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Colorectal cancer (CRC) is one of the most common tumors worldwide and is associated
with high mortality. Here we performed bioinformatics analysis, which we validated using im-
munohistochemistry in order to search for hub genes that might serve as biomarkers or ther-
apeutic targets in CRC. Based on data from The Cancer Genome Atlas (TCGA), we identified
4832 genes differentially expressed between CRC and normal samples (1562 up-regulated
and 3270 down-regulated in CRC). Gene ontology (GO) analysis showed that up-regulated
genes were enriched mainly in organelle fission, cell cycle regulation, and DNA replication;
down-regulated genes were enriched primarily in the regulation of ion transmembrane trans-
port and ion homeostasis. Weighted gene co-expression network analysis (WGCNA) identi-
fied eight gene modules that were associated with clinical characteristics of CRC patients,
including brown and blue modules that were associated with cancer onset. Analysis of the
latter two hub modules revealed the following six hub genes: adhesion G protein-coupled
receptor B3 (BAI3, also known as ADGRB3), cyclin F (CCNF), cytoskeleton-associated pro-
tein 2 like (CKAP2L), diaphanous-related formin 3 (DIAPH3), oxysterol binding protein-like
3 (OSBPL3), and RERG-like protein (RERGL). Expression levels of these hub genes were
associated with prognosis, based on Kaplan–Meier survival analysis of data from the Gene
Expression Profiling Interactive Analysis database. Immunohistochemistry of CRC tumor
tissues confirmed that OSBPL3 is up-regulated in CRC. Our findings suggest that CCNF,
DIAPH3, OSBPL3, and RERGL may be useful as therapeutic targets against CRC. BAI3 and
CKAP2L may be novel biomarkers of the disease.

Introduction
Colorectal cancer (CRC), which includes colon and rectal cancers, is one of the most common cancers of
the digestive system [1]. It is the second leading cause of cancer-related mortality and the third leading
cause of cancer-related incidence worldwide [2]. It occurs in three histopathological types, including ade-
nocarcinoma, squamous cell carcinoma, and mucinous carcinoma; adenocarcinoma is the most common
type, accounting for ∼95% of all CRC cases [3].
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Risk for CRC has been linked to defects in DNA replication and DNA methylation, as well as instability of chro-
mosomes and microsatellites [4–7]. As in many cancers, early stages of CRC appear to involve up-regulation of DNA
replication licensing proteins [5]. Up to 15% of CRC cases involve DNA microsatellite instability, which leads to DNA
replication errors [8].

Surgery remains the primary method to treat CRC, but the post-surgery recurrence rate is high, the post-surgery
5-year mortality rate is high [9]. In part, this is because most patients with CRC are diagnosed relatively late in the
disease [10]. Therefore, it is imperative to understand the molecular mechanism involved in carcinogenesis in order
to identify prognostic biomarkers and potential therapeutic targets for CRC.

High-throughput sequencing technologies provide new views into the genomic, transcriptomic, and epigenomic
signatures of cancers. Systems biology, especially network methods, can effectively integrate multiple, large-scale
datasets of complex human diseases, especially cancer [11–13]. Weighted gene co-expression network analysis
(WGCNA), for example, is an efficient, accurate method for extensive multigene analysis [14,15]. The WGCNA pack-
age in the R suite is a comprehensive collection of R functions for performing all aspects of weighted correlation
network analysis [16]. It can construct a scale-free network to explore the correlation between different genomes or
between samples and clinical features [17]. WGCNA has been widely used to identify related clinical modules and
hub genes in different types of cancer. For example, one WGCNA study was able to associate the expression of six
hub genes with progression of clear human cell renal cell carcinoma and with prognosis of patients [18]. Another
WGCNA study drew on data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) to
identify 15 hub genes as candidate breast cancer biomarkers [19]. A third study used WGCNA to identify four hub
genes that may be candidate biomarkers of adrenocortical carcinoma [20].

The present study exploited the power of WGCNA to analyze the pathogenesis of CRC. RNA sequencing data
from CRC samples were downloaded from the TCGA, and genes differentially expressed between CRC and normal
tissues were analyzed at the expression and functional levels. Functional enrichment of differentially expressed genes
(DEGs) was analyzed using Gene Ontology (GO) in the clusterprofiler R package. WGCNA of the DEG matrix iden-
tified modules related to clinical characteristics of CRC patients. Hub genes identified through these bioinformatics
analyses were verified using survival analysis, immunohistochemistry of CRC tissues, and analysis of the literature.
Our findings provide testable hypotheses about genes involved in CRC and, by extension, potential biomarkers and
therapeutic targets.

Materials and methods
Data sources and pre-processing
RNA sequencing data and clinical information on patients were downloaded on 22 July 2018 from the ‘Colon and
Rectal Cancer’ cohort of TCGA (https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/
tcga), hosted at the Xena website of the University of California at Santa Cruz [21](http://xena.ucsc.edu/; Table 1 and
Supplementary Tables S1 and S2). The RNA sequencing data corresponded to 383 tumor samples and 51 normal
tissue samples from 434 CRC patients. We excluded samples if the first two principal components identified through
principal component analysis were unable to distinguish tumor tissue from normal tissue. The workflow of the study
is shown in Figure 1.

Identification of CRC DEGs
The ‘limma’ function in the R suite (version: 3.3.3) [22,23] was used to identify DEGs between CRC and normal
colorectal tissues. DEGs were defined as those showing |log2(fold change) | > 1 and P<0.01. Volcano plots of DEGs
were plotted using ‘ggplot2’ in R.

Functional enrichment of DEGs
After converting DEG identifiers using the ‘org.Hs.eg.db’ program (version: 3.10) within R, DEGs were analyzed for
functional enrichment based on GO [22] using the ‘clusterProfiler’ program (version: 3.14.3) in R. GO terms with
P<0.05 were considered statistically significant.

WGCNA
We used BiocManger (version: 1.30.10) in the R suite to download the WGCNA package (version: 1.70-3) to con-
struct the DEG co-expression network [24,25]. First, the DEG expression matrix was filtered through the goodSam-
plesGenes function in WGCNA to remove unqualified genes and samples. Second, the flashClust tool in R was used
to perform cluster analysis of samples in order to detect outliers. Third, matrices of Pearson correlation coefficients
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Figure 1. Workflow of searching hub genes in CRC

Abbreviation: IHC, immunohistochemistry.
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Table 1 The clinical information and sample size for TCGA CRC dataset

Characteristics Alive (n=574) Dead (n=156) Total (n=730) P

Sex

Female 274 (47.7) 74 (47.4) 348 (47.7)

Male 300 (52.3) 82 (52.6) 382 (52.3) 1

Age, years

Mean (SD) 65.6 (12.7) 70.4 (12.7) 66.6 (12.9)

Median [min, max] 66.5 [31, 90] 73 [34, 90] 68 [31, 90]

Body weight

Mean (SD) 83.1 (22.8) 74.4 (18.6) 81.1 (22.2)

Median [min, max] 82.3 [34, 175.3] 71.9 [40, 140] 79.3 [34, 175.3]

Cancer type

Colon 422 (73.5) 123 (78.8) 545 (74.7)

Rectum 152 (26.5) 33 (21.2) 185 (25.3) 0.21

Histological type

Colon adenocarcinoma 378 (66.0) 101 (65.2) 479 (65.8)

Colon mucinous
adenocarcinoma

50 (8.7) 20 (12.9) 70 (9.6)

Rectal adenocarcinoma 132 (23.0) 32 (20.6) 164 (22.5)

Rectal mucinous
adenocarcinoma

13 (2.3) 2 (1.3) 15 (2.1) 0.389

Stage

I 111 (19.8%) 9 (6.2%) 120 (17.0%)

II 48 (8.6%) 13 (8.9%) 61 (8.6%)

IIA 172 (30.7%) 25 (17.1%) 197 (27.9%)

IIB 12 (21.4%) 3 (2.1%) 15 (2.1%)

III 31 (55.3%) 8 (5.5%) 39 (5.5%)

IIIA 13 (2.3%) 2 (1.4%) 15 (2.2%)

IIIB 78 (13.9%) 15 (10.3%) 93 (13.2%)

IIIC 38 (6.8%) 23 (15.8%) 61 (8.6%)

IV 37 (6.6%) 41 (28.1%) 78 (11.0%)

IVA 18 (3.2%) 7 (4.8%) 25 (3.5%)

IA 1 (0.2%) 1 (0.1%)

IIC 2 (0.4%) 2 (0.3%)

Values are n (%), unless otherwise noted.

(PCCs) were calculated for pair-wise gene comparisons. Fourth, an appropriate soft threshold power (β) was selected
to ensure a scale-free network using the pickSoftThreshold function. Fifth, the adjacency matrix was constructed
using the power function

aij = |cij|β,

where cij refers to the PCC between genes i and j, and aij refers to adjacency between those two genes. Then, the
topological overlap matrix (TOM) was constructed using the adjacency function

TOMi,j = lij + aij

min
(
ki + kj

) + 1 − aij

where lij refers to the product’s sum of the adjacency coefficients of the nodes connected by genes i and j, and k refers
to the sum of the adjacency coefficients of the given gene with all other genes in the weighted network. The TOM was
used to calculate a dissimilarity measure (1-TOM) to allocate genes into modules based on their similar expression
[26], using the dynamic tree cutting method [27]. The minimum number of genes in each module was set to 30.

4 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Selection of clinically significant modules and identification of CRC hub
genes
First, principal component analysis was used to describe module eigengenes, corresponding to a single characteristic
expression profile across all genes within each module. Correlations between these eigengenes and clinical charac-
teristics were calculated in order to identify which modules were clinically significant. The linear relationship be-
tween gene expression and clinical characteristics were assigned a gene significance (GS) equal to the logarithm of
the P-value for the individual gene. If GS strongly correlated with module membership (MM), defined as the correla-
tion between the module’s eigengenes and individual gene expression profiles, we concluded that the module’s central
genes correlated with CRC [28,29]. We considered these central genes as candidate hub genes.

Bioinformatics validation of hub genes
The expression levels of hub genes in CRC samples were explored using the GEPIA website (http://gepia.cancer-pku.
cn/), and the ability of hub genes to predict survival was assessed based on Kaplan–Meier analysis using the ‘survival’
package (version: 3.2-7) in the R suite. First, we obtained DEG expression profiles and prognostic data for 360 CRC
tumor samples from the TCGA, then we determined each gene’s median expression value. Samples were assigned
to ‘high expression’ or ‘low expression’ groups for a given gene based on whether that gene was expressed at a level
higher or lower than the median. Differences in survival between high or low expression groups were assessed for
significance using the log-rank test. If this test was associated with P<0.05, we considered the gene to be a validated
hub gene.

We then screened for differences in hub gene expression between normal and CRC tissues based on colon adeno-
carcinoma (COAD) and rectal adenocarcinoma (READ) data from the TCGA and the Genotype-Tissue Expression
Project (GTEX) on the GEPIA website. Expression levels were normalized by their mean value, and differences as-
sociated with P<0.01 were considered statistically significant. Hub genes were further validated by analyzing their
expression differences between CRC and normal tissues using the ‘ggpubr’ package (version: 0.4.0) in the R suite and
the GSE33113 dataset [30,31] in the GEO database (https://www.ncbi.nlm.nih.gov/geo/). Independent-samples t test
was applied as standard.

We mapped the hub genes’ genome, including mutations, copy number variants (CNVs), and mRNA expression
z-scores (RNASeqV2 RSEM) using data from 594 CRC samples from the colorectal adenocarcinoma dataset in the
Pan-Cancer Atlas of TCGA. We also used MutationMapper tools to depict the mutation landscape of each hub gene.
We accessed and analyzed the data using CBioPortal (http://www.cbioportal.org/).

Immunohistochemical validation of OSBPL3 as a hub gene
Immunohistochemistry of tumor and paired normal tissues from three CRC patients from Tangdu Hospital of the
Fourth Military Medical University was performed as described [32,33]. Written informed consent for tissue dona-
tion, which clearly stated the purpose of our study, was obtained from all of the patients. Tissues were fixed with forma-
lin, embedded in paraffin and sliced into 3-μm-thick sections. After deparaffinization and inactivation of endogenous
catalase, the sections were boiled in sodium citrate buffer to expose antigenic sites, then blocked in 5% normal goat
serum for 1 h to prevent non-specific binding. Next, the sections were incubated with anti-OSBPL3 antibody (1:50
dilution; Proteintech, 12417-1-AP) at 4◦C overnight, and binding was detected using the avidin–biotin–peroxidase
method. Sections were counterstained with Hematoxylin. Two experienced researchers independently evaluated the
results.

Results
Data pre-processing
Our expression data came from 51 normal samples and 383 tumor samples (Supplementary Table S1). Filtering based
on principal component analysis led to the exclusion of 11 tumors and 3 normal samples from the final dataset (Figure
2A,B). The first two principal components distinguished tumor from normal samples well, accounting for 13.5% (first
component) and 6.7% (second component) of the observed differences. The gene expression profiles from these 420
samples were used in subsequent analyses.

Identification of DEGs in CRC samples and GO enrichment analysis
A total of 4832 DEGs were identified between 48 normal and 372 CRC samples, including 1562 up-regulated and
3270 down-regulated genes (Figure 2C, Supplementary Table S3). To explore the potential biological function of
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Figure 2. Identification of DEGs between 48 normal and 372 CRC samples

(A) Principal component analysis. (B) Volcano plot. Purple dots represent genes down-regulated in CRC; gray dots, genes not

differing significantly between CRC and normal tissues; and red dots, genes up-regulated in CRC. (C) The volcano plot. Purple

dots represent down-regulated genes, gray dots represent not significant genes, and red dots represent up-regulated

genes. (D) GO analysis of functional enrichment of up-regulated genes. Dot size reflects the number of genes enriched under the

given ontology term, and the color indicates the significance of enrichment.

DEGs in CRC, we performed GO enrichment analysis (Supplementary Tables S4 and S5). The up-regulated DEGs
were involved mainly in nuclear division, cell cycle regulation, chromosome segregation, and DNA replication (Figure
2D). In contrast, the down-regulated DEGs were involved mainly in the regulation of ion transmembrane transport,
muscle systems, ion homeostasis, and second messenger-mediated signaling (Supplementary Figure S1). These results
are consistent with known dysfunctions in CRC, suggesting that our results are reliable.

WGCNA and identification of critical modules
WGCNA was used to construct a network based on the expression matrix of 4832 DEGs and clinical data from 420
CRC samples. We performed cluster analysis to check the quality of the data from the 420 samples, all samples were
in the clusters and within the cut-off threshold value (height < 200), therefore, no outliers were identified for removal
(Figure 3A). Six clinical variables were applied in the WGCNA (Figure 3A): disease status (Tumor Normal), cancer

6 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 3. WGCNA of DEGs in CRC

(A) Clustering dendrogram of the clinical traits and data from 420 CRC samples. Red color represents ‘tumor’ for the variable

‘Tumor Normal’, ‘colon and rectum cancer’ for the variable ‘Cancer-type’, ‘female’ or ‘male’ for the variable ‘Sex’, and ‘adenocar-

cinoma’ or ‘mucinous carcinoma’ for the variable ‘Histological type’. For the variables ‘Weight’ and ‘OS time’, red color is directly

proportional to the value. (B) Dendrogram of 4832 DEGs depending on the dissimilarity measure 1-TOM (see ‘Materials and meth-

ods’ section). Each branch represents a gene, and each color represents a co-expression module. (C) Numbers of genes in the

eight modules. (D) Heatmap of the correlation between module eigengenes (MEs) and clinical characteristics of CRC patients. Each

cell contains the correlation coefficient and P-value. (E,F) Module eigengene dendrogram and heatmap of eigengene adjacency.

(G,H) Scatter plots of GS score and MM (see ‘Materials and methods’ section) for genes in the (G) blue and (H) brown modules.

type, sex, histological subtype, body weight, and survival time (OS.time). The 420 samples fell into two clusters, Tumor
and Normal.

To construct a scale-free network, we set the soft threshold power β to 7, the independence degree to 0.9, and the
mean connectivity was close to 0 (Supplementary Figure S2A–D). DEGs with similar expression patterns clustered
into the same modules, and modules showing a difference in cut height < 0.25 were merged. This procedure yielded
eight co-expression modules: turquoise, blue, red, brown, yellow, gray, green, and black (Figure 3B,C, Supplementary
Table S6). The gray module contained genes that could not be incorporated into any other module.

The eigengenes of the brown module strongly correlated positively with CRC (cor = 0.82, P=3 × 10−105), while the
eigengenes of the blue module strongly highly correlated negatively with CRC (cor = −0.93, P=1× 10−88) (Figure
3D). These correlations were confirmed through analysis of hierarchical clustering, heatmaps, and adjacency rela-
tionships (Figure 3E,F). These results indicated that the brown module might contribute to tumorigenesis in CRC,
while the blue module might protect against CRC. Therefore, the brown and blue modules were analyzed for hub
genes.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. Survival analysis and validation of six hub genes using an independent dataset

(A–F) Kaplan–Meier survival curves of CRC patients stratified by low or high expression of the six hub genes. (G–L) Differences in

expression of the six hub genes between normal and tumor tissues in the GEPIA database. *P<0.01.

8 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 5. Mutations in the six hub genes, based on CRC data in TCGA

(A) Bar plots and heatmaps showing mutations in the six hub genes. (B) Lollipop plots showing the distributions of mutations in

different domains of the proteins encoded by the six hub genes.
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Figure 6. Different expression of OSBPL3 in tumor tissues (Ca) and adjacent normal tissues (Para-Ca)

Scale bar, 100 μm. Abbreviation: HE, Hematoxylin–Eosin.

Identification of candidate hub genes from brown and blue modules
MM and GS scores strongly correlated positively with each other in the brown and blue modules (Figure 3G,H).
The criteria for selecting hub genes relatively lower than the standard cut-off threshold (MM > 0.8). In the
brown module, 151 genes were identified that satisfied the thresholds of ‘cor.gene ModuleMembership’ > 0.75
and ‘cor.geneTraitSignificance’ > 0.6. In the blue module, 150 genes were identified that satisfied the thresholds of
‘cor.geneModuleMembership’ > 0.75, and ‘cor.gene TraitSignificance’ > 0.7.

Hub gene expression and correlation with survival
Based on expression data and clinical information for 360 CRC tumor samples in the TCGA, we examined potential
associations between expression and patient survival for the 151 genes identified in the brown module and the 150
identified in the blue module. The brown module genes CCNF, CKAP2L, and DIAPH3 were associated with prog-
nosis, as were the blue module genes BAI3, OSBPL3, and RERGL (Figure 4A–F). Thus, we defined these genes as
‘final’ hub genes.

Using GEPIA website, we confirmed that the expression of all these hub genes were significantly different between
normal and CRC tissues (Figure 4G–L). BAI3 and RERGL were down-regulated in CRC, whereas the other hub genes
were up-regulated. Similar results were obtained using data from the GEO database (Supplementary Figure S3A–F).

Mutation landscape of hub genes
The OncoPrint view of hub genes in the CBioPortal database was used to visualize mutations in the six hub genes
based on data from 594 CRC patients in the TCGA. Nearly half of these patients (41%) had mutations in all six
hub genes. The highest rate of mutations was observed for DIAPH3 (17%), with missense mutations and mutations
leading to higher mRNA expression being the most frequent (Figure 5A). BAI3 showed the highest somatic mutation
rate (6.7%), and the most frequent mutations were missense mutations and deletions (Figure 5B).

Immunohistochemical validation of OSBPL3 as a hub gene
We further validated the clinical significance of OSBPL3 as a hub gene using immunohistochemistry (Figure 6). We
detected that OSBOL3 have heterogeneous expression in different types of tumor cells. OSBPL3, which localized
mainly in the cytoplasm, was highly expressed in tumor cells and glandular epithelial cells, but less expressed in other
cell types. Clearly indicate how its expression compared between tumor and normal samples overall.

Discussion
CRC remains one of the world’s most malignant cancers. Although some studies have used WGCNA to explore molec-
ular markers related to its pathogenesis, diagnosis and prognosis [34–36], the present work provided a more complete
novel idea. We performed bioinformatics analyses across independent patient cohorts to identify biomarkers, one of

10 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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which was experimentally validated. Our results suggest that poor prognosis in CRC is associated with overexpression
of CCNF, CKAP2L, DIAPH3 and OSBPL3, and with underexpression of BAI3 and RERGL. Meanwhile, BAI3 and
CKAP2L may be novel prognostic markers for CRC.

Consistent with the predicted functional enrichment of our CRC DEGs genes, the cell cycle has been shown to be
dysregulated in many types of cancer [37]. Many studies have shown that targeted regulation of cancer cell cycle is
a potential treatment strategy [38]. Therefore, studying cell cycle pathway may advance the understanding of onco-
genic mechanisms and the treatment options for CRC. Similarly, defects in DNA replication can lead to mutations,
chromosomal poly- or aneuploidy, as well as gene copy number variations, all of which can lead to cancer [39]. DNA
mismatch repair (MMR) deficiency is one of the most well-known forms of genetic instability in CRC [40].

Through WGCNA, we identified module and hub genes likely to be important in CRC. We determined two key
modules, brown and blue, whose genes are strongly related to CRC (Tumor Normal). Genes in the red, yellow, and
turquoise modules from our analysis may also play roles in CRC. Therefore, our results indicate that complex gene
networks regulate CRC occurrence and development. Six hub genes in the brown and blue modules strongly corre-
lated with overall survival of CRC patients: BAI3/ADGRB3, CCNF, CKAP2L, DIAPH3, OSBPL3, and RERGL. Two
of these, BAI3 and CKAP2L, have not previously been linked to CRC, although expression of BAI3, a member of the
BAI family [41], appears to be altered in malignant gliomas [42] and small cell lung cancer [43]. Similarly, expression
of CKAP2L, a mitotic spindle protein, appears to be altered in lung adenocarcinoma [44], breast cancer [45], and
non-small cell lung cancer [46].

The remaining four hub genes have previously been associated with CRC. CCNF is a founding member of the
F-box family of proteins [47]. It can form the Skp1-Cul1-F-box protein ubiquitin ligase complex, which controls cen-
trosome duplication and helps stabilize the genome [48]. Levels of CCNF can independently predict poor prognosis
in patients with hepatocellular carcinoma [48]. Higher CCNF expression has been associated with longer survival
in CRC [49]. DIAPH3, a formin ortholog [50], participates in actin remodeling and regulates cell movement and
adhesion [51]. It can contribute to the development, invasion, and metastasis of lung adenocarcinoma, colorectal
carcinoma [52–54]. OSBPL3 participates in lipid metabolism, vesicle trafficking, and cell signaling [55,56], and it is
up-regulated in malignancies such as Burkitt’s lymphoma and CRC [57]. RERGL is a tumor suppressor gene of the
Ras superfamily, and its underexpression has been linked to overall survival in CRC [58,59].

The hub genes that we identified differ from those identified in previous studies of CRC-related genes. One study
identified three novel hub genes that could be candidate genes for CRC molecular mechanism studies (INHBA,
CBX2, and BEST2) [60], while another identified seven that may contribute to early onset of CRC (SPARC, DCN,
FBN1, WWTR1, TAGLN, DDX28, and CSDC2) [61]. Other studies have focused on specific genes in CRC, such
as METTL3 [62] and METTL14 [63]. Differences in the key genes detected across these various studies may reflect
differences in the clinicopathological characteristics of patients and in the types of analyses performed. However,
we used a combination of bioinformatics analysis, experimental verification and dataset cross-validation to study
CRC-related DEGs, and obtained two novel hub genes (BAI3 and CKAP2L) that may be associated with CRC’s prog-
nosis. These results indicated that the present study provides new ideas for the study of molecular mechanisms of
CRC.

Most previous WGCNA studies did not attempt to validate their genetic findings experimentally. Our six hub
genes, which we validated in independent patient samples using bioinformatics and, in the case of OSBPL3, using
immunohistochemistry, may help guide further studies to gain a comprehensive understanding of the network of
genes involved in CRC. Such work may provide valuable clues for the treatment of CRC.
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