUNX2 (left) and OCN (right) in hADSCs, and representative bands of the proteins were shown

in each panel. Pre-treatment with 30 μM of MI192 led to significantly increased expression of RUNX2 and OCN compared with

other groups (P<0.01, respectively). (B) Alizarin Red staining and semi-quantitative assay: Calcium deposition at day 21 (scale bar:

100 μm); (P≤0.05). +P<0.01, *P≤0.05.

MI192 group was also significantly more cytotoxic than the control group (P≤0.01) (Figure 2). This is similar to our
previous studies that MI192 affected hADSCs morphology and viability [47].

By way of explanation for this, when the cell cycle progression of the cells was analysed, we discovered that MI192
(30 and 80 μM) treated cells were paused at the G2/M phase of the cell cycle, along with having a reduction of S-phase
cells, compared with untreated and VPA treated controls. These results indicated that MI192 pre-treatment plays a
key role in controlling the cell cycle [80], similar to various in vitro and in vivo studies in the literature [18,81], It
has long been known that HDACis causing cell cycle arrest is a mechanism which acts as anti-cancer therapeutic,
arresting cell growth, for example, in acute promyelocytic leukaemia and cell lines derived from colon, lung, and
prostate carcinomas [82] and cell lines derived from neuroblastoma, glioma, and teratocarcinoma [83]. Studying this
mechanism further, Li et al. (2015) showed that HDAC10 regulates the G2/M phase transition in the cell cycle via
a novel let-7-HMGA2-cyclin A2 pathway, and cyclin A2 overexpression rescues the HDAC10 knockdown-induced
G2/M transition arrest [18]. Previous reports show that HDAC10 interacts with HDAC3 but not with HDAC4 or
HDAC6 [84]. Therefore, the inhibition of HDAC2/3 by MI192 may interfere with HDAC10 and prevent the G2/M
cell cycle transition. Different HDACs and cell types have resulted in cell cycle arrest at different points in the cell cycle,
with the results from others showing, for example, cervical carcinoma cells arresting at G1 [85] or human lymphatic
endothelial cells at G0/G1 [86]. Although the mechanisms behind this are still not very clear, the effect of MI192 on
the cell cycle could help to synchronise the hADSCs, and a less compacted DNA structure could help with the gene
transcription procedure during the osteogenic induction.

This could be due to the cell cycle halting effect, as a cell’s natural recovery system may take over, and apoptosis may
occur [47,87]. Similarly, Paradis et al. (2015) reported that MS275 (a class I HDACi) and Sirtinol (a class II HDACi)
were embryotoxic and teratogenic [34,88]. However, most studies into HDACis and non-cancerous cells are silent on
any cytotoxic effects of the HDACis.

Interestingly, after 5 days of culture in 1 and 10 μM MI192 (in basal medium), the inhibition of hADSCs prolif-
eration was in a dose-dependent manner. The MI192 also reduced the positive ALP staining of hADSCs compared
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with the OS positive control group and the basal medium negative control group. As ALP is a well-known and ex-
tensively studied earlier-stage osteogenic marker, these results mean that long-term exposure to MI192 could reduce
the osteogenic potential of the exposed cells. The other reports also suggested that ALP plays a critical role in calci-
fied/mineralised tissue formation by regulating phosphate transport [89,90].

Considering both the cytotoxic and osteogenic reduction effects of MI192, a pre-treatment strategy has been de-
veloped to optimise the best concentration and period of pre-treatment. This approach was similar to that reported
previously in the literature [47,87].

While there is still some cell death from 2 days of pre-treatment with MI192 (Figure 2), there was a reduction of
the cytotoxicity of MI192, which is offset by a drastically increased osteogenic differentiation potential of hADSCs.
Flis et al. (2009) showed that entinostat (MS275) and suberic bishydroxamate (SBHA) enhanced cytotoxicity [91].
Chidamide synergistically enhanced cytotoxicity in pancreatic cancer cells [92]. This was evidenced by enhanced ALP
positive staining and quantitative ALPSA (Supplementary Figures S5 and 6). This effect of MI192 on ALP activity
was dose-dependent, and the optimal concentration of MI192 for the pre-treatment of hADSCs was found to be 30
μM with an optimal pre-treatment duration of 2 days. Therefore, these results indicated that the 2 days pre-treatment
with MI192 can enhance the osteogenic differentiation of hADSCs. Other groups have reported that the treatment
with hDACs can increase stem cells’ osteogenic potential. For example, Cho et al. (2005) used VPA, a non-selective
HDAC inhibitor, on human mesenchymal stem cells [26], and Xu et al. (2009) used sodium butyrate and VPA to treat
mouse hADSCs [93].

As VPA is known to promote MSCs osteogenic differentiation [26], therefore, it was used as a control in some of
these experiments, with the effect of VPA pre-treatment compared with MI192 pre-treatment. Importantly, MI192
was shown to drastically increase the osteogenic potential of cells when compared with VPA (Figure 8). This is an
exciting result, as it shows that MI192 has a greater potential than VPA, an HDACi often reported in the literature as
being a strong inducer of osteogenic differentiation in stem cells.

As well as ALP activity, MI192’s effect on osteogenic gene expression was explored, including RUNX2 (an os-
teogenic transcription factor), COL1 (a mid-stage osteogenic marker), and OCN (a late osteogenic marker) gene
expression was measured. Two days of pre-treatment with MI192 (30 μM) prior to osteogenic culture in resulted in
an initial (day 0) reduction of osteogenic markers RUNX2, COL1, and OCN, whilst similar VPA treatment signif-
icantly up-regulated RUNX2 but down-regulated COL1 and OCN gene expression compared with basal medium
group. This may demonstrate that MI192 has a slower mechanism of action than VPA. After further culture of the
cells in the osteogenic medium (shown in 5 and 10 days), the hADSCs pre-treated with 30 μM of MI192 significantly
up-regulated osteogenic marker expression when compared with the controls. The spike in osteogenic gene expression
was reduced by day 15 when the results were comparable to the controls. This indicates that the MI192 pre-treatment
has increased the osteogenic capacity of the hADSCs. Given that MI192 is an HDAC3 (along with HDAC2) specific
inhibitor, the fact that HDAC3 is depleted during osteogenic differentiation is interesting and relevant. For exam-
ple, this reduction in HDAC3 during osteogenic differentiation could indicate that HDAC helps maintain cells in a
pluripotent state, and by inhibiting HDAC3, the cell is then more susceptible to the induction of differentiation of
cells (e.g., osteogenic shown here).

In the present study, the effects of MI192 pre-treatment on the expression of osteogenesis-related genes and pro-
teins were also investigated. Our finding showed that MI192 significantly up-regulated hADSCs RUNX2 and OCN
expression levels and mineralisation throughout the osteogenic culture. It is well known that RUNX2 is the osteoblas-
tic transcription factor that plays a key role in osteogenic differentiation [94,95]. HDAC1, HDAC3, HDAC4, and
HDAC6 are known to inhibit RUNX2 activity in different pre-osteoblastic cell lines and bone-marrow stem cells
[96,97]. These quantitative rtPCR results show that whilst MI192 pre-treatment initially down-regulated expression
of RUNX2, after prolonged culture, the levels of gene expression spiked.

Although the mechanism is still not fully understood, the initial arrest of the cells at the G2M phase of the cell cycle
may play some important roles. After the removal of MI192, more cells from the G2M phase entered into the mitotic
phase and cytokinesis phase at the same time and response to the osteogenic induction, which, in turn, started the
cascade event for osteogenic differentiation into more osteoblastic cells (express stronger ALP). This may be due to
cell synchronisation, which brings cells at different stages of the cell cycle into the same phase and enhances the ALP
activities of the cells as a whole, improving the efficacy of bone tissue regeneration [98,99].

Conclusion
The present study has demonstrated that the specific inhibition of HDAC2/3 can achieve epigenetic reprogramming
of hADSCs resulting in promoting stem cell’s osteogenic differentiation potential. This effect of MI192 is stronger
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than broadspectrum HDACis, such as VPA. As the epigenetic approach does not change the genome of the stem
cells, it is considered safer and more cost-effective to use MI192 for clinical bone repair and regeneration.
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Supplementary figures 

 

 

 

Figure S1: Flow cytometric analysis of hADSCs. hADSCs (P5) revealed expression 

of CD29 (93.9 %), CD34(0.7%), CD45(2.9%) and CD90 (99 %).  

 

 

 

 

 

 

 



 

Figure S2: Multilineage differentiation of hADSC  

A-C) basal medium culture; D) osteogenic culture; E) adipogenic culture; F) 

neurogenic induction culture. A & D) Alizarin red staining: red colour shows the 

positive stain of Alizarin red, which indicates calcium accumulation; B & E) Oil red 

O staining: red colour shows the positive staining for lipid clusters; C & F) Nestin 

staining: green colour indicated the positive stain for nestin (neurogenic marker) and 

the blue colour are nuclei. Scale bar = 50 um.,  

 

 

 

 



 

Figure S3: ALP staining on another batch of hADSCs pre-treated with MI192 

for 2 days and osteogenic induction for 5 days. ALP staining showed that the group 

that was pre-treated with 30 µM MI192 for 2 days markedly increased the ALP stain 

intensity compared to that in the control groups. 

 

 

 

 

 

 

 



 

Figure S4: 30 µM MI192 decreased H DAC2 and HDAC3 expression in hADSCs.  

Mean ± SD (n=3). * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001. After 2 days and 5 days of 

pre-treatment with 30 µM MI192, relative mRNA expression of HDAC2 and HDAC3 

in hADSCs significantly decreased compared to the control group in basal medium 

culture.  
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Figure S5: HDAC activity levels of hADSCs after 48h of treatment with different 

concentrations of MI192. The graph showed the influence of MI192 on hADSCs 

epigenetic functionality using HDAC activity levels. Treatment with MI192 

significantly reduced hADSCs metabolic activity compared to untreated groups. 

Mean ± SD (n=3). * p ≤ 0.05.  

 

 

  



 

 

 

Figure S6: Full uncropped and unedited version sof the Western blot (top panel). 

The red doted outlines (midle panel) indicated the lanes used to build the figure 9A 

(bottom panel).  

 

 

 

 

 

 


