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Background: Sarcoma is a rare mesenchymal malignant tumor. Recently, pyroptosis
has been reported to be a mode of programmed cell death. Nonetheless, levels of
pyroptosis-associated genes in sarcoma and its relevance to prognostic outcomes are yet
to be elucidated. Results: Sarcoma cases were classified into two subtypes with regards
to differentially expressed genes. We established a profile composed of seven genes and
classified the sarcoma patients into low- and high-risk groups through least absolute shrink-
age and selection operator Cox regression. Survival rate of low-risk sarcoma patients was
markedly higher, relative to high-risk group (P<0.001). In combination with clinical features,
the risk score was established to be an independent predictive factor for OS of sarcoma
patients. Chemotherapeutic drug sensitivity response analysis found 65 drugs with higher
drug sensitivity in low-risk, than in high-risk group and 14 drugs with higher drug sensitivity
in the high-risk patient group, compared with low-risk patient group. In addition, functional
enrichment, pathway and gene mutation of the two modules were analyzed. Finally, we used
qRT-PCR to detect the expression of seven pyroptosis-related genes in tumor cells, and hu-
man skeletal muscle cells, compared with human skeletal muscle cells, PODXL2, LRRC17,
GABRA3, SCUBE3 and RFLNB genes show high expression levels in tumor cells, while
IGHG2 and hepatic leukemia factor show low expression levels in tumor cells. Conclusions:
Our research suggest that pyroptosis is closely associated with sarcoma, and these find-
ings confirm that pyroptosis-associated seven genes have a critical role in sarcoma and are
potential prognostic factors for sarcoma.

Introduction
Sarcoma is a kind of rare malignancy of mesenchymal tissues [1]. The disease tends to occur in mesenchy-
mal tissue, which includes bones, fat, joints and muscles [2]. Sarcomas are grouped into two, osteosarcoma
and soft-tissue sarcoma [3]. Sarcoma pathogenesis is associated with fusion genes, chromosome mutations
and other factors, but its underlying pathogenic mechanismis are still unclear. Although the source, histo-
logical and molecular markers of sarcomas differ, their common feature is poor disease prognosis [4]. At
present, the principal treatments are radiotherapy and chemotherapy in the clinical, and no targeted drugs
have been proved to be effective [5]. Therefore, it is urgent to further study the molecular mechanism and
signaling pathway of sarcoma.
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Programmed cell death mechanisms, such as apoptosis, necroptosis and pyroptosis have distinct inflammatory
outcomes. Among them, the inflammation of pyrotopia is more severe compared with apoptosis [6]. Pyroptosis is a
programmed cell death also called inflammatory necrosis [7]. Pyrocytes are featured with cell swellings and various
vesicular projections. Under electron microscopy, pyrophosis cells first appear in form of many vesicles. Upon the
formation of these vesicles, they form holes in cell membranes, leading to rupture and release of their contents [8].
Gasdermin family is the major genes of pyroptosis including gasdermin-A, -E as well as pejvakin (DFNB59 or PJVK)
[9]. The gasdermin protein family can be cleaved and polymerized, resulting in the splitting of N- and C-terminal
linking domains and the release of activated N-terminal regions. These released regions bind membrane lipids, car-
diolipin as well as phosphatidylinositol and are located in cell membrane pores [10,11]. The cell gasdermin protein
family in the cell membranes are gradually released from pores of 10–20 nm, and the cell components are gradually
released via membrane pores, leading to enhanced inflammatory reactions. The cells slowly flattened and produced
1–5 μm of apoptotic vesicle-like processes (burned vesicles). The cells slowly expanded to rupture of plasma mem-
brane, which was characterized by nuclear condensation as well as chromatin DNA fragmentation [12,13]. Initially,
pyrotopia was established to be a crucial pathomechanism in fighting infection and is also involved in tumor occur-
rence. Proinflammatory cytokines, inflammatory vesicles and gasdermin proteins are reported to be key components
of pyroptosis and are relevant to tumor genesis, invasion and metastasis [14]. Dupaul-Chicoine et al. reported that
when the inflammatory vesicle-associated genes (CASP1 and NLRP3) were knocked out in transgenic mice, they were
predisposed to colon cancer development, relative to mice with the wild-type gene [15]. In addition, unlike apopto-
sis, various risk-related signaling molecules as well as cytokines are activated and thereafter released when pyroptosis
occurs, accompanied by severe inflammatory reactions and immune system activation [16]. The strong proinflam-
matory result of pyroptosis is correlated with tumor immune microenvironment regulation. Expression deficiency of
GSDMD was followed by a marked decrease in numbers and activities of CD8+T lymphocytes [17]. The crucial role
of pyrophosis in NK cell antitumor function was also demonstrated in a recent study [18].

According to the literature, we conclude that pyroptosis is vital in tumor occurrence as well as anticancer processes.
However, its precise roles in sarcomas are rarely studied. Therefore, this was a systematic analysis to assess the associ-
ation between sarcomas and levels of pyroptosis-associated genes, and to provide new therapeutic targets and options
for sarcomas.

Materials and methods
SARC datasets and preprocessing
Analyses of Cancer Genome Atlas (TCGA) datasets were downloaded in UCSC Xena data browser
(https://xenabrowser.net). We converted the number of fragments per kilobase of non-overlapped exon per
million fragments mapped (FPKM) to Gene expression levels which were then quantified as transcripts per million
reads (TPM) values. The R software (version 3.6.1) and a collection of R/Bioconductor packages were used for
analyses.

Clustering genes of pyroptosis-associated genes
Thirty-three pyroptosis-associated genes were retrieved from prior reviews [19–22]. Clustering of sarcoma transcrip-
tome profiles was performed using NMF implemented in ‘nmf ’ in R (version NMF 0.20.5). R packages (PCA meth-
ods) were used for PCA analyses.

Building and verifying the pyroptosis-related gene prognostic model
‘Limma’ in R was used for identifying differentially expressed genes (DEGs) with P<0.05. Notation of DEGs was as:
*P<0.05, **P<0.01 and ***P<0.001. To evaluate the prognostic significance of pyroptosis-associated genes, we used
Cox regression analyses to determine the association between survival status and every gene in TCGA cohort. To
preclude omissions, 0.2 was the cut-off P-value, random survival forest analysis was used to filter variable. LassoCox
regression model (‘GLmnet’ in R) was used to identify the candidate genes and establish prognosis models. Finally,
seven genes with their coefficients were preserved, and the penalty parameter (λ) was determined according to the
minimum criterion. After standardizing TCGA expression data sets (applying the ‘scale’ function in R), calculate the
risk score: Risk score = ∑7

i Xi × Yi (Y: levels of gene expressions, X: coefficients). TCGA sarcoma patients were
assigned into low-risk and high-risk subgroups based on median risk scores. Circos plot was created using modified
functions from the R package ‘RCircos’. Kaplan–Meier analyses were used for comparisons of OS time between the
two subgroups. Receiver operating characteristic (ROC) curve analysis was performed for 1-5 years using ‘Survival’,
‘Survivor’ and ‘timeROC’ R packages.
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GDSC cell line drug response data
The GDSC large-scale composite reaction screening dataset was obtained [23], which included 990 human cancer
cell lines from 25 cell lineages and 255 chemical compounds. The 255 compounds came had a variety of sources, such
as candidates for clinical drugs, FDA-permitted drugs, and previously reported chemical sensitivity analysis assays.
For drug sensitivity quantification, IC50 from GDSC were used [23]. In order to determine approved to treat various
varieties of cancer drugs, a manual search of the usages of these drugs was performed in Wikipedia and the NCI
database (https://www.cancer.gov/about-cancer/treatment/drugs). The drugs for every tumor type are shown in. We
also downloaded the somatic mutation profiles and tissues of origin for the 990 cancer cell lines [24]. We applied the
propagation algorithm based on ESP to divide every cancer cell line into two clusters, using only the sub-network
data. We then used rank-based Wilcoxon-type statistics for comparisons of differences in drug reactions between the
clusters.

Immunocorrelation analyses and gene expressions
Meanwhile, we compared CIBERSORT [25,26], ESTIMATE [27], MCPcounter [28], single-sample gene set enrich-
ment analysis (ssGSEA) [29] as well as TIMER [30] algorithms, to evaluate cell constituents or cellular immune reac-
tions between high- and low-risk groups with a basis on the characteristics of pyroptosis-associated genes. Heatmaps
were employed to reveal differences in immune reactions under various algorithms. Moreover, ssGSEA was used
for quantifying subsets of tumor-infiltrating immune cells between the groups and for immune function evaluation.
Immune checkpoints were acquired from literature. Cluster Profiler in R was used for gene set enrichment analysis
(GSEA).

Function and pathway enrichment analyses
GO offers regulated and structured vocabularies that model cell components (CC), biological process (BP) and molec-
ular function (MF) [31]. KEGG is a commonly used pathway analysis method, which contains 16 major databases,
assigned into systematic information, chemical and genomics information [32]. We combined GO and KEGG analy-
ses to conduct DEGs. The cut-off was p <0.05. All gene sets related to GO and KEGG were downloaded from MSigDB
database.

Analysis of tumor mutation in sarcoma
As a quantifiable biomarker, tumor mutation burden (TMB) can be used to reflect the counts of mutations contained
in cancer cells. In our study, tumor mutational burden of sarcoma patients was calculated as follows: TMB = Sn ×
1,000,000/n (Sn is the absolute somatic mutation value, and n denotes the counts of exon base coverage depth ≥
100×) [33].

Cell lines and culture conditions
Human skeletal muscle cells (HSKMC) and Rhabdomyosarcoma cells (RH30) were purchased from American type
culture collection (ATCC, U.S.A.). HSKMC were cultured in Mesenchymal Stem Cell Basal Medium with Primary
Skeletal Muscle Cell Growth Kit (ATCC, U.S.A.) at 37◦C in a humidified atmosphere containing 5% CO2. RH30 were
cultured in were cultured in RPMI 1640 medium with 10% fetal bovine serum (FBS) (Gibco, Grand Island, NY, U.S.A.)
and 1% penicillin-streptomycin at 37 ◦C in a humidified atmosphere containing 5% CO2. Synovial sarcoma cells
(SW982) were purchased from FUXIANG Biotechnology (Shanghai, China). SW982 were cultured in were cultured
in Dulbecco’s Modified Eagle Medium with 10% fetal bovine serum (FBS) (Gibco, Grand Island, NY, U.S.A.) and 1%
penicillin-streptomycin at 37 ◦C in a humidified atmosphere containing 5% CO2.

RNA extraction and real-time quantitative PCR (qRT-PCR)
Total RNA was extracted using Trizol (Invitrogen) according to manufacturer’s protocol. One microgram of total
RNA was used to synthesize cDNA using random hexamers and the Superscript III First-Strand Synthesis System for
RT-PCR (Invitrogen). The real-time PCR was performed using the Fast SYBR Green Master Mix (Applied Biosystems)
and run on a 7500 Fast Real-Time PCR System machine (Applied Biosystems) in the fast mode. The relative number
of mRNAs was calculated by using the ��Ct (Ct, threshold cycle) method.
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Primers sequence are as follows:

IGHG2 (94 bp):

Forward 5′-AGGGACAACTCCGCAAACAC-3′

Reverse 5′-TCCCCGAATGTGCTTTCGC-3′

PODXL2 (144 bp):

Forward 5′-CTCCCTGCTAGACCTCCTG-3′

Reverse 5′-TGCAGAATCCGAGACTCTTCAT-3′

LRRC17 (177 bp):

Forward 5′-AGAAGCCGAGTGAATCATGGC-3′

Reverse 5′-GTGCAGCAAATCCTGAGGC-3′

GABRA3 (145 bp):

Forward 5′-CAAGGGGAATCAAGACGACAA-3′

Reverse 5′-CGTCCAGAAGACGATCCAAGAT-3′

SCUBE3 (135 bp):

Forward 5′-CAGAACACCCCGAGGTCATAC-3′

Reverse 5′-GCCAGGGATGTTGACACAGTC-3′

HLF (103 bp):

Forward 5′-CTGGGGCCTACCTTATGGGA-3′

Reverse 5′-GGGGAATGCCATTTTCTGACA-3′

RFLNB (188 bp):

Forward 5′-AGGCACTTCATCGACGACG-3′

Reverse 5′-TAGACGGCCTTGGGGTACTT-3′

GAPDH (197 bp)

Forward 5′-GGAGCGAGATCCCTCCAAAAT-3′

Reverse 5′-GGCTGTTGTCATACTTCTCATGG-3′

Statistical analyses
Verification of normality of variables was done by the Shapiro–Wilk normality test. We use the T-test to compare
differences between two sets of normally distributed variables. Comparisons of non-normally distributed variables
was done by Wilcoxon signed rank test. Pearson correlation coefficient is used to measure similarity, and Pearson
correlation distance is used to estimate dissimilarity. ‘ggplot2’ in R was used for plot generation, while R package
‘randomForest’, in R, version 3.6.1 was used to build the Random Forest models. Survival-ROC curves were applied
with ‘timeROC’ the package. Kaplan–Meier was applied to estimate survival probability and generation of survival
curves. Statistical differences in survival data were evaluated by the log-rank test. Analysis and survival curves were
by ‘survminer’ and survival in R. Heatmap was generated using pheatmap (v1.0.12). R version 3.6.1 (https://www.r-
project.org/) was used for analyses. All the tests were two-sided with P<0.05 denoting significance. Mutated genes
were assessed by the R package maftools v2.2.10. GSEA and enrichment analysis are implemented by R package
clusterProfiler.

Result
Classification of tumors based on pyroptosis-associated genes
To evaluate associations among pyroptosis-associated genes, we calculated pairwise correlations among the expres-
sion of 33 pyroptosis-associated genes in sarcoma, which showed that pairs of these genes are commonly linked,
and the negative correlations were more frequent than positive correlations (Figure 1A). And then, NMF algo-
rithm was used to cluster sarcoma samples in the TCGA dataset. To investigate the association between levels of 33
pyroptosis-associated genes and sarcoma subtypes, consensus cluster analysis was performed on 262 sarcoma patients
in the TCGA cohort. We performed NMF unsupervised clustering of pyroptosis-related genes in classes 2–10 and
found that the best clustering was achieved when clustering two classes, when the clustering variable (k) was increased
from 2 to 10, it was established that at k = 2, intragroup and intergroup associations were highest and low, respectively,
implying that the 262 sarcoma patients can be assigned into two clusters based on the 33 pyroptosis-associated genes
(Figure 1B,C). Then, principal component analysis (PCA) was used to verify the clustering situation. PCA analysis
indicated two clusters are two distinct groups (Figure 1D). The gene expression profiles as well as clinical character-
istics, such as age, gender, tumor depth, metastatic diagnosis. Margin status are displayed in the heatmap. Differences
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Figure 1. Tumor classification based on the pyroptosis-related DEGs

(A) Pairwise correlations among the levels of 33 pyroptosis-associated genes in sarcoma. (B) About 262 Sarcoma patients assigned

into two clusters based on consensus clustering matrix (k = 2). (C) When the clustering variable (k) was increased from 2 to 10, (k

= 2) is the best clustering. (D) The PCA plot for sarcoma patients, which was based on the pyroptosis-related genes. (E) Heatmap

and clinic-pathologic features of the two clusters, as classified by the DEGs. (F) Kaplan–Meier OS curves of the two clusters.

in clinical characteristics between the clusters were minimal (Figure 1E). In an assessment of overall survival rate in
the two clusters, patients between the two clusters have a significantly different overall survival rate (P=0.037, Figure
1F).

Establishment of prognostic gene models in TCGA
DEG analysis was performed to compare the differential gene expressions of the two clusters. The volcano map shows
that 246 genes have been analyzed (Figure 2A). In addition, KEGG pathway enrichment analyses and functional eval-
uations were done using the Enrichr database, including three types of GO analysis: BP, CC and MF. These genes were
highly enriched in Axon guidance in BP. In terms of CC, they were enriched in extracellular matrix structural con-
stituent. As for MF, these genes are mainly associated with extracellular matrix and collagen-containing extracellular
matrix. KEEG enrichment showed that 246 DEGs were associated with urogenital system development and other
aspects (Figure 2B). In order to obtain more accurate genes related to cell pyroptosis, we reduced DEG genes to 63 by
univariate Cox regression analysis dimension reduction (Figure 2C), and then 12 genes (IGHG2, PODXL2, LRRC17,
CTDSP2, GABRA3, MAGED4B, SCUBE3, CDK4, hepatic leukemia factor [HLF], CNTFR, MAGED4 and RFLNB)
were obtained by random survival forest (Figure 2D,E). A signature of seven genes was established using the optimal
λ value through LASSO Cox regression (Figure 3A,B). The risk score formula was: risk score = (-0.0588*IGHG2 exp.)
+ (0.1123*PODXL2 exp.) + (0.0476*LRRC17 exp.) + (0.0905*GABRA3 exp.) +(0.1529*SCUBE3 exp.) + (-0.271*HLF
exp.) + (0.1519*RFLNB exp.). With regards to the median score as determined by the risk score formula, 262 pa-
tients were assigned into low- and high-risk sub-groups (Figure 3C). High-risk group patients were correlated with a
high death rate and shorter survival times, relative to low-risk patient group (Figure 3D, on right side of dotted line).
Among the seven genes (IGHG2, PODXL2, LRRC17, GABRA3, SCUBE3, HLF and RFLNB), the expression levels
of PODXL2, LRRC17, GABRA3, RFLNB and SCUBE3 in high-risk group were evidently higher, relative to low-risk
group. Expressions of IGHG2 as well as HLF were markedly low in high-risk group than in the low-risk group (Figure
3E). Subsequently, we analyzed the relationship between these seven genes and the two clusters, as well as the correla-
tion between these seven genes and clinical indicators (Figure 3F), IGHG2, PODXL2, LRRC17, GABRA3, SCUBE3,
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Figure 2. The screening and functional enrichment analyses of the DEGs

(A) Volcano map of DEGs. (B) GO and pathway analyses of DEGs. (C) Sixty-three were established by univariate Cox Regression

analyses for dimensionality reduction. (D) Error rate for the data as a function of the classification tree. (E) The importance values

for 12 the predictors.

HLF, and RFLNB were associated with gender, tumor depth, metastatic diagnosis, margin stage, age, and status. No-
table differences in OS time were detected between low- and high-risk groups (P<0.001, Figure 3G), patients with
in high-risk groups have significantly worse overall survival. Time-dependent ROC analysis was used to assess the
models’ specificity and sensitivity. Notably, we the area under the ROC curve (AUC) for survival was respectively
0.746, 0.744, and 0.748 for 1, 3 and 5 years (Figure 3H). In addition, these seven genes, are distributed in randomly
chromosome and shown in the Circos plot (Figure 3I).

Prognostic significance of the risk model
The risk score was an independent factor that was a factor in predicting low survival by univariate Cox regression
analyses in TCGA cohort (HR = 3.32, 95% CI: 2.35–4.7, Figure 4A). After adjustment for other con-founding factors,
multivariate analysis implied that the risk score is a prognostic factor (HR = 3.65, 95% CI: 2–6.68, Figure 4A) for
patients with Sarcoma in the cohort. Furthermore, the clinical characteristic heatmaps of the TCGA cohort are shown
(Figure 4B) and found that PODXL2, LRRC17, GABRA3, SCUBE3 and RFLNB have positive correlation with risk
score. On the contrary, IGHG2 and HLF have negative correlation with risk score.

Identify drug candidates for risk models
We found that the IC50 values of 65 drugs in high-risk patient group were markedly low relative to those in low-risk
patient group. At present, the main chemotherapy drugs for sarcoma include cisplatin, docetaxel, doxorubicin, gem-
citabine and so on. IC50 values implying that high-risk group patients were sensitive to chemotherapy with cisplatin,
docetaxel, doxorubicin and gemcitabine. Hence, these drugs may be more appropriate for high-risk patients. This
may provide a new idea for clinical chemotherapy regimen (Figure 5). In addition, IC50 values of 14 drugs, including
erlotinib, gefitinib, etc., were higher in high-risk group, relative to low-risk group, and the high-risk group may not
be sensitive to the chemotherapy response of these 14 drugs. IC50 values of all 79 drugs are shown in Supplementary
Figures.
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Figure 3. Creation of the risk signature in TCGA cohort

(A) Cross-validation for tuning parameter selections in LASSO regression. (B) LASSO regression of seven genes. (C–E) Risk score

distribution, survival status, and expressions of seven prognostic pyroptosis-related genes in sarcoma. (F) Heatmap of connections

between clinic-pathologic characteristics and seven genes. (G,H) Overall survival curves for high-/low-risk group sarcoma patients

and ROC curve for evaluating the predictive value. (I) Circos plot shows the chromosomal distribution of the seven genes.

Different functional pathways analyses of the risk models
To explore the reasons for different sensitivity of drugs in high- and low-risk groups, we conducted the GSEA of our
models. GO term analyses revealed that molecular function of high-risk patient group was significant enrichment
in the cytokine activity, cytokine secretion, fibroblast growth factor binding, muscle system process, muscle tissue
development, positive regulation of immune effector processes, fibroblast growth factor receptor signaling pathway
regulation, inflammatory reaction regulation, regulation of leukocyte-mediated immunity and skeletal muscle cell
differentiation (Figure 6A). KEGG pathway analyses also showed the pathways enrichment of high-risk group in cell
cycle, such as chemokine signaling pathway, cytokine–cytokine receptor asssociations, glioma, hedgehog and p53
signaling pathways, pathways in cancer, T-cell receptor signaling pathway, primary immunodeficiency and VEGF
signaling pathway (Figure 6B). To further dig into the reasons for the differences of sensitivity of drugs, we analyzed
the different modules in terms of immunity and mutation. The immune responses heatmap is presented. CIBER-
SORT, TIMER, ssGSEA and MCP counter showed that the levels of infiltration of immune cells were usually lower
in high-risk patient group, particularly CD8+ T cells. ESTIMATE revealed that at a higher risk score, tumor purity
was higher, and the immune score was lower (Figure 6C). These results are consistent with previous analyses. More-
over, Oncoplot shows the top 30 mutated genes of low- and high-risk groups, among them, mutations of TP53, RB1,
MUC16 and some other genes between the groups were markedly different. These differences in immune response
and genetic mutation may account for the differences in sensitivity to chemotherapeutic drugs between high- and
low-risk groups (Figure 6D).
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Figure 4. Univariate as well as multivariate Cox regression analyses of the risk score

(A) Univariate and Multivariate analysis for the TCGA cohort. (B) Heatmap of connections between clinic-pathologic characteristics

and risk groups.

Figure 5. Chemotherapeutic response for risk models

High-risk group patients were sensitive to chemotherapy with cisplatin, docetaxel, doxorubicin and gemcitabine.
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Figure 6. Functional analysis of risk models

(A) GO enrichment of the risk models. (B) KEGG pathway enrichment of the risk models. (C) Immune response analysis of risk

models. (D) Mutation analysis of risk models.
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Figure 7. Validation of seven genes expression in RH30, SW982 and HSKMC by qRT-PCR

Bars represent mean +− SEM (n=3), *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

Validation of pyroptosis-associated genes expression by qRT-PCR
To validate the expression levels of seven pyroptosis-associated genes in sarcoma, we used qRT-PCR to verify RNA ex-
pression levels in rhabdomyosarcoma cell line— RH30, synovial sarcoma cell line—SW982, and human normal skele-
tal muscle cell—HSKMC. The results showed that compared with HSKMC, PODXL2, LRRC17, GABRA3, SCUBE3,
and RFLNB were highly expressed in tumor cells, while IGHG2 and HLF were low expressed (Figure 7). This result
is consistent with our previous data analysis.

Discussion
Sarcoma is a rare tumor with local invasion and distant metastasis. The prognosis is poor. Histological biopsy is the
most authoritative standard for the diagnosis of Sarcoma [34,35]. The main therapeutic methods are radiation therapy
and surgery [36], and there are still no proven target drugs for sarcomas. Up to now, the mechanism of sarcomas is
still poorly understood, which is the main obstacle to the development of specific targeted drugs.

Pyroptosis, a newly discovered mode of programmed cell death, plays double roles in tumor occurrence and thera-
peutic mechanisms. Normal cells are activated by many inflammatory molecules secreted during pyrophosis, causing
their transformation into tumor cells [19]. In addition, pyroptosis of tumor cells may be a new treatment target [37].

In sarcomas, the problem of how pyroptosis-associated genes relate with each other, and if they are correlated to
patients’ survival outcomes, remains unclear. Our study generated a profile characterized by seven pyroptosis-related
genes (IGHG2, PODXL2, LRRC17, GABRA3, SCUBE3, HLF and RFLNB) and found that these genes can predict OS
in patients. IGHG2 (immunoglobulin heavy constantγ2), a protein coding gene, is associated with some kinds of dis-
eases, for example, immunoglobulin k light chain deficiency. And the related pathways of it are creation of C4 and C2
activators and innate immune system [38]. PODXL2 is a member of the CD34 protein family, whcih is found in en-
dothelial cells and is a ligand for angioselectin, mediating the interaction of white blood cells with the surface of blood
vessels [39]. LRRC17 (leucine-rich repeat containing 17), a gene that mainly regulate the osteoblastogenesis process,
is primarily expressed in osteoblasts under physiological conditions [40]. α3, GABRA3-γ-aminobutyric acid type A
receptor subunit is a protein-coding gene, which is related with diseases including periodic thyrotoxic paralysis and
reflex sympathetic dystrophy. The related pathways include ligand-gated ion channel transport and trans-chemical
synaptic transport [41]. SCUBE3 (signal peptide, CUB domain and EGF-like domain containing 3) is a protein coding
gene. Diseases related with SCUBE3 include facial dysmorphism, short stature and skeletal anomalies with or without
cardiac anomalies 2 and bone disease [42]. The gene encodes signal peptides, complement subcomponent C1r/C1s,
Uegf, bone morphogenetic protein-1 as well as epidermal growth factor-like domains. Both full-length protein as well
as the C-terminal fragment bind transforming growth factor TYPE II receptors to enhance epithelial–mesenchymal
transformation and angiogenesis in tumors [43]. HLF, a transcriptional factor, plays an significant regulatory func-
tion in various tumors, particularly leukemia and participates in therapy-mediated immunogenic cell death [44].
RFLNB, a member of the Refilin family, is a novel Actin regulatory protein that functions as molecular switches
for interconverting the Actin meshwork into bundles. One major trait of this regulatory protein is its short half-life,
unique among Actin regulatory proteins [45]. So far, no studies have shown that these seven genes (IGHG2, PODXL2,
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LRRC17, GABRA3, SCUBE3, HLF and RFLNB) are directly related to pyroptosis in tumor cells. We first proposed
these seven genes and analyzed their function and significance in sarcoma.

We investigated the expressions of 33 known pyroptosis-associated genes in sarcomas, analyzed the relationship
between each two genes, and investigated their correlation with clinicopathological features. To assess the associ-
ation between expressions of 33 pyroptosis-related genes and sarcoma subtypes, the NMF algorithm was used to
cluster 262 sarcoma samples in the TCGA dataset. About 262 sarcoma patients assigned into two clusters based on
consensus clustering matrix. DEG analysis was performed to compare the differential gene expressions of the two
clusters and 246 genes were screened. In order to obtain more accurate genes related to cell pyroptosis, we reduced
DEG genes to seven genes by univariate Cox regression analysis, random survival forest and LASSO Cox regression
dimension reduction. In addition to this, these seven genes, are distributed in randomly chromosome and shown
in the Circos plot. With regards to the median score as determined by the risk score formula, 262 patients were
assigned into low- and high-risk sub-groups. The overall survival rate in the two groups has obvious differences, pa-
tients with the pyroptosis-related genes exhibited a significantly poor overall survival rate, relative to those without
pyroptosis-associated genes. In the present study, the IC50 of the 65 drugs in the high-risk group were markedly low,
compared with low-risk group, indicating that these drugs may be suitable for high-risk patients, among them, includ-
ing cisplatin, docetaxel, doxorubicin and gemcitabine. They are currently the main treatment of sarcoma chemother-
apy drugs. To determine the underlying mechanisms of different sensitivities of drugs to the high- and low-risk
groups, we applied GSEA to our model. Functional analyses revealed that DEGs between low- and high-risk groups
was associated with immune and musculoskeletal pathways. We compared the pathways related to infiltration and
activation of immune cells in low- and high-risk patient groups and found that the number of infiltrating immune
cells as well as activation levels of immune-associated pathways were generally low in high-risk group, relative to the
low-risk patient group. Moreover, we also compared the top 30 mutated genes in low- and high-risk patient groups.
Among them, mutations of TP53, RB1 as well as MUC16 markedly differed between the groups. In order to further
explore the potential target genes of these seven genes in sarcoma. Based on the TRANSFAC database, we obtained
transcription factors as well as motifs for seven genes, and mined transcription factors that have been confirmed by
studies in sarcoma based on the TF cancer database (Supplementary Table).

Until now, few studies have clearly shown the significance of pyroptosis, particularly its functional mechanisms
in sarcomas. We identified seven genes that may have a critical impact on pyroptosis in sarcomas and may serve as
regulatory factors. We evaluated the prognostic significance of these pyroptosis-related genes and gave a theoretical
basis for subsequent studies. Taken together, our study suggests that pyropwe were unable to confirm whether those
previously reported regulatory factors also have similar function in the pyroptosis pathway of sarcoma for lack of
data, which deserves further study and experimental verification.

Taken together, our research suggests that pyroptosis is closely associated with sarcoma, which is evidenced by the
results that genes associated with or unrelated to pyroptosis are expressed differently in sarcoma tissues. In addition,
our score based on risk signature generation of seven pyroptosis-associated genes is an independent risk factor for OS
prediction in TCGA cohort. DEGs between low-risk and high-risk patient groups are correlated with tumor immu-
nity and mutations, as well as skeletal muscle pathways. At last, we used qRT-PCR to detect the expression of seven
pyroptosis-related genes in sarcoma cells (RH30 and SW982) and human skeletal muscle cells, compared with human
skeletal muscle cells, PODXL2, LRRC17, GABRA3, SCUBE3 and RFLNB genes show high expression levels in tumor
cells, while IGHG2 and HLF show low expression levels in tumor cells. This result confirms our data analysis.

Our study gives a new genetic feature for prognostic prediction of sarcoma patients, and forms a theoretical basis
for the studies on of pyroptosis-associated genes in sarcoma patients in the future.
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Supplementary Figure :  IC50 values of all 79 drugs. A. 14 drugs with low drug 

sensitivity of the risk group. B. 65 drugs with high drug sensitivity of the risk group. 

 

 





 

Supplementary Table :  transcription factor motifs of seven genes. 

 

 


