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Tamoxifen is an estrogen receptor (ER) antagonist that is most commonly used for the treat-
ment of ER-positive breast cancer. However, tamoxifen resistance remains a major cause of
cancer recurrence and progression. Here, we aimed to identify hub genes implicated in the
progression and prognosis of ER-positive breast cancer following tamoxifen treatment. Mi-
croarray data (GSE9893) for 155 tamoxifen-treated primary ER-positive breast cancer sam-
ples were obtained from the Gene Expression Omnibus database. In total, 1706 differentially
expressed genes (DEGs), including 859 up-regulated and 847 down-regulated genes, were
identified between relapse and relapse-free samples. Weighted correlation network anal-
ysis clustered genes into 13 modules, among which the tan and blue modules were the
most significantly related to prognosis. From these two modules, we further identified and
validated two prognosis-related hub genes (G-rich RNA sequence binding factor 1 (GRSF1)
and microtubule-associated protein τ (MAPT )) via survival analysis based on several publicly
available datasets. High expression of GRSF1 predicted poor prognosis, whereas MAPT in-
dicated favorable outcomes in ER-positive breast cancer. Using breast cancer cell lines and
tissue samples, we confirmed that GRSF1 was significantly up-regulated and MAPT was
down-regulated in the tamoxifen-resistant group compared with the tamoxifen-sensitive
group. The prognostic value of GRSF1 and MAPT was also verified in 48 tamoxifen-treated
ER-positive breast cancer patients in our hospital. Gene set enrichment analysis (GSEA) sug-
gested that GRSF1 was potentially involved in RNA degradation and cell cycle pathways,
while MAPT was strongly linked to immune-related signaling pathways. Taken together, our
findings established novel prognostic biomarkers to predict tamoxifen sensitivity, which may
facilitate individualized management of breast cancer.

Introduction
Breast cancer is a heterogeneous cancer, displaying a variety of molecular features, prognostic patterns,
and therapeutic responses [1]. Up to two-thirds of all cases express estrogen receptor (ER), and can be
treated using hormone-based therapy. Tamoxifen is a first-generation selective ER modulator that com-
petes with estradiol to bind to ERs, thereby antagonizing the effects of estrogen and inhibiting the growth
and proliferation of tumor cells [2]. The administration of tamoxifen greatly minimizes the risk of recur-
rence of ER-positive breast cancer, particularly for premenopausal women [3]. Unfortunately, approxi-
mately 40% of ER-positive patients are less sensitive to tamoxifen treatment, and will eventually relapse
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with endocrine-resistant phenotypes [4,5]. To date, the exact mechanisms of tamoxifen insensitivity in breast cancer
remain largely unknown, and tamoxifen-resistant cancer is difficult to treat, due to lack of therapeutic targets. Since
tamoxifen therapy fails for a large number of patients, there is an urgent need to elucidate the molecular mechanisms
of tamoxifen resistance, particularly to identify novel potential genes for monitoring treatment efficacy and predicting
prognosis.

Co-expression analysis has recently emerged as a powerful technique for mining gene expression profiles in var-
ious cancers. As an effective bioinformatics approach, weighted gene co-expression network analysis (WGCNA) is
increasingly applied to explore synergistically altered gene sets, and to identify candidate biomarkers associated with
clinical parameters [6–8]. In breast cancer, several studies have utilized WGCNA to identify hub genes closely related
to clinicopathological traits (e.g., tumor size, grade, and molecular subtypes) and survival outcomes. For example,
Tang et al. found that elevated expression of ASPM, TTK, and CDC20 conferred a poorer prognosis in breast cancer
[9], and Jiang et al. identified six key genes (CA12, MLPH, FOXA1, GATA3, XBP1, and MAGED2) that could serve
as biomarkers for the prediction of better chemotherapeutic responses and favorable prognosis in patients with breast
cancer [10].

Accordingly, in the present study, we conducted an integrated analysis based on WGCNA to screen out novel
prognostic biomarkers associated with tamoxifen response in breast cancer patients. In addition, the expression levels
and the prognostic value of candidate hub genes were determined in vitro using cell lines and clinical tissue samples.
Our findings may shed light on the underlying mechanisms of tamoxifen resistance in breast cancer, and may provide
new prognostic markers to accurately predict tamoxifen response.

Materials and methods
Data collection and processing
The gene expression profile GSE9893 was obtained from the Gene Expression Omnibus database (https://www.
ncbi.nlm.nih.gov/geo/), and evaluated using the GPL5049 platform [11]. The dataset GSE9893 comprised 155
tamoxifen-treated primary breast cancer samples, of which 52 cases developed recurrent disease (designated the
tamoxifen-resistant group). Robust multiarray average background correction and log2 conversion were performed
using the ‘affy’ R package. Probes were mapped on to genes using Affymetrix annotation files. Genes matching with
multiple probes were averaged to obtain the expression level of the gene. Probes corresponding to multiple genes were
deleted.

Analysis of differentially expressed genes
The ‘limma’ R package with the Empirical Bayes method was employed to identify differentially expressed genes
(DEGs) between relapse and relapse-free samples. Statistically significant DEGs were defined as |log2 FC| > 1 and
P<0.01. The results were visualized by plotting a volcano plot using the ‘ggplot2’ package in R.

Functional enrichment analysis
After identifying DEGs related to tamoxifen sensitivity in breast cancer, the STRING database (https://string-db.
org) was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis to determine the biological functions and pathways of tamoxifen resistance-related genes. The
cutoff was set at an adjusted P-value of less than 0.05.

Co-expression network construction by WGCNA
Co-expression networks were established to explore modules involved in tamoxifen sensitivity in breast cancer using
the ‘WGCNA’ package in R. First, outlier samples were detected using the sample network method. The soft thresh-
old for WGCNA construction was selected such that the constructed network mainly included genes with strong
correlations. We then transformed adjacency to a topological overlap matrix (TOM) to examine the connectivity of
the network, followed by hierarchical clustering construction based on the TOM dissimilarity, to categorize genes
with similar expression profiles into modules. The minimum module size for the gene dendrogram was 50, and other
parameters were set to the default values. Finally, analyses of module eigengene, gene significance, and module–trait
relationships were performed to identify clinically significant modules.

Selection of hub genes
Hub genes were identified as highly interconnected genes in a module of WGCNA. Tan and blue modules were con-
sidered key modules because they were closely related to the metastasis and recurrence of tamoxifen-resistant breast
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cancer. Hub genes were then screened out according to the absolute value of the Pearson’s correlation co-efficient.
The modules of significance were visualized using Cytoscape (version 3.6.0; https://cytoscape.org/). The Cytoscape
plugin ‘molecular complex detection’ (MCODE) was applied to detect the most important subnetworks, with a degree
cutoff = 2, node score cutoff = 0.2, k-core = 2, and max depth = 100 set as the criteria [12].

Validation of prognosis-related hub genes by survival analysis
Survival analysis was performed with hub genes to further identify prognosis-associated genes using The Cancer
Genome Atlas (TCGA) breast cancer dataset. All breast cancer patients were classified into two groups according
to the expression level of a particular gene (high versus low). Kaplan–Meier survival analysis was then performed to
compare the overall survival between these groups using the ‘Survival’ package in R. We further validated the survival
results associated with each of the candidate hub genes in three independent ER-positive breast cancer cohorts, com-
prising the datasets GSE3494 and GSE25066, containing 201 and 296 ER-positive breast cancer patients, respectively,
as well as the GSE9893 dataset. Results with P-values <0.05 were considered statistically significant.

Cell culture
The breast cancer cell line MCF-7 was purchased from the American Type Culture Collection (Manassas, VA,
U.S.A.) and routinely maintained in Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal bovine serum.
Tamoxifen-resistant cells (MCF-7/TAM) were established by continuously culturing MCF-7 cells in the presence of
4 μM 4-hydroxy-tamoxifen (Sigma–Aldrich, Missouri, U.S.A.) for 6 months. All cells were grown at 37◦C in an at-
mosphere containing 5% CO2.

Reverse transcription quantitative polymerase chain reaction
RNA extraction was performed using TRIzol reagent (TaKaRa, Otsu, Japan). Total RNA was reverse tran-
scribed to cDNA using a PrimeScript RT reagent kit (TaKaRa). Subsequently, qPCR was performed with
harvested cDNA using the SYBR Green PCR kit (TaKaRa). The relative mRNA levels were calculated us-
ing the 2−��Ct method taking GAPDH as the internal control. The primers used for reverse transcription
quantitative polymerase chain reaction (RT-qPCR) were as follows: G-rich RNA sequence binding factor 1
(GRSF1) forward, 5′-ACAGGGAAGAAATTGGTAATCG-3′ and reverse, 5′-ACCATCGTCTACTGCCCTTTC-3′;
and microtubule-associated protein τ (MAPT) forward, 5′-AAAGACGGGACTGGAAGCG-3′ and reverse,
5′-GAATCCTGGTGGCGTTGG-3′.

Preparation of ER-positive human breast cancer samples
Twenty-three tamoxifen-resistant and 25 tamoxifen-sensitive paraffin-embedded tumor samples were obtained from
ER-positive breast cancer patients who underwent surgery at the Department of Breast Surgery, The Second Affili-
ated Hospital, Zhejiang University School of Medicine, during June 2012 to September 2019. Informed consent was
obtained from all patients. The study was performed with the approval of The Human Research Ethics Commit-
tee of The Second Affiliated Hospital, Zhejiang University School of Medicine. The present study conformed to the
Declaration of Helsinki.

Immunohistochemistry
Paraffin-embedded tissue sections were dewaxed with xylene and rehydrated with ethanol, followed by antigen re-
trieval with EDTA (pH 9.0). Endogenous peroxidase was removed by adding 3% H2O2. The slides were incubated with
goat serum and anti-GRSF1 (Abcam, MA, U.S.A., dilution 1:100) or MAPT (Abcam, dilution 1:400) primary antibod-
ies overnight at 4◦C. Detection was performed by incubating with horseradish peroxidase (HRP)-linked anti-Rabbit
IgG and 3,3′-diaminobenzidine (DAB). The staining intensity was scored as follows: 0, negative; 1, weak; 2, moderate;
3, strong. The percentage of stained cells was scored into four grades: 0, < 5%; 1, 5–25%; 2, 25–50%; 3, >51%. Inten-
sity and percentage scores were multiplied to obtain the final scores (0, 1, 2, 3, 4, 6, or 9), with a cutoff <3 versus ≥3 to
indicate low versus high expression, respectively. Staining was scored by two independent observers in our hospital.

Gene set enrichment analysis of hub genes
To explore the molecular mechanisms of identified hub genes on breast cancer, gene set enrichment analysis (GSEA)
was carried out with the ER-positive TCGA dataset [13]. The samples were separated into low and high groups in
accordance with degree of hub gene expression, and c2.cp.kegg.v5.2.symbols.gmt was selected as a reference gene set.
A false discovery rate < 0.05 was designated as the cut-off criteria.
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Tumor immune estimation resource database analysis
Because of the essential role of immune infiltration in cancer initiation and progression, we used the tumor immune
estimation resource (TIMER) online database to determine the association between tumor-infiltrating immune cells
and each hub gene [14]. The six types of immune cells inferred by TIMER included B cells, CD4 T cells, CD8 T cells,
dendritic cells, macrophages, and neutrophils. The levels of hub gene expression were visualized by log2 RSEM.

Statistical analysis
All in vitro experiments were independently repeated three times. Two-tailed Student’s t tests were used to detect
differences between groups using SPSS 17.0 software (IBM, NY, U.S.A.). In survival analysis, we used Kaplan–Meier
analysis and a Cox proportional hazards regression model to ascertain whether candidate hub genes had an effect on
prognosis. The hazard ratio (HR) and 95% confidence interval (CI) were calculated from the regression coefficients
and survival curves were plotted using GraphPad Prism 6.0 (GraphPad Software, CA, USA). P-values <0.05 were
considered to be significant.

Results
Identification and functional annotation of DEGs
After applying thresholds of |log2 FC| > 1 and P<0.01, we identified 1706 DEGs, including 859 up-regulated and 847
down-regulated genes, between tamoxifen-sensitive and tamoxifen-resistant breast cancer samples. A volcano plot of
the DEGs is shown in Supplementary Figure S1.

According to GO enrichment analysis, up-regulated genes were significantly enriched in various biological pro-
cesses (BPs) including ‘protein targeting to the ER’. The down-regulated genes were primarily enriched in ‘signal re-
lease’ and ‘positive regulation of hormone secretion’ (Supplementary Figure S2). According to KEGG analysis of the
up-regulated DEGs, ‘ribosome’ and ‘oxidative phosphorylation’ were the most obviously enriched keywords (Supple-
mentary Figure S3).

Weighted co-expression network construction and key module
identification
In the present study, 28 abnormal samples were excluded (Figure 1A). The value of soft-thresholding powers (β) =
6 was selected to achieve a relatively scale-free network, which was closer to the real biological network state (Figure
1B,C). We then identified 14 modules via average linkage hierarchical clustering. The DEGs in gray were not included
in any module; therefore, we did not perform any functional analysis of the DEGs in gray (Figure 1D). Of these
modules, the tan module showed obvious positive correlations with relapse, distant metastasis, and death. Moreover,
a significant negative correlation was found between the blue module and poor prognosis (Figure 2). Hence, the tan
and blue modules may play essential roles in the BPs of breast cancer tamoxifen resistance. Thus, these modules, as
the most related to disease progression, were chosen for further analysis.

Identification of hub genes in the tan and blue modules
Hub genes have high connectivity within clinic-related modules, and tend to play critical roles in the molecular mech-
anisms of tamoxifen resistance. Therefore, we next used Cytoscape to visualize hub gene networks in the tan and blue
modules. As shown in Figure 3, 38 and 50 genes with the highest intramodular connectivity in the tan and blue
modules, respectively, were screened.

Identification of prognosis-related hub genes
To further explore the effects of these candidate key genes on prognosis in breast cancer, we conducted survival
analysis of 88 hub genes based on TCGA data. High expression of three hub genes, i.e. GRSF1, cytochrome c oxidase
subunit 7B (COX7B), and chaperonin containing TCP1 subunit 8 (CCT8), in the tan module were all significantly
associated with poor survival outcomes, whereas MAPT and REC8 meiotic recombination protein (REC8) in the
blue module all predicted better prognosis in breast cancer when overexpressed (Figure 4). Thus, these five genes
were chosen as candidates for further study.
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Figure 1. Clustering of samples and determination of soft-thresholding power in the WGCNA

(A) Samples clustering of GSE9893 to detect outliers. A total of 28 samples were excluded. (B) Analysis of the scale-free fit index

for soft-thresholding powers (β) from 1 to 15. (C) Analysis of the mean connectivity for various β values. β = 6 was chosen for

subsequent analyses. (D) A tree map of GSE9893 gene cluster. A total of 13 co-expression modules were constructed and displayed

in different colors.

Table 1 Association between five candidate genes with survival in three independent ER positive breast cancer cohorts

Gene GSE9893 cohort GSE3494 ER+ cohort GSE25066 ER+ cohort
HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value

GRSF1 1.38 1.19–1.6 <0.001** 2.01 1.02–3.97 0.044* 2.02 1.05–3.90 0.032*

COX7B 1.25 1.11–1.41 0.0002** 2.26 1.01–5.05 0.047* 1.83 0.97–3.45 0.056

CCT8 1.29 1.14–1.45 <0.001** 2.13 1.07–4.22 0.031* 1.78 0.94–3.34 0.071

MAPT 0.72 0.61–0.83 <0.001** 0.75 0.62–0.9 0.002** 0.34 0.18–0.67 0.001**

REC8 0.58 0.46–0.73 <0.001** 0.71 0.31–1.66 0.434 2.55 1.33–4.92 0.0036**

*P<0.05 and **P<0.01.

Validation of prognosis-related hub genes in three ER-positive breast
cancer cohorts
Subsequently, we validated the prognostic relevance of the five selected hub genes (GRSF1, COX7B, CCT8, MAPT,
and REC8) based on three independent ER-positive breast cancer cohorts (GSE9893, GSE3494, and GSE25066
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Figure 2. Hub modules selection

Each unit contains the corresponding correlation coefficient and P-value. Among them, the tan and blue modules were the most

relevant modules with cancer traits.

datasets) involving 652 patients. Two of the five genes, i.e., GRSF1 and MAPT, remained significantly associated
with prognosis in patients with ER-positive breast cancer in these datasets (P<0.05; Table 1).

Validation of hub genes in vitro
Finally, we applied RT-qPCR to further verify the expression of candidate hub genes in breast cancer cell lines. The ex-
pression level of GRSF1 was higher in tamoxifen-resistant cells, whereas MAPT expression levels were significantly
elevated in MCF-7 cells compared with parental MCF-7/TAM cells (Figure 5A). Similarly, the aberrant expression
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Figure 3. The visualization of hub genes

(A) Genes from tan module. (B) Genes from blue module. The red nodes represent up-regulated genes and the blue nodes represent

down-regulated genes. Node size is correlated with the degree of connectivity for the corresponding gene.

Figure 4. Survival analysis of prognosis-related hub genes in breast cancer patients from TCGA dataset

(A) GRSF1. (B) COX7B. (C) CCT8. (D) MAPT. (E) REC8.

pattern of GRSF1 and MAPT was also verified by immunohistochemical (IHC) staining in 48 clinical tissue sam-
ples (23 tamoxifen-resistant versus 25 tamoxifen-sensitive) collected from breast cancer patients receiving tamox-
ifen treatment in our hospital (GRSF1: P=0.009; MAPT: P=0.017, Figure 5B). Survival analysis demonstrated that
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Figure 5. Validation of prognosis-related hub genes in vitro

(A) RT-qPCR results of GRSF1 and MAPT in tamoxifen-resistant/sensitive MCF-7 subclones. (B) Comparison of GRSF1/MAPT

expression levels detected by IHC in breast cancer tissues according to their sensitivities to tamoxifen. (C,D) Survival analysis of

DFS based on GRSF1/MAPT levels using 48 tamoxifen-treated breast cancer patients. *P<0.05 and **P<0.01.

up-regulated GRSF1 expression was significantly associated with poorer disease-free survival (DFS) (HR = 2.348,
95% CI: 1.032–5.346, P=0.044, Figure 5C), and MAPT has the capacity to predict favorable DFS in these patients
(HR = 0.435, 95% CI: 0.191–0.988, P=0.048, Figure 5D). The data of these independent experiments therefore veri-
fied the hypotheses generated using bioinformatics analysis, indicating that GRSF1 and MAPT might play a vital role
in tamoxifen resistance in breast cancer.

GSEA
To better understand the underlying function of these hub genes, GSEA was carried out and mapped on to KEGG
pathways. As illustrated in Figure 6, GRSF1 was mostly involved in ‘ubiquitin-mediated proteolysis’, ‘oocyte meiosis’,
‘RNA degradation’, ‘cell cycle’, and ‘mismatch repair’. MAPT was related to ‘antigen processing and presentation’,
‘natural killer cell-mediated cytotoxicity’, ‘autoimmune thyroid disease’, ‘cell adhesion molecules’, and the ‘proteasome’.

Association of hub gene expression and immune infiltration level
The distribution of tumor-infiltrating cells is highly relevant to tumor progression. Therefore, we evaluated the asso-
ciation of hub genes with immune infiltration level using the TIMER platform. The level of GRSF1 expression was
positively correlated with the abundance of infiltrating immune cells. While MAPT expression displayed a signifi-
cant negative correlation with infiltration degree by B cells, CD4 T cells, CD8 T cells, neutrophils, and dendritic cells
(Figure 7). These findings suggest that GRSF1 and MAPT may be involved in immune infiltration in patients with
breast cancer.

Discussion
ER-positive breast cancer exhibits a favorable prognosis owing to the efficacy of anti-estrogen drugs, such as tamoxifen
[1]. However, one-third of these patients eventually develop tamoxifen resistance, resulting in cancer progression
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Figure 6. GSEA

(A) The top five enriched entries of GRSF1. (B) The top five enriched entries of MAPT.

Figure 7. The correlation between hub genes and immune cell infiltration levels in breast cancer through TIMER

(A) Association between GRSF1 and immune cells. (B) Association between MAPT and immune cells.

and death [5,15]. Tamoxifen resistance occurs via a complicated series of events, taking place over multiple genes
and various signaling pathways. An in-depth elucidation of the biological mechanisms of tamoxifen insensitivity
is beneficial to identify novel prognostic biomarkers, and explore effective therapeutic targets towards overcoming
tamoxifen resistance. Due to the establishment of large cancer databases, such as the TCGA and GEO databases,
researchers have the capacity to investigate large-scale gene expression profiles [16]. In the present study, we screened
for hub genes involved in the development of tamoxifen insensitivity that could be used as potential biomarkers to
predict tamoxifen response and prognosis in ER-positive breast cancer patients.

In the present study, we first identified 1706 DEGs associated with tamoxifen resistance, including 859 up-regulated
and 847 down-regulated genes. These DEGs were primarily enriched in functions such as protein targeting the ER
and pathways such as oxidative phosphorylation. As a hormonal transcription factor, ERs regulate target genes to ma-
nipulate cell cycle progression and the endocrine response. The activity of ERs is also regulated by multiple proteins,
including the transcription factors Ap-1 and FOXA1, which exert different biological functions in response to en-
docrine treatment [17–19]. Meanwhile, many studies have shown that oxidative phosphorylation is closely correlated
with carcinogenesis. Echeverria et al. reported that an oxidative phosphorylation inhibitor delayed residual tumor
regrowth for neoadjuvant chemotherapy-resistant patients with breast cancer [20]. Sansone et al. demonstrated that
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the activation of oxidative phosphorylation promoted the development of hormone therapy-resistant disease [21].
Overall, these studies imply that the DEGs identified in the present study might be closely connected with tumor
progression and endocrine efficiency.

Subsequently, we utilized WGCNA to filter highly reliable and biologically significant modules and hub genes that
are responsible for tamoxifen resistance from the list of DEGs [22,23]. The WGCNA clustered genes into 13 modules,
of which the tan and blue modules were positively and negatively related to clinical traits, respectively. From this analy-
sis, hub genes in these two modules were selected. Subsequent survival analysis showed that high expression of GRSF1
predicted poor prognosis, whereas MAPT was associated with favorable survival outcomes in TCGA breast cancer
patients. Notably, we further verified the prognostic value of candidate hub genes in three independent ER-positive
breast cancer cohorts. Compared with previous studies [15,25], we found modules and genes that were relevant to
malignant phenotypes and favorable clinical features. More importantly, we validated the hypotheses generated by the
available databases using tamoxifen-sensitive and tamoxifen-resistant cell lines as well as clinical tissue specimens.
We thus identified GRSF1 and MAPT as the most promising candidate genes related to tamoxifen resistance. Subse-
quently, we further explored the potential roles of hub genes in ER-positive breast cancer using GSEA software. The
results showed that several pathways such as ‘RNA degradation’ and ‘cell cycle’ were dysregulated when GRSF1 was
aberrantly expressed. The potential mechanism of MAPT is strongly linked to immune-related signaling pathways
such as ‘antigen processing and presentation’, ‘natural killer cell-mediated cytotoxicity’, and ‘cytokine–cytokine re-
ceptor interaction’. TIMER analysis also indicated a correlation between MAPT expression and immune infiltration,
suggesting that MAPT might have a function in tumor immunity.

GRSF1 was initially identified as an RNA-binding protein with high affinity for G-rich sequences. GRSF1 plays
critical roles in maintaining mitochondrial function, including mitochondrial translation, mitochondrial ribosome
biosynthesis, and mitochondrial noncoding RNA binding [24,25]. At present, only a small number of studies have
focused on the role of GRSF1 in cancer. Sun et al. and Yang et al. demonstrated that GRSF1 regulates miRNAs to
facilitate oncogenic behaviors, including autophagy and metastasis, in cervical cancer [26,27]. Wang et al. revealed
that GRSF1 can accelerate tumorigeneis and metastasis via PI3K/AKT pathway in gastric cancer [28]. Taken together
with the results of the present study, these findings imply that GRSF1 might function as a potential oncogene.

MAPT is a gene encoding τ protein, which is implicated in the pathogenesis of several neurodegenerative disor-
ders such as Alzheimer’s disease, Parkinson’s disease, and progressive supranuclear palsy [29,30]. Recent studies have
suggested that elevated expression of MAPT predicts better survival outcomes in pediatric neuroblastoma, breast
cancer, renal clear cell cancer, and low-grade glioma, which is consistent with the results of the present study [31–34].
Wang et al. reported that MAPT-hypermethylated tumors are closely associated with poor prognosis in patients with
colorectal cancer [35]. Interestingly, MAPT is reported to play an essential role in mediating paclitaxel or taxane re-
sistance in various cancers. Rouzier et al. first identified MAPT as a predictor of the response to paclitaxel in breast
cancer [36]. MAPT can also determine paclitaxel chemosensitivity by interacting with several miRNAs in gastric can-
cer and non-small cell lung cancer [37]. Moreover, clinical and in vitro studies have demonstrated that the expression
level of MAPT is positively associated with ER expression, and is influenced by ER signaling [38,39]. Taken together,
these studies indicate that MAPT clearly plays a complex and possibly cancer-specific role in different cancers, which
warrants more in-depth, well-designed investigations.

However, the present study had some limitations. First, tamoxifen resistance is controlled by a complicated regula-
tory network comprising mRNAs, miRNAs, and long noncoding RNAs; however, since we were restricted by the avail-
able datasets, only protein-coding genes/mRNAs were included in the present analysis. The precise roles of MAPT
and GRSF1 may only become clear in the context of miRNAs and long noncoding RNAs. Second, despite the val-
idation of key genes in cancer cell lines and tissue samples, our model has not been verified in a sufficiently large
clinical cohort, or prospective individual cohorts. Third, we predicted the possible functions of specific genes using
the available network information, but the underlying mechanisms of gene networks involved in tamoxifen response
warrant further study.

Conclusion
The present study identified gene networks and potential prognostic biomarkers using a systems biology-based
WGCNA approach in patients with primary breast cancer treated with tamoxifen. Through a series of bioinformatics
analyses and preliminary biological experiments, we identified and verified two novel biomarkers that may be related
to the tamoxifen response in ER-positive breast cancer: GRSF1, a prognostic marker for cancer progression, and
MAPT, to predict favorable survival outcomes. GSEA suggested that GRSF1 might be involved in RNA degradation
and cell cycle pathways, while MAPT was closely linked to immune-related signaling pathways. However, further
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studies are needed to elucidate the exact molecular mechanisms and characterize the key genes functionally affecting
tamoxifen sensitivity in patients with breast cancer.
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merase chain reaction; TCGA, The Cancer Genome Atlas; TIMER, tumor immune estimation resource; TOM, topological overlap
matrix; WGCNA, weighted gene co-expression network analysis.
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Supplementary data 

 

 

Figure S1. Identification of DEGs in GSE9893. Volcano plot of the aberrantly 

expressed genes between tamoxifen sensitive and resistant breast cancer groups. 

 



 

 

 

Figure S2. Go annotations of DEGs. (A) Upregulated DEGs. (B) Downregulated 

DEGs. BP: biological process, CC: cellular component, MF: molecular function.  

 



 

 

 

Figure S3. KEGG enrichment analysis of DEGs. (A) Upregulated DEGs. (B) 

Downregulated DEGs. 

 


