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Accumulated genetic mutations are an important cause for the development of acute
myeloid leukemia (AML), but abnormal changes in the inflammatory microenvironment also
have regulatory effects on AML. Exploring the relationship between inflammatory response
and pathological features of AML has implications for clinical diagnosis, treatment and
prognosis evaluation. We analyzed the expression variation landscape of inflammatory
response-related genes (IRRGs) and calculated an inflammatory response score for each
sample using the gene set variation analysis (GSVA) algorithm. The differences in clinical-
and immune-related characteristics between high- and low-inflammatory response groups
were further analyzed. We found that most IRRGs were highly expressed in AML samples,
and patients with high inflammatory response had poor prognosis and were accompanied
with highly activated chemokine-, cytokine- and adhesion molecule-related signaling path-
ways, higher infiltration ratios of monocytes, neutrophils and M2 macrophages, high activity
of type I/II interferon (IFN) response, and higher expression of immune checkpoints. We also
used the Genomics of Drug Sensitivity in Cancer (GDSC) database to predict the sensitiv-
ity of AML samples with different inflammatory responses to common drugs, and found
that AML samples with low inflammatory response were more sensitive to cytarabine, dox-
orubicin and midostaurin. SubMap algorithm also demonstrated that high-inflammatory re-
sponse patients are more suitable for anti-PD-1 immunotherapy. Finally, we constructed a
prognostic risk score model to predict the overall survival (OS) of AML patients. Patients
with higher risk score had significantly shorter OS, which was confirmed in two validation
cohorts. The analysis of inflammatory response patterns can help us better understand the
differences in tumor microenvironment (TME) of AML patients, and guide clinical medication
and prognosis prediction.

Introduction
Acute myeloid leukemia (AML), as a hematological tumor, is induced by oncogenic factors affecting
hematopoietic stem/progenitor cells, and the pathogenesis is still unclear [1]. Intensive treatment of AML
is mainly based on combined induction chemotherapy with cytarabine and anthracyclines, but the adapt-
ability to different populations is poor, especially for elderly patients [2]. Complex somatic mutations are
closely associated with AML, and patients with different mutational signatures are highly heterogeneous.
At present, a variety of targeted drugs have been developed for patients with different gene mutations,
including inhibitors targeting FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1 and 2
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(IDH1 and IDH2) [2]. For patients with corresponding mutational signatures, the use of targeted drugs has signif-
icantly improved survival and brought more hope for the treatment of AML; however, primary and secondary drug
resistance is still a serious problem, which brings great challenges to clinical treatment [3]. Therefore, it is of great
significance to explore more drug targets for AML treatment and basic research.

AML often disrupts the hematopoietic function of the blood system, and the perspective of overall tumor microen-
vironment (TME) disturbance may advance our understanding of the occurrence and development of AML. A num-
ber of studies have shown that abnormal activation of inflammatory signals favors the survival of AML cells [4,5]. By
secreting a large number of pro-inflammatory cytokines such as S100A8/S100A9, interleukin (IL) 1β (IL-1β), IL-6,
and IL-8, it not only promotes the growth and proliferation of AML cells, but also induces chronic inflammation
to create an immunosuppressive environment for AML cells [6]. A study co-cultured primary AML cells with differ-
ent cytokines and found that cytokines such as IL-1α, granulocyte-macrophage colony-stimulating factor (GM-CSF),
IL-3, and tumor necrosis factorα (TNF-α) significantly promoted the growth of AML cells, and the role of IL-1β is the
most obvious. They further treated 60 primary AML samples with IL-1β and found a nearly 15-fold increase in AML
cell growth and survival [5]. In another study, the authors examined the levels of several pro- and anti-inflammatory
cytokines in the plasma of AML patients and healthy individuals, and compared with age-matched controls, the con-
tent of TNF-α, IL-6, and IL-10 were higher in plasma of AML patients [7]. These findings all confirmed the abnormal
expression of cytokines and the promoting effect of the inflammatory response they mediate on AML. Therefore, in
the context of malignant hematopoiesis, it is critical to unravel the relationship of inflammatory cytokine interactions.
Their mediated functions span the entire immune system, and their aberrant expression creates the conditions for a
favorable TME in AML.

With the development of sequencing technology, the study of AML genomics, genetic diversity, and molecular
interactions has made great progress. Currently, studies on inflammatory mechanisms in AML are mostly limited to
a single molecule or a single pathway, lacking a systematic assessment of inflammatory response gene sets. Therefore,
an in-depth exploration of the interaction and overall expression of these molecules can advance our understanding
of the relationship between inflammatory response and the pathological features of AML.

This project systematically assessed the expression variation landscape of inflammatory response-related genes
(IRRGs) in AML samples, analyzed the pathway activities and immune effects of AML cells with different inflam-
matory response patterns, and constructed a prognostic risk-score model. AML samples with high inflammatory
response show immunosuppression, high expression of immune checkpoints and high infiltration of inflammatory
cells, which are more suitable for immunotherapy; samples with low inflammatory response are more sensitive to
the AML chemotherapy drugs cytarabine, doxorubicin, and the FLT3-targeting inhibitor midostaurin. Risk-score
model can also accurately predict the prognosis of patients. These findings may provide new clues for exploring the
inflammatory response mechanism and clinical treatment of AML.

Materials and methods
Data processing
We downloaded the RNA-sequencing data for transcripts per kilobase million (TPM) value including 173 The
Cancer Genome Atlas (TCGA)-Acute Myeloid Leukemia samples and 337 normal Genome Tissue Expression
(GTEx)-whole blood samples from the University of California Santa Cruz’s XENA database (https://xenabrowser.
net/datapages/), these data served as the analysis cohorts. Then we downloaded two-chip data (GSE10358 and
GSE71014) from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) as the vali-
dation cohorts. For the GSE10358 cohort, we downloaded the original ‘cel’ file of 91 AML samples containing clin-
ical information, and used the function robust multiarray averaging (RMA) in the R package ‘Affy’ to standard-
ize them. For the GSE71014 cohort, we directly downloaded the normalized data containing 104 AML samples.
Somatic mutation data were downloaded from the TCGA database (https://portal.gdc.cancer.gov/). The gene set
‘HALLMARK INFLAMMATORY RESPONSE’ containing 200 IRRGs was downloaded from the MSigDB database
(https://www.gsea-msigdb.org/gsea/msigdb/). The workflow of the present study was shown in (Figure 1).

Identification of the differentially expressed genes between high- and
low-inflammatory response groups
We used Empirical Bayesian methods via the ‘LIMMA’ package to analyze the differentially expressed genes (DEGs)
between high- and low-inflammatory response groups. Genes with adjusted P-values <0.05 and logFC > 1 were
identified as DEGs.
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Figure 1. The workflow of the present study

Gene set variation analysis
Gene set variation analysis (GSVA) calculates the enrichment score of a gene set in a single sample based on the overall
expression level of all genes in the gene set [8], and is used to quantify the activity of the corresponding biological
process or signaling pathway.

Function analysis and protein–protein interaction network
We used the R package ‘clusterProfiler’ to perform function analysis. For the signaling pathways that differ between
high- and low-inflammatory response groups, we used gene set enrichment analysis (GSEA) to identify them; for the
DEGs between high- and low- inflammatory response groups, we used Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis and Gene Ontology (GO) annotation to analyze their function [9]. The IRRGs and
the DEGs between high- and low-inflammatory response groups were uploaded to the STRING database (https:
//string-db.org/) for protein–protein interaction (PPI) network analysis, respectively, and Cytoscape software was
used to identify core genes in PPI network.

Evaluation of immune cell infiltration in AML samples
We used CIBERSORT algorithm to evaluate the infiltration ratio of 22 immune cells in AML samples based on the
LM22 gene signatures [10] (Supplementary Table S1).

Tumor immune dysfunction and exclusion and immune response-related
gene sets
We used the tumor immune dysfunction and exclusion (TIDE) website (http://tide.dfci.harvard.edu/) to predict
the TIDE score of AML samples in TCGA cohort [11]; a high TIDE score represents a stronger immune escape
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ability of AML cells. The immune response-related gene sets were collected for evaluating immune function of
AML cell from the previous study [12], such as type I/II interferon (IFN) response, antigen-presenting cell (APC)
co-inhibition/co-stimulation.

Drug sensitivity prediction
The Genomics of Drug Sensitivity in Cancer (GDSC; https://www.cancerrxgene.org/) database was used to predict
the sensitivity of each AML sample to common chemotherapy or targeted drugs [13], and the ‘pRRophetic’ package
was used to calculate the half-maximal inhibitory concentration (IC50) value of each drug [15]. SubMap (https://
cloud.genepattern.org/gp) algorithms were used to predict response to anti-PD-1 and anti-CTLA4 immune check
point inhibitors in low- and high-inflammatory response groups.

Construction of risk-score model
We first performed univariate Cox regression analysis on IRRGs with differential expression between AML samples
and normal samples, genes with P-values <0.05 for the construction of risk-score model. Then, we used least absolute
shrinkage and selection operator (LASSO) regression analysis to remove the redundant gene to avoid overfitting of
the risk-score model. The penalty parameters (λ) were determined by ten-fold cross-validation. We calculated the
risk score of each sample by the following formula:

Risk score =
i∑

1

(Coefi × ExpGenei),

‘Coef’ represents the non-0 regression coefficient of each model gene and ‘ExpGene’ is the expression value of the
corresponding gene (Supplementary Table S2).

Development of a nomogram for predicting overall survival
We used R package ‘rms’ to develop a nomogram with age, cytogenetic risk and risk score based on TCGA cohort for
OS prediction in AML. Then, we plotted time-dependent calibration curves to predict the accuracy of this nomogram.

Statistical analysis
The Wilcoxon rank-sum test and the Kruskal–Wallis test were used to determine the difference between two groups
and multiple groups, respectively. The ‘survminer’ package divided patients into two groups based on cutoff point.
The log-rank test was used to determine P-values between groups in the Kaplan–Meier survival analysis. Univariate
and multivariate Cox regression analyses were used to identify prognostic factors. Receiver operating characteristic
(ROC) curve analysis was used to determine the specificity and sensitivity of related metrics, and the ‘pROC’ package
shows the area under the ROC curve (AUC). The ‘maftools’ package was used to characterize somatic mutations of
AML patients. A two-sided P-value of <0.05 was considered statistically significant.

Results
The expression variation landscape of IRRGs
We first analyzed the expression levels of IRRGs in the analysis cohorts; compared with the GTEx cohort, a total of 172
IRRGs with P<0.05 were differentially expressed in the TCGA cohort (Figure 2A), of which 54 were down-regulated
and 118 were up-regulated (Supplementary Table S3). The results of functional analysis showed that the biological
processes of these DEGs were mainly enriched in cytokine-mediated signaling pathways, and their molecular func-
tions were mainly cytokine activity (Supplementary Figure S1A,B). Cox regression analysis showed that 46 DEGs
with P<0.05 were significantly associated with the prognosis of AML patients (Figure 2B). We performed somatic
mutation analysis on all IRRGs, and the overall mutation rate in AML samples was low, with only 5 of the 134 sam-
ples mutated in genes including CLEC5A, MEFV, AHR, TAPBP, P2RX7 and CSF1 (Figure 2C). Then we calcu-
lated the enrichment score of the inflammatory response gene set by the GSVA algorithm, and used it to repre-
sent the degree of inflammatory response in AML cell of each sample (Supplementary Table S4). Based on cutoff
value, AML patients were divided into high- and low-inflammatory response groups. Survival analysis showed that
patients with higher inflammatory response had significantly worse prognosis (Figure 2D).We collected pro- and
anti-inflammatory genes associated with AML in a previous review [18]. Differential expression analysis showed that
compared with the low-inflammatory response group, the high-inflammatory response group had higher expression
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Figure 2. The expression variation landscape of IRRGs and prognostic analysis of inflammatory response score

(A) Differential expression analysis of IRRGs between AML samples and normal samples, Wilcoxon test, *P<0.05; **P<0.01;

***P<0.001. (B) Prognosis-associated DEGs in IRRGs, Cox regression analysis. (C) The mutation characteristic of IRRGs in 134 AML

patients from TCGA cohort. (D) Differences in the overall survival (OS) of patients in the high- and low-inflammatory response-score

groups, log-rank test. (E) Differential expression analysis of pro-and anti-inflammatory genes between low- and high-inflammatory

response groups.

levels of most pro-inflammatory genes such as CCL2, CCL3, CCL4, TNF-α, IFN-γ, IL-6 and anti-inflammatory genes
such as IL-10, TGF-β, indicating an active inflammatory response of AML cells (Figure 2E).

Differences in biological processes between patients with high- and
low-inflammatory responses
To better identify the differences of biological processes in AML cell with different inflammatory responses, we used
the GSEA algorithm to calculate the activity of signaling pathways in high- and low-inflammatory response groups.
We observed that the top five enriched terms in the high-inflammatory response group were cell adhesion molecules,
chemokine signaling pathways, cytokine–cytokine receptor interactions, hematopoietic cell lines, and TOLL-like re-
ceptor signaling pathways, all of which were closely related to inflammation (Figure 3A). In the low-inflammatory
response group, signaling pathways such as aminoacyl tRNA biosynthesis, glycosylphosphatidylinositol GPI anchor
biosynthesis, ribosome, RNA degradation and spliceosome have the highest enrichment scores (Figure 3B), which
are all involved in the process of transcription and translation, indicating that low-inflammatory response is accom-
panied by more active expression of genetic information. In order to better explore the key molecules mediating high
inflammatory response, we performed differential analysis between high- and low-inflammatory response groups
and identified a total of 545 DEGs (Supplementary Table S5). KEGG analysis showed that these genes were also en-
riched in cytokine receptors-, adhesion molecules-, and chemokine-related signaling pathways (Figure 3C). Figure
3D showed the DEGs of the corresponding pathways. It is worth noting that these genes are highly expressed in the
high-inflammatory response group. The PPI network displayed the top ten most connected genes in DEGs, including
TLR4, SRC, ITGAM, CTSB, CD74 and five HLA-II genes (Figure 3E).
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Figure 3. Changes in signaling pathways and identification of core molecules in high- and low-inflammatory response

groups

(A,B) GSEA revealed the top five signaling pathways that were significantly enriched differently between high- and low-inflammatory

response groups. (A) High-inflammatory response group and (B) low-inflammatory response group. (C) KEGG pathway enrichment

analysis of DEGs between high- and low-inflammatory response groups. (D) Significantly enriched signaling pathways and cor-

responding DEGs identified between high- and low-inflammatory response groups. (E) Identification of the core genes with the

highest connectivity in the PPI network, the darker the color, the higher the connectivity.

Immune-related characteristics of low- and high-inflammatory response
groups
The infiltration ratios of monocytes, M2 macrophages and neutrophils were higher in the high-inflammatory re-
sponse group; naive B cells, follicular helper T cells, regulatory T cells, resting cells were abundantly enriched in the
low-inflammatory response group (Figure 4A). As the inflammatory response increased, there was more infiltration
of naive B cells, eosinophils, resting mast cells, activated NK cells, naive CD4 T cells, regulatory T cells, and monocytes
and neutrophils; monocytes and neutrophils were less infiltrated (Figure 4B). Regarding the expression characteristics
of immune function-related molecules (Supplementary Table S6), we observed that the high-inflammatory response
group not only highly expressed molecules of inflammation-promotion and para-inflammation, but also CC mo-
tif chemokine receptor (CCR), human leukocyte antigen (HLA), immune checkpoints, and cytolysis- and type I/II
IFN response-related molecules; co-inhibitory and co-stimulatory molecules of APC and T cells were also signif-
icantly expressed (Figure 4C). Then we compared the expression levels of common immune checkpoints between
the two groups, The expressions of PD-L1, CTLA-4, LAG3, HAVCR2, PD-L2, CD86, TNFRSF90 were significantly
up-regulated in the high-inflammatory response group (Figure 4D). In addition, the high-inflammatory response
group had higher TIDE score (Figure 4E). These immune signatures suggest that patients in the high-inflammatory
response group are prone to immune escape.
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Figure 4. Differential analysis of immune-related characteristics between low- and high-inflammatory response groups

(A) Infiltration levels of 22 immune cells. (B) Immune cells significantly correlated with inflammatory response score. (C) Activity of

features relevant to AML cellular immune function. (D) Expression levels of immune checkpoints. (E) TIDE score.

Clinical features and drug sensitivity of low- and high-inflammatory
response groups
For some clinicopathological features (Figure 5A), we observed a higher inflammatory response in elderly patients
(≥60 years old), which was also accompanied by counts of higher platelet, bone marrow (PB) and peripheral blood
(PB) blasts. In French–American–British (FAB) classifications, M4–M7 patients had a higher inflammatory response.
Besides, there were no differences between the two groups in gender, cytogenetic risk, and white blood cell (WBC)
counts. For some somatic mutation signatures (Figure 5B), such as nucleophosmin cytoplasmic (NPMc), Ras activat-
ing, IDH1 mutation, and NPMc, there was no difference in the inflammatory response between positive and negative
patients; but FLT3 mutation-positive patients had significantly lower inflammatory responses. We further predicted
the sensitivity of patients in high- and low-inflammatory response groups to commonly used therapeutic drugs for
AML based on gene expression profiles. By calculating the IC50 of the drug response, we found that the IC50 of the
chemotherapeutic drugs cytarabine, doxorubicin and midostaurin, an inhibitor targeting FLT3 mutations, were lower
in the low-inflammatory response group than in the high-inflammatory response group (Figure 5C), indicating that
the patients with low inflammatory response are more sensitive to these therapeutic drugs, and it verified the result
that patients with positive FLT3 mutation had lower inflammatory response. The high-inflammatory group exhib-
ited features of immune escape, and we sought to explore whether these patients responded to immunotherapy. We
subset-mapped the expression data profiles of AML patients with another dataset containing [47] melanoma patients
who responded to immunotherapy [19]. Surprisingly, patients in the high inflammatory response group were more
likely to respond to anti-PD-1 therapy (Figure 5D). (Bonferroni corrected P = 0.008).

Construction and validation of prognostic risk-score model
To better predict the prognosis of AML patients, we constructed a risk score model. A total of 16 IRRGs were in-
volved in model construction after dimensionality reduction in prognosis-related differentially expressed IRRGs us-
ing LASSO regression in the TCGA cohort (Figure 6A,B). After calculating the risk score of each sample by the model
formula and sorting (The model gene coefficients are shown in Table S2), we divided AML patients into high- and
low-risk score groups according to the cutoff value. Survival analysis showed that patients in the high-risk score group
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Figure 5. Differences in inflammatory response of AML cells in patients with different clinicopathological characteristics

and prediction of sensitivity to commonly used chemotherapeutic drugs and immunotherapy response for AML

(A) Clinicopathological features, (B) somatic mutation signatures, (C) therapeutic sensitivity of three commonly used chemothera-

peutic drugs for AML. (D) Response prediction to immunotherapy (anti-PD-1 and anti-CTLA4) between the low- and high-inflam-

matory groups.

had significantly worse prognosis than those in the low-risk group (Figure 6C). In both the GEO cohorts, we observed
the same prognostic characteristics (Figure 6D,E). In the TCGA cohort, time-dependent ROC curve analysis showed
that the AUC values for predicting 1-, 3-, and 5-year OS were 0.789, 0.814, and 0.882, respectively (Figure 6F); in the
GSE10358 cohort, the 1-, 3-, and 4-year (too few patients with OS over 5 years) AUC values were 0.788, 0.773, 0.842,
respectively (Figure 6G); the AUC values in the GSE710148 cohort at 1, 3, and 5 years were 0.726, 0.731, and 0.742,
respectively (Figure 6H). Both univariate and multivariate Cox analyses confirmed that risk scores had independent
predictive power (P<0.05) (Figure 6I,J). Spearman correlation analysis showed that the risk score was highly posi-
tively correlated with the inflammatory response (Figure 6K). In short, validated by two GEO cohorts, the prognostic
model we constructed had high accuracy.

Development of a nomogram for predicting OS
We observed that age and cytogenetics were significantly associated with prognosis in AML patients, so we integrated
the risk score and these two clinicopathological factors to construct a nomogram to predict OS for AML patients
(Figure 7A). Calibration curves at 1, 3, and 5 years demonstrated that the nomogram could predict OS accurately
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Figure 6. Construction and validation of the risk score model

(A) Calculation for log(λ) of minimum ten-fold cross-validation error points and determination of corresponding model genes. (B)

Coefficients of model genes. (C–E) Survival analysis between the high- and low-risk score groups in TCGA cohort and two GEO

cohorts. (D) GSE10358; (E) GSE71014. Log-rank test. (F–H) Time-dependent ROC curve analysis of the risk score in the TCGA

cohort and the GEO cohorts. (F) TCGA cohort; (G) GSE10358; (H) GSE71014. (I,J) Cox regression analysis of clinicopathologic

factors and risk score in the TCGA cohort. (I) Univariate and (J) multivariate. (K) Spearman correlation analysis of risk score and

inflammatory response score in the TCGA cohort.

(Figure 7B). ROC curve analysis showed that the AUC values of risk score, nomogram, and age for predicting the
5-year OS were 0.882, 0.941 and 0.818, respectively (Figure 7C), indicating that nomogram further improved the
accuracy of OS prediction. Univariate and multivariate Cox analyses also confirmed that the nomogram could serve
as an independent predictor (P<0.05) (Figure 7D,E).

Discussion
The survival of cancer cells is closely related to the TME in which they live. As a blood cancer, AML is affected by many
physicochemical factors in the hematopoietic system [15]. In order to better survive and proliferate, AML cells secrete
various cytokines to regulate the surrounding environment after being stimulated by danger [16]. The dysregulated
expression of cytokines will create chronic inflammation and promote the development of AML [17]. Abnormal
cytokine signaling pathways are characteristic of all types of leukemia, especially IL-1, TNF-α, and IL-6, which are
considered key cytokines that disrupt hematopoietic cell function and promote the development of inflammation
[18–20]. In this study, we analyzed the activity of inflammatory response gene sets in AML samples, trying to reveal the
relationship between different inflammatory response signals and the immune microenvironment characteristics and
clinicopathological factors of AML patients, so as to provide guidance for clinical treatment and prognosis prediction.

In this project, we found that the expression of most inflammatory response genes was up-regulated in AML sam-
ples, and these genes were mainly involved in the regulation of cytokine- and chemokine-related pathways. In the
high-inflammatory response group, we observed that pro-inflammatory genes such as CCL2, CCL3, CCL4, TNF-α,
IFN-γ, andIL-6are generally highly expressed, and many studies have confirmed that they promote the survival and
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Figure 7. Predictive value of risk score combined with prognosis-related clinicopathological factors for overall survival

(A) Nomogram predicting OS for AML patients in TCGA cohort. (B) Time-dependent calibration curves to test the predictive accuracy

of the nomogram. The x-axis is nomogram-predicted OS, and the y-axis is actual OS. (C) ROC curves for risk score, nomogram,

and age. (D,E) Cox regression analysis of the nomogram. (D) Univariate and (E) multivariate.

reproduction of AML cells [7, 26–28]; we also noticed that classical anti-inflammatory cytokines such as IL-10 and
TGF-β showed high expression levels, which tend to inhibit the proliferation of AML cells, but these studies were
for exogenous cytokines such as in plasma. Autocrine or paracrine TGF-β by leukemia cells is able to exert negative
control over the growth of normal progenitor cells, but not leukemia cells, which have overcome TGF-β regulatory
signals [29]. Similarly, exogenous IL-10 is thought to have inhibitory effects on AML cells [30], but the study of en-
dogenous IL-10 is rarely reported, which requires further research. In conclusion, the high-inflammatory response
group showed a positive pro-inflammatory effect, and these patients also corresponded to a poor prognosis, indicating
that elevated inflammatory responses in AML cells are closely related to AML development. In addition to cytokines
and chemokines, the DEGs identified by the high- and low-inflammatory response groups were up-regulated in the
expression of a large number of adhesion molecules. The high expression of these molecules may promote AML
cells to adhere to the bone marrow niche [21], thereby evading the effect of drugs or the attack of immune cells. We
identified several core molecules in DEGs, such as TLR4, SRC, ITGAM and CTSB, through the PPI network. Among
them, the expression of TLR4 is associated with poor prognosis and can be inhibited with chemosensitizing and/or di-
rect anti-leukemia effects [22–24]; knockdown of CTSB can inhibit the proliferation and tumorigenesis of the AML
cell line HL-60 [25], which is also a poor prognostic factor for childhood AML [26]; SRC is a signaling mediator
that activates STAT5 in FLT3-ITD-positive AML patients [27], and its overexpression also affects the sensitivity of
FLT3-ITD kinase inhibitor and the pathway of acquired resistance [28]; ITGAM is a risk factor for autoimmune dis-
eases such as systemic lupus erythematosus [29], but the mechanism associated with AML is less studied. Therefore,
these molecules have potential as therapeutic targets for AML, but further exploration is required.

Inflammatory response interacts with immune function, and we further explored the differences in
immune-related signatures in different inflammatory-response samples. The high-inflammatory response group had
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more inflammatory cell infiltration, including monocytes, neutrophils, and M2 macrophages, which produce im-
munosuppression during tumor development by releasing cytokines to induce chronic inflammation, and also en-
hance the secretion of inflammatory factors in tumor cells to further deteriorate the tumor micro environment
[40–43], while immune killer cells such as T cells, B cells, and NK cells were rarely enriched. In addition, we ob-
served more eosinophilic infiltration in the low-inflammatory response group. Studies have shown that IL5 can in-
duce an increase in the number of eosinophils in AML [44,45]. When we compared the differences in the expression
of pro- and anti-inflammatory genes, we found that the expression level of IL-5 was higher in the low-inflammatory
group compared to the high-inflammatory group. The secretion of IL-5 may be responsible for the greater infiltra-
tion of eosinophils. Other studies have reported that AML patients with M1 and M2 types are often associated with
eosinophilia [46], and both subtypes are more common in the low-inflammatory response group, which may also
be associated with more eosinophilic infiltration. The high-inflammatory response group also showed higher HLA
expression and IFN response. High expression of HLA genes is a unique signal of blood cells, and it is no exception in
AML cells [47]. Elevated IFN responses often imply a poor prognosis, possibly due to IFN-driven immune resistance
[48]. The co-inhibitory molecules of T cells are mainly immune checkpoints such as PD-L1 and CTLA4 [49], which
are generally highly expressed in the high-inflammatory response group, showing a strong ability to suppress T cells;
while co-stimulatory molecules of T cells such as CD28 are mainly expressed on the surface of T cells, they mediate
the second signal of full activation of T cells, and thus participate in the protective function of the immune system
[50]. However, the reasons for their high expression in AML cells are rarely reported. We hypothesized that they
would promote the recognition of tumor cells by T cells to exert anti-tumor effects, but the co-stimulatory molecule
CTLA4 is also highly expressed, and CTLA4 competes with CD28 to bind ligands such as CD80 and CD86 in T cells
and has higher affinity, thereby overcoming the positive effects of CD28 and placing T cells in an immunosuppres-
sive state. This hypothesis requires more experiments and data to verify. Similarly, APC co-inhibitory molecules are
mainly immune checkpoints such as PD-L1 and LGALS9 [51], which are highly expressed in AML cells to inhibit the
activity of APC. CD40 is mainly involved in the co-stimulation of APCs, and its high expression is associated with
poor prognosis in AML, and is mainly expressed in M4 and M5 patients [52]. CD40 can promote the proliferation
of AML cells and inhibit apoptosis [53], and the IFN response can also increase its molecular expression in AML
cells [54], thereby promoting the production of cytokines. Therefore, elevated activities of APC co-inhibitory and
co-stimulatory molecules have the effect of inducing the development of inflammation and protecting AML cells. We
also observed high TIDE score in the high-inflammatory response group, these immune-related features suggest that
the activation of the inflammatory response in AML cells exhibits an inflammatory and immunosuppressive microen-
vironment, which in turn promotes immune escape of AML cells. In the subsequent prediction of immunotherapy
response, we found that the high-inflammatory response group was likely to respond to anti-PD-1 treatment. We
also predicted the sensitivity of different-inflammatory response samples to drug treatment. As the inflammatory
response of AML cells increased, the chemotherapeutic drugs cytarabine and doxorubicin and the FLT3-targeting
inhibitor midostaurin showed lower sensitivity. Combined with the relationship between inflammatory response and
immune characteristics mentioned above, we believe that these three therapeutic drugs are more suitable for patients
with low-inflammatory response of AML cells. For patients with a high inflammatory response, immunotherapy tar-
geting immune checkpoints or inflammatory cells such as M2 macrophages is more applicable.

Some clinicopathological features also showed differences in inflammatory responses. For example, patients with
M4-M7 subtypes and a small number of patients with M2 subtype show a higher inflammatory response. Studies have
shown that M4 and M5 subtypes with monocyte differentiation and part of myeloid mature M2 subtype in AML pro-
duce more inflammatory chemokines [55]; while inflammatory genes such as TGF-β are highly expressed in M6 and
M7 subtypes, which may be the reason for promoting high inflammatory response [29,56]. Compared with FLT3
mutation-negative patients, FLT3 mutation-positive patients had a lower inflammatory response, and FLT3-mutated
AML cells were previously thought to be less responsive to exogenous cytokines, that is, exhibit lower inflamma-
tory responses [57]. Another study showed that the FLT3 inhibitor quizartinib upregulates inflammatory genes in
AML cells, and combined with anti-inflammatory glucocorticoids enhanced cell death in FLT3 mutants, but not
wild-type [58]. AML patients with activated RAS mutation also exhibit high inflammatory responses, and an article
by Hamarsheh et al. showed that AML patients with KRAS mutations, a subtype of the RAS gene, have activated
inflammasome pathways, with NLRP3/caspase1/IL-1β being the major contributing axis [59].Therefore, these re-
sults reveal the heterogeneity of inflammatory responses in different clinicopathological features, and the combined
assessment of them can be helpful for the diagnosis and treatment of AML.

Finally, we constructed a prognostic risk-score model including 16 IRRGs by LASSO regression analysis to predict
OS for AML patients. Survival analysis showed that patients with higher risk scores had significantly poor prog-
nosis, and ROC curve analysis confirmed the predictive accuracy of the model. We performed validation on two
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GEO cohorts, both showing high predictive performance. In addition, we combined the risk-score model with some
prognosis-related clinical indicators to draw a nomogram, which further improved the accuracy and intuitiveness of
the model for OS prediction.

In conclusion, we comprehensively analyzed the expression variation landscape of inflammatory response-related
molecules in AML samples and revealed differences in immune-related signatures across high- and low-inflammatory
response score groups. Inflammatory response score can also predict sensitivity to commonly used drugs for AML.
Moreover, the risk score model we constructed accurately predicted OS of patients. These findings provide a new ref-
erence for clinical treatment, a new method for prognosis prediction, and enlightenment for more basic experiments
related to inflammatory response.
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Figure S1. Functional analysis of differentially expressed inflammatory response-related 

genes identified between AML samples and normal samples. (A) Kyoto Encyclopedia of Genes 

and Genomes pathway enrichment analysis. (D) Gene Ontology annotations. 

 


