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Background: M2 macrophages have been reported to be important in the progression of
coronary artery disease (CAD). Thus, the present study aims at exploring the diagnostic
value of M2 macrophage-associated genes in CAD.
Methods: Transcriptome profile of CAD and control samples were downloaded from Gene
Expression Omnibus database. The proportion of immune cells was analyzed using cell
type identification by estimating relative subsets of RNA transcripts. Weighted Gene
Co-expression Network Analysis (WGCNA) was carried out to screen the relevant module
associated with M2 macrophages. Differential CAD and control samples of expressed genes
(DEGs) were identified by the limma R package. Functional enrichment analysis by means of
the clusterProfiler R package. Least absolute shrinkage and selection operator (LASSO) and
random forest (RF) algorithms were carried out to select signature genes. Receiver operat-
ing curves (ROC) were plotted to evaluate the diagnostic value of selected signature genes.
The expressions of potential diagnostic markers were validated by RT-qPCR. The ceRNA
network of diagnostic biomarkers was constructed via miRwalk and Starbase database.
CMap database was used to screen candidate drugs in the treatment of CAD by targeting
diagnostic biomarkers.
Results: A total of 166 M2 macrophage-associated genes were identified by WGCNA. By
intersecting those genes with 879 DEGs, 53 M2 macrophage-associated DEGs were ob-
tained in the present study. By LASSO, RF, and ROC analyses, C1orf105, CCL22, CRYGB,
FRK, GAP43, REG1P, CALB1, and PTPN21 were identified as potential diagnostic biomark-
ers. RT-qPCR showed the consistent expression patterns of diagnostic biomarkers between
GEO dataset and clinical samples. Perhexiline, alimemazine and mecamylamine were found
to be potential drugs in the treatment of CAD.
Conclusion: We identified eight M2 macrophage-associated diagnostic biomarkers and can-
didate drugs for the CAD treatment.

Introduction
As the population ages, the incidence of coronary artery disease (CAD) has increased, which is one of
the most serious threats to human health and quality of life [1,2]. CAD is a heart condition caused by
atherosclerosis (AS), a narrowing or blockage of the lumen of the coronary vessels, resulting in ischemia,
hypoxia, or necrosis of the heart muscle [3]. According to the China Cardiovascular Health and Disease
Report 2020, the mortality rate of coronary heart disease in China is 120.18 per 100,000 urban residents
and 128.24 per 100,000 rural residents, seriously endangering the health of the population [4].
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Coronary angiography (CAG) is the gold standard for detecting CAD [2], and the most common traditional
biomarkers for the diagnosis of coronary heart disease including ultrasensitive C-reactive protein (hs-CRP) and crea-
tine kinase MB (CK-MB) [5]. Recently discovered non-invasive biomarkers such as miRNA and metalloproteinase-1
(MMP1) can be used as new methods for the CAD prediction and diagnosis [6–8]. Traditional diagnostic tools such
as CAG or biomarkers are rarely used for early diagnosis or the prognosis prediction of CAD. The acute myocardial
infarction in CAD is a serious threat to the health of the population, and there is an urgent need to find new tools for
the early diagnosis of CAD so that appropriate interventions can be made earlier and in a more timely manner.

Monocytes are associated with the progression of CAD and atherosclerosis. During the course of CAD, monocytes
are recruited and activated into macrophages. Macrophages can form foam cells after uptake of oxidized low-density
lipoprotein (oxLDL) via scavenger receptors [9–11]; they are stimulated by different factors to differentiate into M1
and M2 subtypes and play different roles in the course of CAD [12]. M1 macrophages can secrete proinflamma-
tory factors and substances such as reactive oxygen species that can aggravate atherosclerosis [13]. Another type of
macrophage is the alternatively activated macrophage (M2), which secretes anti-inflammatory factors such as IL-1
receptor agonists, IL-10 and collagen, producing anti-inflammatory effects [14]. It has been shown that large concen-
trations of M1 macrophages are found in the unstable portion of rupture-prone plaques, while large concentrations
of M2 macrophages are found in stable atherosclerotic plaques [15].

In conclusion, M2 macrophages are linked to the development of CAD. Identification of M2 macrophages is critical
for early detection and cause research of CAD. As a result, the goal of the present study is discovery genes related to
M2 macrophages in CAD and examination of their diagnostic utility for CAD through bioinformatics.

Materials and methods
Data source
The mRNA expression profiles of whole blood cell from 87 CAD and 52 control samples were downloaded from
the GSE20680 dataset. The mRNA expression data of whole blood cells from 11 CAD and 13 control samples were
downloaded from the GSE42148 dataset. The lncRNA expression data in peripheral blood mononuclear cells of 93
CAD and 48 controls were sourced from GSE113079. In addition, the miRNA expression data of platelet in 12 CAD
and 12 controls were obtained from the GSE28858 database.

Identification of differentially expressed genes
GSE20680 and GSE42148 were merged to identify differentially expressed genes (DEGs) between CAD and control
samples. To remove the batch effect between GSE20680 and GSE42148, the ComBat function in the sva package of
R was applied. Principle component analysis (PCA) was performed to assess the distribution of data in GSE20680
and GSE42148. Limma R package was used to screen DEGs using adjusted P-value < 0.05 as criteria. Meanwhile,
differentially expressed miRNAs (DEmiRNAs) in GSE28858 and differentially expressed lncRNAs (DElncRNAs) in
GSE113079 between CAD and control samples were also identified by the limma R package with a P-value < 0.05.

Distribution of immune cells
Cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was used to analyze the land-
scape of CAD and control samples in the merged dataset. In the present study, we used the LM22 signature, which
are markers of naive B cells, memory B cells, plasma cells, CD8+ T cells, CD4+ naive T cells, resting CD4+ memory
T cells, activated CD4+ memory T cells, follicular helper T cells, regulatory T cells, γ�T cells, resting NK cells, ac-
tivated NK cells, monocytes, M0 macrophages, M1 macrophages, M2 macrophages, resting dendritic cells, activated
dendritic cells, resting mast cells, activated mast cells, eosinophils, and neutrophils. For each sample, the final CIBER-
SORT output estimates were normalized, to sum up to one and thus can be interpreted directly as cell fractions for
comparison across different immune cell types and datasets.

WGCNA analysis
We first constructed a sample clustering tree map to detect and eliminate outliers. Then, weighted gene co-expression
network analysis (WGCNA) was performed based on the gene expressions and the proportions of M2 macrophages
of CAD and control samples. The pick Soft Threshold function of WGCNA was used to calculate β from 1 to 20 in
order to select the best soft threshold. Based on the selected soft threshold, the adjacency matrix was converted to a
topological overlap matrix to construct the network, and the gene dendrogram and module color were established
by using the degree of dissimilarity. We further divided the initial module by dynamic tree cutting and merged sim-
ilar modules. The Pearson’s correlation coefficient between the module eigengenes and the infiltration levels of M2
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macrophages was calculated to find out the most relevant module. Genes in the module with gene significance (GS)
> 0.5 and module membership (MM) > 0.8 were considered as modular genes and used for downstream analysis.

Identification and functional analysis of M2 macrophage-related DEGs
M2 macrophage-related DEGs were obtained by intersecting DEGs with modular genes. The function of those genes
was analyzed by the clusterProfiler R package. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and
Gene ontology (GO) terms with a P-value < 0.05 and gene count ≥ 2 were considered as significantly enriched. The
enrichment results were displayed in a bar chart generated by the enrichplot R package. The relationship among those
genes were analyzed by constructing protein–protein interaction (PPI) network via the STRING database (confidence
= 0.4).

Construction of diagnostic model by LASSO and RF
Thereafter, random forest (RF) and least absolute shrinkage and selection operator (LASSO) were applied to construct
the diagnostic model. Briefly, for LASSO, all samples in the merged dataset were randomly divided into training and
testing sets at a ratio of 7:3. Then, we applied the LASSO algorithm by using the glmnet package in R software,
screened the gene signatures under the optimal lambda with the smallest classification error, and constructed the
diagnostic model based on the gene signatures in the training set. Receiver operating curves (ROC), composed of
sensitivity, specificity, and area under the curve (AUC), were performed in both training and testing sets to evaluate
the performance of the LASSO diagnostic models. RF was performed by the caret R package, and gene features and
their contributions were then analyzed by explaining the function in the DALEX R package. Also, the ROC curve was
plotted to assess the performance of the RF model in the diagnosis of CAD.

Identification of hub genes in CAD
Hub genes in CAD were obtained by overlapping gene signatures identified in LASSO and RF. The diagnostic value
of hub genes was assessed by ROC curves. Hub genes with an AUC > 0.7 were considered as candidate diagnos-
tic biomarkers in CAD. Subsequently, the miRwalk database was used to predict DEmiRNAs targeting diagnostic
biomarkers, and the Starbase database was used to predict DElncRNAs interacting with DEmiRNAs. By integrating
miRNA-diagnostic biomarker and lncRNA-miRNA relation pairs, a lncRNA-miRNA-diagnostic biomarker network
was constructed and visualized by Cytoscape software. In addition, the Cmap database was applied to identify po-
tential drugs targeting diagnostic biomarkers. In the study, diagnostic genes with up-regulated and down-regulated
trends were loaded into the ‘QUICK QUERY’ page and selected with criteria of enrichment score ≥ 0.5 and P-value
<0.05. Next, the 3D structure and physicochemical properties of potential drugs were downloaded from the Pub-
Chem and DrugBank databases.

RT-qPCR
Total RNA of blood samples from CAD (N=11) and controls (N=11) were extracted by TRIzol Reagent (Life Tech-
nologies, CA, U.S.A.). After detecting the concentration and the purity of RNA, qualified RNA was used for reverse
transcription using sweScript RT I First strabd cDNA SynthesisAll-in-OneTM First-Strand cDNA Synthesis Kit (Ser-
vicebio, Wuhan, China). Then qPCR was performed using 2xUniversal Blue SYBR Green qPCR Master Mix (Ser-
vicebio, Wuhan, China) under the thermal cycling conditions: 40 cycles at 95◦C for 60 s, 95◦C for 20 s, 55◦C for 20 s,
and 72◦C for the 30 s. The 2−��Ct method was used to calculate gene expressions. The primer sequences used in the
present study were given in Table 1.

Results
Identification of DEGs between CAD and controls
The whole flowchart of the study procedure is shown in Supplementary Figure S1. PCA analysis showed that the
data in GSE20680 and GSE42148 were distributed in distinct clusters (Figure 1A). After removing the batch effect
(Figure 1B), we merged GSE20680 and GSE42148 to identify DEGs between CAD and controls. A total of 879 DEGs,
including 446 up-regulated and 433 down-regulated genes, were identified (Supplementary Table S1 and Figure 1C).

Identification of the key module associated with M2 macrophages
Next, we used CIBERSORT to investigate the distribution of immune cells in CAD and control samples (Supplemen-
tary Table S2). It can be found that the top 5 immune cells in CAD samples were resting memory CD4 T cells, resting
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Table 1 Primers for qPCR used in the present study

Gene Sequence (5′ to 3′)

C1orf105 F: AATGCCCTCATCCCTTCTCC

R: TCACTGCCTCGTTGTCTTGC

CALB1 F: GTCATCCCTCATCACAGCC

R: TCCAGGTAACCACTTCCGT

CCL22 F: CGCTTCAAGCAACTGAGGCA

R: AGGGGCAGACGGTAACGGAC

CRYGB F: CGCTCCTGCTGCCTCATCCC

R: CCCCCCAATCAAGAAACCTC

FRK F: CTTTGCTCTCCCCAGTCAC

R: ATCCCCCTTCATCCAGTCT

GAP43 F: CGCACTCCACTTTTTACCTT

R: CATCATTTTTTTCAACCCTT

REG1P F: GGAAGGTAATAGGTGCTCTG

R: AGGATGTTTTTGAATGGGAT

PTPN21 F: CGGATTTTGGTGACTTTGAT

R: CACTTTTTGGGTTGCTTCTT

GAPDH F: CCCATCACCATCTTCCAGG

R: CATCACGCCACAGTTTCCC

NK cells, näıve CD4 T cells, monocytes, and neutrophils (Figure 2A), and the top 5 immune cells in control samples
were resting NK cells, naı̈ve CD4 T cells, CD8 T cells, monocytes, and neutrophils (Figure 2B). To find the genes asso-
ciated with M2 macrophages, we performed WGCNA. According to the sample clustering result, no outlier samples
were detected, and the sample dendrogram and trait heatmap were built as shown in Figure 2C. By using the pick
Soft Threshold function of WGCNA, the optimal soft threshold power was determined as 5, in which R2 was approx-
imately 0.85 (Figure 2D). Finally, after merging similar modules, 15 modules were identified from the co-expression
network (Figure 2E). According to the module–trait relationships in Figure 2F, the grey60 module was most relevant
to M2 macrophages (cor = 0.64, P-value < 0.01).

Identification of M2 macrophages-related DEGs in CAD
Using GS > 0.5 and MM > 0.8, 166 genes in the grey60 module were obtained (Figure 3A). Then by overlapping those
genes with DEGs, 53 M2 macrophage-related DEGs were obtained (Figure 3B). The M2 macrophage-related DEGs
were significantly enriched into 13 cellular components, including GABA-ergic synapse, ion channel complex, dis-
tal axon, transmembrane transporter complex, transporter complex, potassium channel complex, sarcomere, cation
channel complex, myofibril, contractile fiber, integral component of postsynaptic membrane, intrinsic component of
postsynaptic membrane, axon terminus, and eight molecular functions, including cytokine activity, cytokine receptor
binding, actinin binding, metal ion transmembrane transporter activity, receptor ligand activity, signaling receptor
activator activity, type I interferon receptor binding and anion: cation symporter activity (Figure 3C). Furthermore,
some M2 macrophage-related DEGs had interactions with each other via the STRING database (Figure 3D).

Identification of diagnostic biomarkers in CAD
By LASSO, 21 gene signatures were identified (Figure 4A), including ABCC9, AFF2, C1orf105, CALB1, CCL22,
CRYGB, DGKE, EFCAB6, EHHADH, FRK, GAP43, HOXC11, KCNMB2, POF1B, PTPN21, REG1P, RERGL, SUSD5,
TEX11, TTPA, and UGT2A3. ROC showed that the LASSO model had good performance in both training (AUC =
1) and testing sets (AUC = 0.894) (Figure 4B). By RF algorithm, CCL22, TNFSF18, GAP43, ADH7, HTN3, REG1P,
IFNA8, FRK, TMEM47, DEFB126, TTPA, SLC39A14, GRIK3, FGB, C1orf105, VSNL1, NPY2R, HTR5A, CRYGB,
TIMP4, MYOT, PTH, ABCC9, CHRNA9, ALK, GLP1R, SLC2A2, C14orf105, PDLIM3, CALB1, TRPC5, and PTPN2
were selected as gene signatures (Figure 4C). The AUC value for the RF model was 0.943 (Figure 4D), indicating its
ability in distinguishing CAD and control samples. By overlapping gene signatures in LASSO and RF models, 10
hub genes were acquired (Figure 5A). It can be seen from ROC curves that C1orf105, CALB1, CCL22, CRYGB, FRK,
GAP43, PTPN21, and REG1P may act as the potential diagnostic biomarkers (Figure 5B). The expressions of PTPN21
and CALB1 were significantly elevated, while the expressions of C1orf105, CCL22, CRYGB, FRK, GAP43, and REG1P
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Figure 1. Identification of DEGs between CAD and control samples

(A) PCA before removing batch effect, red dots represent GSE20680 data, and azure dots represent GSE42148 data. (B) PCA

after removing batch effect, red dots represent GSE20680 data, and azure dots represent GSE42148 data. (C) Volcano plot of the

merged dataset. Turquoise green ones represented down-regulation, dark reddish purple ones indicated up-regulation, and gray

ones were the rest of the DEGs. The dashed horizontal and vertical axes indicate the logFC absolute threshold of 1 and the P-value

threshold of 0.05, respectively.

were significantly decreased in the CAD samples of the merged dataset (Supplementary Figure S2). Consensus ex-
pression patterns of diagnostic biomarkers were found in CAD and control samples by RT-qPCR (Figure 6).

Identification of lncRNAs, miRNAs, and drugs targeting diagnostic
biomarkers
A total of 2158 DElncRNAs, including 961 up-regulated and 1197 down-regulated lncRNAs, were identified in
GSE113079 (Supplementary Table S3 and Figure 7A). A total of 369 DEmiRNAs, including 165 up-regulated
and 204 down-regulated lncRNAs, were identified in GSE28858 (Supplementary Table S4 and Figure 7B). More-
over, 37 DEmiRNA-diagnostic biomarkers and 488 DElncRNA–DEmiRNA pairs were found by miRwalk and Star-
base database. Finally, a lncRNA-miRNA-diagnostic biomarker network was constructed, which was composed of
five miRNAs (mir-520a-5p, mir-876-5p, mir-346, mir-193a-3p, and mir-1224-5p) and four diagnostic biomarkers
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Figure 2. Identification of DEGs between CAD and control samples

(A,B) Nightingale rose diagram of the proportion of immune cells in the CAD and normal group samples. Each color in the graph

represents one immune cell and the larger the area of each colour, the greater the proportion of cells represented. (C) Construction

of sample clusters and phenotypic trait heat maps based on M2 data from CAD and normal samples. (D) Determine soft thresholds.

optimal soft threshold power was 5, in which R2 was approximately 0.85. (E) Cluster dendrogram of co-expressed genes in CAD.

(F) Module–trait relationships in M2 macrophages. Each cell contains the corresponding correlation and P-value.

6 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2022) 42 BSR20221394
https://doi.org/10.1042/BSR20221394

Figure 3. Identification of M2 macrophages-related DEGs in CAD

(A) Scatter plot of module eigengenes in the grey60 module. (B) Screening for M2 macrophages-related DEGs. Blue represents

genes differentially expressed between CAD/Control, and pink represents WGCNA acquisition of M2-related key module genes.

(C) Bar chart of GO enrichment for M2 macrophages-related DEGs. The vertical coordinate indicates the enriched GO Term, the

bar length indicates the number of key module genes enriched by that GO Term, and the color from blue to red indicates the low

to high confidence level of the results. (D) A network of protein interactions for M2 macrophages-related DEGs.

(C1orf105, CCL22, FRK, and GAP43) (Figure 7C). Besides, the 40 potential drugs targeting diagnostic biomarkers
predicted in the treatment of CAD were summarized in Supplementary Table S5, the top 3 significantly identified
drugs among others were perhexiline (PubChem CID: 4746, Figure 7D), alimemazine (PubChem CID: 5574, Figure
7E), and mecamylamine (PubChem CID: 4032, Figure 7F). The LogP values of which are 6.2, 4.71, and 2.7, respec-
tively, and the other chemico-physical properties (molecular formula, solubility, pKa, etc.) were presented in Supple-
mentary Table S6. The obtained compounds may achieve positive treatment outcomes of CAD.

Discussion
CAD is one of the major cardiovascular diseases that seriously endanger human health. The pathological basis of
CAD is atherosclerosis of the coronary vessels [4]. It has been demonstrated that a range of immune cells are relevant
to the advancement of coronary artery disease, such as CD4 T cells [16], Treg T cells [17], neutrophils [18], and den-
dritic cells [19]. Furthermore, macrophage activation has been linked to coronary heart disease; the ratio of M1/M2
macrophages was found to be positively correlated with the severity of CAD [20,21]. We utilized bioinformatics anal-
ysis in this work to seek modular genes strongly related with M2 macrophages in CAD patients and analyze them
appropriately to discover biomarkers and forecast prospective treatment drugs.
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Figure 4. Identification of diagnostic signature for CAD by LASSO and RF algorithms

(A) LASSO regression of the 53 M2 macrophage-related DEGs (left). Cross-validation for tuning the parameter selection in the

LASSO regression (right). (B) Evaluation and validation of LASSO diagnostic model by ROC curves. (C) Importance of genetic

variables in RF models. (D) Evaluation of RF diagnostic model by ROC curve.

Figure 5. Identification of key diagnostic biomarkers for CAD

(A) Intersection of LASSO diagnostic model genes with RF model genes. Blue represents LASSO diagnostic model genes; pink

represents RF model genes. (B) ROC curves for candidate biomarkers.
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Figure 6. Detection of diagnostic biomarker expression by RT-qPCR in CAD and control samples.

Data are expressed as mean +− SEM (n = 10), compared to control, * P < 0. 0 or ** P < 0. 01.

In the present study, M2 macrophage-associated DEGs were significantly enriched in 13 cellular components, and
several of them involved in ion exchange inside and outside the cell (ion channel complex, potassium channel com-
plex, cation channel complex). Macrophage ion exchange has several functions in the development of CAD inflam-
mation [22–25]. For instance, macrophage pyroptosis is often seen as NLRP3 inflammasome activation, and one of
the mechanisms of NLRP3 inflammasome activation is potassium ion crossing the cytoplasmic membrane [26].

Moreover, among the mainly enriched 13 cellular components, some of them were involved in cellular material
transport (transmembrane transporter complex, transporter complex). The transport of substances by macrophages
is also critical in the development of inflammation [27–29]. For example, members of the ABC transporter super-
family, ABCA1 and ABCG1, facilitate cholesterol efflux from foam cells to the extracellular cholesterol receptors
Apolipoprotein AI (ApoA-I) and high density lipoprotein (HDL), respectively, restricting foam cell development and
slowing the progression of atherosclerosis [30,31].

In turn, the eight enriched molecular functions also contain multiple cytokine-related MFs (cytokine activity, cy-
tokine receptor binding, receptor ligand activity, type I interferon receptor binding). Macrophages are polarized into a
variety of phenotypes (e.g. M1/M2 type) based on their environment [32]. To counteract the sustained inflammatory
response and tissue damage produced by M1 macrophages, the body induces M2 macrophage polarization by activat-
ing Th2 cells to release IL-4 and IL-13 and binding IL-4R [33]. Furthermore, IL-10 can control M2 macrophage activ-
ity by stimulating the downstream STAT3 signaling pathway [34]. M2 macrophages secrete anti-inflammatory factors
that antagonize the chronic inflammatory response induced by M1 macrophages; in addition, M2 macrophages have a
strong phagocytic capacity to remove debris and apoptotic cells and suppress inflammation [35]. On the other hand,
M2 macrophages are prevalent in stable plaques. More importantly, the phenotypic changes between M1 and M2
macrophage types are reversible [36,37].

Subsequently, the ROC curve result illustrated, C1orf105, CALB1, CCL22, CRYGB, FRK, GAP43, PTPN21, and
REG1P could be used as potential diagnostic biomarkers. Among these, CCL22, which is primarily produced by
monocyte-derived alternative (M2) macrophages, is a member of the CC family of chemokines and is involved in
monocyte movement and recruitment [38]. CCL22 is a marker of monocyte/macrophage migration characteristic of
atherosclerotic lesions [39]. Harrison et al. reported that rs3768445 on chromosome 1q24.3 is located in a cluster of
protein-coding genes (DNM3, PIGC, C1orf105) that are associated with vascular remodeling and abdominal aortic
aneurysm risk [40]. Electroacupuncture (EA) therapy enhances cardiac function by inhibiting mRNA and protein
expression of GAP43 in a study of myocardial infarction in coronary artery disease [41]. PTPN21 has been reported
to enhance the resistance of PC12 cells to ischemia and hypoxia by activating cdk5 through the ERK1/2 signaling
pathway [42]. In summary, the hub genes related with M2 macrophages that we searched include CCL22, C1orf105,
GAP43, and PTPN21, all of which imply a relationship with cardiovascular disease, which is consistent with our
findings.

We created a network comprising five miRNAs (mir-520a-5p, mir-876-5p, mir-346, mir-193a-3p, and
mir-1224-5p) and four diagnostic biomarkers (C1orf105, CCL22, FRK, and GAP43). Shima et al. reported that
miR-520 found in vascular stenosis was negatively correlated with COX-1 and PTGDS gene expression levels [43].
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Figure 7. Identification of lncRNAs, miRNAs, drugs targeting diagnostic biomarkers

(A) Volcano plot of differentially expressed lncRNAs in the GSE113079 dataset. Purple dot represents down-regulated expression,

and yellow dot represents up-regulated expression. (B) Volcano plot of differentially expressed miRNAs in the GSE28858 dataset.

Blue dot represents down-regulated expression, orange dot represents up-regulated expression. (C) The diagnostic biomarker

based ceRNA regulatory network in CAD. Blue hexagons represent differentially expressed mRNAs, yellow inverted triangular cones

represent lncRNAs, and purple triangles represent mRNAs. (D–F) Three-dimensional structures of potential therapeutic agents: per-

hexiline (PubChem CID: 4746 Molecular Formula: C19H35N), alimemazine (PubChem CID: 5574 Molecular Formula: C18H22N2S),

and mecamylamine (PubChem CID: 4032 Molecular Formula: C11H21N)
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TGP inhibits MSU-induced inflammation in THP-1 macrophages by modulating the MALAT1/miR-876-5p/NLRP3
axis [44]. In addition, miR-346 controls SMC phenotypic transformation through interacting with the IFN- path-
way [45]. It was found that TNFα down-regulates vitamin D receptor expression in a miR-346-dependent manner.
As a result, it can promote the progression of cardiovascular disease [46]. Shen et al. mentioned that ERK regulates
macrophage response to M1 and alters miR-193a-3p expression in exosomes via the NF-κB/JAK-STAT pathway [47].

Macrophages also play an important role in the multiple stages of coronary heart disease.The development of
fibrosis after myocardial infarction is inevitable. Recent studies have shown that post-infarction fibrosis is closely
associated with macrophages. Chowkwale et al. found that cardiac cells undergo both inflammatory and matrix re-
modeling processes through the secretion of cytokines, and that inflammation directly regulates TGFβ secretion
through immune cell recruitment and indirectly through the up-regulation of macrophage phagocytosis [48]. In ad-
dition, macrophages promote cardiac recovery and remodelling by reducing fibrotic scarring [49–51]. circRNAs in
M2 macrophage-derived extracellular vesicles (EVs) mediate the cardiac fibrosis process after myocardial infarction
[52]. Taken together, this suggests that M2 macrophage polarization can effectively improve cardiac function and
that M2 macrophage-associated genes can act as valid molecular markers for the diagnosis of patients with coronary
artery disease.

To summarize, in the present study, we identified diagnostic markers associated with M2 macrophages for the first
time in CAD. After analysis by the GSE20680 and GSE42148 datasets, we obtained 10 hub genes by overlapping the
gene signatures in the LASSO and RF models, and by ROC curves, C1orf105, ALB1, CCL22, CRYGB, FRK, GAP43,
PTPN21, and REG1P could be used as potential diagnostic biomarkers. Further, the RT-qPCR results of peripheral
blood from our clinical collection of CAD patients showed the consistent expression patterns of diagnostic biomark-
ers. The hub genes we screened for, such as CCL22, were associated with M2 macrophages, which is consistent with
our findings as well.

Nevertheless, there is still a few limitaions related to the study, first, only two sets of gene sample series (GSE20680
and GSE42148) were available through this study. More in-depth studies are needed with more samples of whole
blood as well as coronary artery tissue regarding coronary artery disease. Second, there is a lack of definitive evidence
for coregulation between non-coding RNAs and genes associated with M2 type macrophages. Further studies should
be conducted to investigate functional validation experiments of M2 macrophage-associated non-coding RNAs in
coronary heart disease.

In conclusion, the present study identified the diagnostic markers associated with M2-type macrophages in CAD,
providing a corresponding biological target for clinical diagnosis to identify people at risk of coronary heart disease
and for timely intervention, and providing a new idea for the prevention and treatment of coronary heart disease.

Conclusion
We identified eight M2 macrophage-associated diagnostic biomarkers and candidate drugs for the CAD treatment.
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32 Baidžajevas, K., Hadadi, É., Lee, B., Lum, J., Shihui, F., Sudbery, I. et al. (2020) Macrophage polarisation associated with atherosclerosis differentially
affects their capacity to hand le lipids. Atherosclerosis 305, 10–18, https://doi.org/10.1016/j.atherosclerosis.2020.05.003

33 Porta, C., Riboldi, E., Ippolito, A. and Sica, A. (2015) Molecular and epigenetic basis of macrophage polarized activation. Semin. Immunol. 27,
237–248, https://doi.org/10.1016/j.smim.2015.10.003

34 Pang, Q.M., Yang, R., Zhang, M., Zou, W.H., Qian, N.N., Xu, Q.J. et al. (2022) Peripheral blood-derived mesenchymal stem cells modulate macrophage
plasticity through the IL-10/STAT 3 pathway. Stem. Cells Int. 2022, 5181241, https://doi.org/10.1155/2022/5181241

35 Gordon, S. (2003) Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35, https://doi.org/10.1038/nri978
36 Gong, M., Zhuo, X. and Ma, A. (2017) STAT6 upregulation promotes M2 macrophage polarization to suppress atherosclerosis. Med. Sci. Monit. Basic

Res. 23, 240–249, https://doi.org/10.12659/MSMBR.904014
37 Rahman, K., Vengrenyuk, Y., Ramsey, S.A., Vila, N.R., Girgis, N.M., Liu, J. et al. (2017) Inflammatory Ly6Chi monocytes and their conversion to M2

macrophages drive atherosclerosis regression. J. Clin. Invest. 127, 2904–2915, https://doi.org/10.1172/JCI75005
38 Kimura, S., Wang, K.Y., Yamada, S., Guo, X., Nabeshima, A., Noguchi, H. et al. (2015) CCL22/macrophage-derived chemokine expression in

apolipoprotein E-deficient mice and effects of Hista mine in the setting of atherosclerosis. J. Atheroscler. Thromb. 22, 599–609,
https://doi.org/10.5551/jat.27417

39 Kimura, S., Tanimoto, A., Wang, K.Y., Shimajiri, S., Guo, X., Tasaki, T. et al. (2012) Expression of macrophage-derived chemokine (CCL22) in
atherosclerosis and regulation by histamine via the H2 receptor. Pathol. Int. 62, 675–683, https://doi.org/10.1111/j.1440-1827.2012.02854.x

40 Harrison, S.C., Zabaneh, D., Asselbergs, F.W., Drenos, F., Jones, G.T., Shah, S. et al. (2013) A gene-centric study of common carotid artery remodelling.
Atherosclerosis 226, 440–446, https://doi.org/10.1016/j.atherosclerosis.2012.11.002

41 Lu, S.F., Wang, J.M., Yuan, J., Yang, W.X., Chen, L.Y., Zhang, T. et al. (2021) Electroacupuncture improves cardiac function and reduces infarct size by
modulating cardiac autonomic remodeling in a mouse model of myocardial ischemia. Acupunct. Med. 39, 681–690,
https://doi.org/10.1177/09645284211009536

42 Cui, N., Lu, H., Li, M. and Yan, Q. (2017) PTPN21 protects PC12 cell against oxygen-glucose deprivation by activating cdk5 through ERK1/2 signal ing
pathway. Eur. J. Pharmacol. 814, 226–231, https://doi.org/10.1016/j.ejphar.2017.08.021

43 Rezaee, S., Kakavandi, N., Shabani, M., Khosravi, M., Hosseini-Fard, S.R. and Najafi, M. (2020) COX and PTGDS gene expression levels in PGD2
synthesis pathway are correlated with miR-520 in patients with vessel restenosis. Endocr. Metab. Immune. Disord. Drug Targets 20, 1514–1522,
https://doi.org/10.2174/1871530320666200511012142

44 Meng, Q., Meng, W., Bian, H., Zheng, F., Gu, H., Zuo, R. et al. (2021) Total glucosides of paeony protects THP-1 macrophages against monosodium
urate-induced inflammation via MALAT1/miR-876-5p/NLRP3 signaling cascade in gouty arthritis. Biomed. Pharmacother. 138, 111413,
https://doi.org/10.1016/j.biopha.2021.111413

45 Karagiannis, G.S., Weile, J., Bader, G.D. and Minta, J. (2013) Integrative pathway dissection of molecular mechanisms of moxLDL-induced vascular
smooth muscle pheno type transformation. BMC Cardiovasc. Disord. 13, 4, https://doi.org/10.1186/1471-2261-13-4

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

13

https://doi.org/10.1016/j.atherosclerosis.2020.04.004
https://doi.org/10.1016/j.atherosclerosis.2019.06.897
https://doi.org/10.1038/s41419-019-2110-3
https://doi.org/10.1002/glia.24174
https://doi.org/10.1371/journal.pone.0260756
https://doi.org/10.1186/s12915-020-00918-w
https://doi.org/10.1016/j.atherosclerosis.2020.11.021
https://doi.org/10.1161/JAHA.119.014572
https://doi.org/10.1021/acs.chemrev.0c00659
https://doi.org/10.3390/cells9030584
https://doi.org/10.1161/01.ATV.0000200082.58536.e1
https://doi.org/10.1161/CIRCRESAHA.113.301086
https://doi.org/10.1016/j.atherosclerosis.2020.05.003
https://doi.org/10.1016/j.smim.2015.10.003
https://doi.org/10.1155/2022/5181241
https://doi.org/10.1038/nri978
https://doi.org/10.12659/MSMBR.904014
https://doi.org/10.1172/JCI75005
https://doi.org/10.5551/jat.27417
https://doi.org/10.1111/j.1440-1827.2012.02854.x
https://doi.org/10.1016/j.atherosclerosis.2012.11.002
https://doi.org/10.1177/09645284211009536
https://doi.org/10.1016/j.ejphar.2017.08.021
https://doi.org/10.2174/1871530320666200511012142
https://doi.org/10.1016/j.biopha.2021.111413
https://doi.org/10.1186/1471-2261-13-4


Bioscience Reports (2022) 42 BSR20221394
https://doi.org/10.1042/BSR20221394
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