

Research Article

Genome survey and microsatellite motifidentification of *Pogonophryne albipinna*

Euna Jo^{1,2,*}, YII Hwan Cho^{1,*}, Seung Jae Lee¹, Eunkyung Choi¹, Jinmu Kim¹, Jeong-Hoon Kim²,
Description Young Min Chi¹ and Description Hyun Park¹

¹Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; ²Division of Life Sciences, Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Korea

Correspondence: Hyun Park (hpark@korea.ac.kr)

The genus Pogonophryne is a speciose group that includes 28 species inhabiting the coastal or deep waters of the Antarctic Southern Ocean. The genus has been divided into five species groups, among which the P. albipinna group is the most deep-living group and is characterized by a lack of spots on the top of the head. Here, we carried out genome survey sequencing of P. albipinna using the Illumina HiSeq platform to estimate the genomic characteristics and identify genome-wide microsatellite motifs. The genome size was predicted to be \sim 883.8 Mb by K-mer analysis (K = 25), and the heterozygosity and repeat ratio were 0.289 and 39.03%, respectively. The genome sequences were assembled into 571624 contigs, covering a total length of \sim 819.3 Mb with an N50 of 2867 bp. A total of 2217422 simple sequence repeat (SSR) motifs were identified from the assembly data, and the number of repeats decreased as the length and number of repeats increased. These data will provide a useful foundation for the development of new molecular markers for the P. albipinna group as well as for further whole-genome sequencing of P. albipinna.

Introduction

The genus *Pogonophryne* Regan, 1914 is the most species-rich group among the perciform suborder Notothenioidei, with 28 species reported to date [1,2]. They inhabit coastal or deep waters of the Southern Ocean off Antarctica [2]. Recently, several species have been newly discovered during longlining of the Antarctic toothfish, *Dissostichus mawsoni* [1–7], but their morphological and molecular identification is still complicated.

Taxonomically, the genus *Pogonophryne* is one of the complex taxa distinguished from other taxa by slight meristic differences, and their key diagnostic character, namely the mental barbell, is highly variable in some species [6,8]. It is difficult to compare the morphology of the species from this genus because many of them were described based on only a few specimens from a single sampling site [9,10]. Accordingly, taxonomists have divided the genus *Pogonophryne* into five species groups: *P. mentella*, *P. scotti*, *P. barsukovi*, *P. marmorata*, and *P. albipinna* groups [5,11].

Phylogenetic studies have been carried out on these groups using several mitochondrial and nuclear markers, and the monophyly of these five species groups was supported by mitochondrial NADH dehydrogenase subunit 2 (ND2) and cytochrome *c* oxidase I (COI) gene markers [5,10]. However, molecular identification at the species level showed poor resolution due to low genetic variations related to a very recent divergence of the genus *Pogonophryne*, as is the case with other species in the family Artedidraconidae [10,12–14]. Therefore, it is necessary to develop markers with improved discriminatory ability for genome-wide analyses, such as microsatellite and single nucleotide polymorphism (SNP) markers. In particular, microsatellites, also termed simple sequence repeats (SSRs), have already been validated for their effectiveness in fish species delimitation [15].

*These authors contributed equally to this work.

Received: 07 April 2021 Revised: 01 July 2021 Accepted: 02 July 2021

Accepted Manuscript online: 05 July 2021 Version of Record published: 30 July 2021

Table 1 Statistics of the genome survey sequencing data of P. albipinna

Raw data (bp)	Total reads	Q20 (%)	Q30 (%)	GC content (%)
57104280342	378174042	96.6	91.8	41.7

The molecular data on *Pogonophryne*, mostly mitochondrial ND2 and COI, are available from the NCBI Gen-Bank database [2,5] for less than half of the species (13 out of 28). Among these species, *P. albipinna* has been reported recently with its complete mitochondrial genome sequence [16], and this is the first genome survey study of *Pogonophryne*. *Pogonophryne albipinna*, also known as white-fin plunderfish, belongs to the *P. albipinna* group, which is the most deep-living group of the genus and is mainly characterized by an absence of dark spots on the top of the head [1,5,11].

In the present study, based on next-generation sequencing (NGS), we estimated the genomic characteristics of *P. albipinna* and identified genome-wide SSR motifs. The present study can be used as a basis for further whole-genome sequencing of *P. albipinna* and the development of new molecular markers for distinguishing between *Pogonophryne* species.

Materials and methods

Sample preparation and genome survey sequencing

Sample of *P. albipinna* was collected from the Ross Sea (77°05′S, 170°30′E on CCAMLR Subarea 88.1), Antarctica and frozen while being transferred to the laboratory. The frozen sample was dissected to obtain muscle tissue samples, which were used to extract genomic DNA following the traditional phenol-chloroform method. DNA quantity and quality were checked using a Qubit fluorometer (Invitrogen, Life Technologies, CA, U.S.A.) and a fragment analyzer (Agilent Technologies, CA, U.S.A.). Species were identified by morphology as well as using mitochondrial COI markers [17]. The DNA was randomly fragmented into 350-bp fragments using a Covaris M220 focused-ultrasonicator (Covaris, MA, U.S.A.). A paired-end DNA library was prepared and sequenced on the Illumina HiSeq 2000 platform according to the manufacturer's protocol.

Data analysis

The quality values of Q20 (percentage of bases whose base call accuracy exceeds 99%) and Q30 (percentage of bases whose base call accuracy exceeds 99.9%) and the GC content were evaluated from the primary Illumina paired-end data. K-mer analysis was conducted using Jellyfish 2.1.4 [18] with K-values of 17, 19, and 25. In order to estimate the genome size, heterozygosity rate and repeat content, we used GenomeScope [19] in R version 3.4.4 [20] based on the K-mer distribution (K = 25), which selected the one that the GenomeScope model showed the best match to the observed K-mer frequencies. The *de novo* draft genome was assembled using Maryland Super-Read Celera Assembler (MaSuRCA) version 3.3.4 [21], and contig-level assembly statistics were then calculated using the assemblathon_stats.pl script (available at: https://github.com/ucdavis-bioinformatics/assemblathon2-analysis/blob/master/assemblathon_stats.pl; accessed on 1 January 2021) [22]. Genome-wide identification of di- to hexanucleotide microsatellite motifs with minimum five repetitions, and primer design were performed using the pipelines of QDD version 3.1.2 [23]. Microsatellites were extracted with 200-bp flanking regions on both sides and sequences shorter than 80 were eliminated. Three QDD steps were proceeded with default parameters, and -contig 1 (step 1), -make_cons 0 (step 2) and -contig 1 (step 3) options were added. Primer pairs were selected by Primer3 software [24] to meet the following criteria: the expected PCR product size of 100–150 bp, the primer melting temperature (Tm) of 59–60°C, and the primer length of 20–25 bases.

Results and discussion

Genome size estimation and sequence assembly

The genome survey sequencing of P. albipinna yielded a total of \sim 57.1 Gb of raw reads through the Illumina paired-end library (Table 1). The Q20 and Q30 values of the raw reads were 96.6 and 91.8%, respectively (Table 1), indicating the high quality of this genome sequencing data [25]. In addition, the GC content of the raw reads was 41.7% (Table 1). The Illumina paired-end data were then used to predict the genomic characteristics of P. albipinna by K-mer analysis. Based on the 25-mer frequency distribution, the genome size was estimated to be 883.8 Mb, and the heterozygous and repetitive sequence rates were 0.289 and 0.751%, respectively (Table 2, and Figure 1).

Table 2 Genome estimation based on K-mer analysis of P. albipinna

K-mer	Genome size (bp)	Heterozygosity (%)	Duplication ratio (%)
17	829857227	0.275	0.795
19	843219952	0.294	0.758
25	883779230	0.289	0.751

Figure 1. K-mer (K = 25) distribution of P. albipinna genome

Blue bars represent the observed K-mer distribution; black line represents the modeled distribution without the error K-mers (indicated by the red line), up to a maximum K-mer coverage specified in the model (indicated by the yellow line). Len, estimated total genome length; Uniq, unique portion of the genome (not repetitive); Het, heterozygosity rate; Kcov, mean K-mer coverage for heterozygous bases; Err, error rate; Dup, duplication rate.

Table 3 Statistics of the assembled genome sequences of P. albipinna

	Total length (bp)	Total number	Max length (bp)	N50 length (bp)	GC content (%)
Contig	819289238	571624	51460	2867	41.02

In earlier studies, the nuclear DNA content of *P. scotti* was measured to be 4.05 pg/diploid cell using the Feulgen staining method [26]. When this measurement is converted into the haploid genome size, it shows that the nuclear DNA content of this species is 1.98 Gb, which is more than twice as high as our estimate. Meanwhile, other research on notothenioid genome size by flow cytometry showed that their genome size was 0.78–1.43 Gb [27], and more recent studies based on NGS data indicated a genome size of 0.64–1.06 Gb [28–32]. These size ranges are comparable with those indicated by our results, suggesting that further studies are needed to acquire more accurate knowledge of *P. albipinna* genome size.

Furthermore, the Illumina paired-end sequences of *P. albipinna* were assembled into contigs using MaSuRCA. We obtained 571624 contigs with a total length of 819289238 bp. The maximum and N50 contig lengths were 51460 and 2867 bp, respectively, with a GC content of 41.02% (Table 3). These results of genome survey sequencing provide useful preliminary data for further whole-genome studies to achieve more thorough assembly and chromosomal-level scaffolding using novel state-of-the-art genetic techniques.

Figure 2. Type and frequency of microsatellite motifs in P. albipinna genome

(A) Frequency of different microsatellite motifs. (C) Frequency of different dinucleotide microsatellite motifs. (C) Frequency of different trinucleotide microsatellite motifs. (E) Frequency of different tetranucleotide microsatellite motifs. (E) Frequency of different hexanucleotide microsatellite motifs.

Table 4 Statistics of SSR for P. albipinna

Statistics	Di-	Tri-	Tetra-	Penta-	Hexa-	Total
SSR number	1926231	249028	36955	3372	1836	2217422
Percentage	86.87	11.23	1.67	0.15	0.08	-

Microsatellite motif identification

A total of 2217422 microsatellite motifs were identified from the genome assembly of *P. albipinna*. Among them, dinucleotide motifs were the most prevalent (1926231; 86.87%), followed by trinucleotides (249028; 11.23%), tetranucleotides (36955; 1.67%), pentanucleotides (3372; 0.15%), and hexanucleotides (1836; 0.08%) (Table 4 and Figure

2A). The tendency of the motif frequency in the studied species was similar to that in other fish species, with the dinucleotide motif being predominant [33,34]. In the dinucleotides, the most frequent motif was AC/GT (71.84%), followed by AG/CT (17.29%), AT/AT (10.82%), and CG/CG (0.05%) (Figure 2B). In the trinucleotides, the most frequent motif was AAT/ATT (25.43%), followed by AGG/CCT (23.57%), and AAC/GTT (15.09%) (Figure 2C). The most abundant motifs in the tetra-, penta-, and hexanucleotides were ACAG/CTGT (13.53%), AGAGG/CCTCT (32.80%), and AACCCT/AGGGTT (31.92%), respectively (Figure 2D–F). Information on 99 pairs of microsatellite marker is presented in Supplementary Table S1. To ensure the usability of the microsatellite markers, subsequent validation studies are required. Moreover, if these markers are applied for studying the *P. albipinna* group, more meaningful results could be obtained and interspecific variation could be explained better than when using conventional mitochondrial markers.

Conclusion

In the present study, genome survey sequencing of P. albipinna was conducted to investigate its genomic characteristics and identify microsatellite motifs. The genome size estimated by K-mer analysis (K = 25) was 883.8 Mb, and the heterozygosity and duplication rates were 0.289 and 0.751%, respectively. The assembled genome had a total size of 819.3 Mb, with an N50 of 2867 bp and a GC content of 41.02%. A total of 2217422 SSR motifs were identified from the genome data, among which dinucleotide motifs accounted for the majority of repeat motifs (86.87%). These data will be a useful basis for novel molecular marker development as well as for further whole-genome sequencing of P. albipinna.

Data Availability

The *P. albipinna* genome project has been registered in NCBI under the BioProject number PRJNA697561. The whole-genome sequence has been deposited in the Sequence Read Archive (SRA) database under accession numbers: SRS13617358 and SAMN17672856.

Competing Interests

The authors declare that there are no competing interests associated with the manuscript.

Funding

This work was supported by the project 'Ecosystem Structure and Function of Marine Protected Area (MPA) in Antarctica' (PM21060) funded by the Ministry of Oceans and Fisheries, Korea [grant number 20170336]; and the Korea University Grant.

CRediT Author Contribution

Euna Jo: Data curation, Writing—original draft, Writing—review and editing. **YII Hwan Cho:** Data curation, Writing—original draft. **Seung Jae Lee:** Data curation, Software, Formal analysis. **Eunkyung Choi:** Data curation, Software, Formal analysis. **Jeong-Hoon Kim:** Resources, Data curation. **Young Min Chi:** Conceptualization, Data curation. **Hyun Park:** Conceptualization, Data curation, Writing—original draft, Writing—review and editing.

Ethics Approval

Ethical approval was not required for the present study because no endangered or alive animals were involved. The specimen used in the present study was caught by line and hook fishing and was dead when collected. The present study including sample collection and experimental research conducted on these animals was according to the law on activities and environmental protection to Antarctic approved by the Minister of Foreign Affairs and Trade of the Republic of Korea (MOFA2794).

Abbreviations

COI, cytochrome c oxidase I; MaSurCA, Maryland Super-Read Celera Assembler; ND2, NADH dehydrogenase subunit 2; NGS, next-generation sequencing; SSR, simple sequence repeat.

References

- 1 Balushkin, A.V. and Spodareva, V.V. (2015) New species of the toad plunderfish of the "albipinna" group, genus Pogonophryne (Artedidraconidae) from the Ross Sea (Antarctica). *J. Ichthyol.* **55**, 757–764, https://doi.org/10.1134/S003294521506003X
- 2 Shandikov, G.A. and Eakin, R.R. (2013) Pogonophryne neyelovi, a new species of Antarctic short-barbeled plunderfish (Perciformes, Notothenioidei, Artedidraconidae) from the deep Ross Sea. ZooKeys 296, 59–77, https://doi.org/10.3897/zookeys.296.4295
- 3 Balushkin, A.V. and Spodareva, V.V. (2013) Pogonophryne sarmentifera sp. nov. (Artedidraconidae; Notothenioidei; Perciformes)—the deep-water species of Antarctic plunderfishes from the Ross Sea (Southern Ocean). Tr. Zool. Inst. 317, 275–281

5

- 4 Balushkin, A.V. (2013) A new species of Pogonophryne (Perciformes: Notothenioidei: Artedidraconidae) from the deep Ross Sea, Antarctica. Tr. Zool. Inst. 317, 119–124
- 5 Eakin, R.R., Eastman, J.T. and Near, T.J. (2009) A new species and a molecular phylogenetic analysis of the Antarctic fish genus Pogonophryne (Notothenioidei: Artedidraconidae). *Copeia* 2009, 705–713. https://doi.org/10.1643/CI-09-024
- 6 Shandikov, G.A., Eakin, R.R. and Usachev, S. (2013) Pogonophryne tronio, a new species of Antarctic short-barbeled plunderfish (Perciformes: Notothenioidei: Artedidraconidae) from the deep Ross Sea with new data on Pogonophryne brevibarbata. *Polar Biol.* 36, 273–289, https://doi.org/10.1007/s00300-012-1258-4
- 7 Balushkin, A., Petrov, A. and Prutko, V. (2010) Pogonophryne brevibarbata sp. nov.(Artedidraconidae, Notothenioidei, Perciformes)—a new species of toadlike plunderfish from the Ross Sea, Antarctica. Proc. Zool. Inst. Russ. Acad. Sci. 314, 381–386
- 8 Eakin, R.R., Eastman, J.T. and Jones, C.D. (2001) Mental barbel variation in Pogonophryne scotti Regan (Pisces: Perciformes: Artedidraconidae). Antarct. Sci. 13, 363–370, https://doi.org/10.1017/S0954102001000517
- 9 Eakin, R. (1990) Artedidraconidae. In Fishes of the Southern Ocean (Gon, O. and Heemstra, P.C., eds), pp. 332–356, JLB Smith Institute of Ichthyology, Grahamstown
- 10 Smith, P., Steinke, D., Dettai, A., McMillan, P., Welsford, D., Stewart, A. et al. (2012) DNA barcodes and species identifications in Ross Sea and Southern Ocean fishes. *Polar Biol.* **35**, 1297–1310, https://doi.org/10.1007/s00300-012-1173-8
- 11 Balushkin, A. and Eakin, R. (1998) A new toad plunderfish Pogonophryne fusca sp. nova (Fam. Artedidraconidae: Notothenioidei) with notes on species composition and species groups in the genus Pogonophryne Regan. *J. Ichthyol.* **38**, 574–579
- 12 Dettai, A., Lautredou, A.-C., Bonillo, C., Goimbault, E., Busson, F., Causse, R. et al. (2011) The actinopterygian diversity of the CEAMARC cruises: barcoding and molecular taxonomy as a multi-level tool for new findings. *Deep Sea Res. Part II* **58**, 250–263, https://doi.org/10.1016/j.dsr2.2010.05.021
- 13 Lecointre, G., Gallut, C., Bonillo, C., Couloux, A., Ozouf-Costaz, C. and Dettaï, A. (2011) The antarctic fish genus Artedidraco is paraphyletic (Teleostei, Notothenioidei, Artedidraconidae). *Polar Biol.* **34**, 1135–1145, https://doi.org/10.1007/s00300-011-0974-5
- 14 Near, T.J., Dornburg, A., Kuhn, K.L., Eastman, J.T., Pennington, J.N., Patarnello, T. et al. (2012) Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. *Proc. Natl. Acad. Sci. U.S.A.* 109, 3434–3439, https://doi.org/10.1073/pnas.1115169109
- 15 Vanhaecke, D., De Leaniz, C.G., Gajardo, G., Young, K., Sanzana, J., Orellana, G. et al. (2012) DNA barcoding and microsatellites help species delimitation and hybrid identification in endangered galaxiid fishes. *PLoS ONE* 7, e32939, https://doi.org/10.1371/journal.pone.0032939
- 16 Tabassum, N., Alam, M.J., Kim, J.-H., Lee, S.R., Lee, J.-H., Park, H. et al. (2020) Characterization of complete mitochondrial genome of Pogonophryne albipinna (Perciformes: Artedidraconidae). *Mitochondrial DNA Part B.* **5**, 156–157, https://doi.org/10.1080/23802359.2019.1698361
- 17 Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. and Hebert, P.D. (2005) DNA barcoding Australia's fish species. *Philos. Trans. R. Soc. B Biol. Sci.* **360**, 1847–1857, https://doi.org/10.1098/rstb.2005.1716
- 18 Marçais, G. and Kingsford, C. (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770, https://doi.org/10.1093/bioinformatics/btr011
- 19 Vurture, G.W., Sedlazeck, F.J., Nattestad, M., Underwood, C.J., Fang, H., Gurtowski, J. et al. (2017) GenomeScope: fast reference-free genome profiling from short reads. *Bioinformatics* **33**, 2202–2204, https://doi.org/10.1093/bioinformatics/btx153
- 20 R Core Team (2017) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria
- 21 Zimin, A.V., Marçais, G., Puiu, D., Roberts, M., Salzberg, S.L. and Yorke, J.A. (2013) The MaSuRCA genome assembler. *Bioinformatics* 29, 2669–2677, https://doi.org/10.1093/bioinformatics/btt476
- 22 assemblathon2-analysis/assemblathon_stats.pl. https://github.com/ucdavis-bioinformatics/assemblathon2-analysis/blob/master/assemblathon_stats.pl
- 23 Meglécz, E., Pech, N., Gilles, A., Dubut, V., Hingamp, P., Trilles, A. et al. (2014) QDD version 3.1: a user-friendly computer program for microsatellite selection and primer design revisited: Experimental validation of variables determining genotyping success rate. *Mol. Ecol. Resour.* 14, 1302–1313, https://doi.org/10.1111/1755-0998.12271
- 24 Rozen, S. and Skaletsky, H. (2000) Primer3 on the WWW for general users and for biologist programmers. *Bioinformatics Methods and Protocols*, pp. 365–386, Springer
- 25 Li, G.-Q., Song, L.-X., Jin, C.-Q., Li, M., Gong, S.-P. and Wang, Y.-F. (2019) Genome survey and SSR analysis of Apocynum venetum. *Biosci. Rep.* **39**, BSR20190146, https://doi.org/10.1042/BSR20190146
- 26 Morescalchi, A., Morescalchi, M.A., Odierna, G., Sitingo, V. and Capriglione, T. (1996) Karyotype and genome size of zoarcids and notothenioids (Taleostei, Perciformes) from the Ross Sea: cytotaxonomic implications. *Polar Biol.* **16**, 559–564, https://doi.org/10.1007/BF02329052
- 27 Detrich, H.W., Stuart, A., Schoenborn, M., Parker, S.K., Methé, B.A. and Amemiya, C.T. (2010) Genome enablement of the notothenioidei: genome size estimates from 11 species and BAC libraries from 2 representative taxa. *J. Exp. Zool. B Mol. Dev. Evol.* 314, 369–381, https://doi.org/10.1002/jez.b.21341
- 28 Shin, S.C., Ahn, D.H., Kim, S.J., Pyo, C.W., Lee, H., Kim, M.K. et al. (2014) The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment. *Genome Biol.* 15, 1–14, https://doi.org/10.1186/s13059-014-0468-1
- 29 Ahn, D.H., Shin, S.C., Kim, B.M., Kang, S., Kim, J.H., Ahn, I. et al. (2017) Draft genome of the Antarctic dragonfish, Parachaenichthys charcoti. *Gigascience* 6, gix060, https://doi.org/10.1093/gigascience/gix060
- 30 Kim, B.M., Amores, A., Kang, S., Ahn, D.H., Kim, J.H., Kim, I.C. et al. (2019) Antarctic blackfin icefish genome reveals adaptations to extreme environments. *Nat. Ecol. Evol.* **3**, 469–478, https://doi.org/10.1038/s41559-019-0812-7
- 31 Chen, L., Lu, Y., Li, W., Ren, Y., Yu, M., Jiang, S. et al. (2019) The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes. *GigaScience* 8, giz016, https://doi.org/10.1093/gigascience/giz016

- 32 Lee, S.J., Kim, J.H., Jo, E., Choi, E., Kim, J., Choi, S.G. et al. (2021) Chromosomal assembly of the Antarctic toothfish (Dissostichus mawsoni) genome using third-generation DNA sequencing and Hi-C technology. *Zool. Res.* **42**, 124–129, https://doi.org/10.24272/j.issn.2095-8137.2020.264
- 33 Chen, B., Sun, Z., Lou, F., Gao, T.-X. and Song, N. (2020) Genomic characteristics and profile of microsatellite primers for Acanthogobius ommaturus by genome survey sequencing. *Biosci. Rep.* **40**, BSR20201295, https://doi.org/10.1042/BSR20201295
- 34 Xu, S.-Y., Song, N., Xiao, S.-J. and Gao, T.-X. (2020) Whole genome survey analysis and microsatellite motif identification of Sebastiscus marmoratus. *Biosci. Rep.* **40**, BSR20202252, https://doi.org/10.1042/BSR20192252

Primer		DCP product	Forward primer		Reverse primer		
No.	Motif	PCR product size (bp)	Sequence (5' → 3')	Tm (°C)	Sequence (5' → 3')	Tm (°C)	
1	(AC)15	140	TCTAGTCGAACAGCTCAGCC	59.2	AGTGGAATGAGGATGGGAGC	59.2	
2	(AC)11	139	CATGTTTATTCCCACAGATGGCA	59.3	AATGTGAGGAGTTCAGGCCC	59.7	
3	(AC)10	150	GGCAAGCTTTGTGTTCAGCT	59.6	ATGGACAATGAAAGGCGGGA	59.7	
4	(AG)12	110	TCCCTCAACTTGTTCTTCTGGT	59.2	TCTAAGACCATGCTGACGGC	59.8	
5	(AC)14	125	TCCATTCATCCTTGCCTGCT	59.4	ACAGCAGCCACATTAGACCA	59.3	
6	(AC)14	142	ATTGATCAGCATTGCACCGC	59.9	CTCACTGCCAACATCAGGGT	60.0	
7	(AC)10	133	GGAGCCTACAGTCCAATCGG	59.9	ACCAAGGTTTCAGAGCAGCA	59.8	
8	(AC)10	135	GAGCCTACAGTCCAATCGGG	59.9	AGCACCAAGGTTTCAGAGCA	59.8	
9	(AC)10	148	ACGTTTGAACCTGAAATGGGC	59.7	TGGCTCATTAGTGGTGCAGA	59.0	
10	(AC)12	142	GCCTTACTTTCTGACAGCAGC	59.5	ACTGAGCTCATGTGAGGACG	59.5	
11	(AC)11	150	AGTAAACTGCTGCCAAGGCT	59.9	TATCTGTCTGGCACCACCTG	59.1	
12	(AC)11	135	CGTTTGATCTTGCCTGCAGG	59.8	CACCAGGTAACCTCAGCAGA	59.0	
13	(AC)16	150	AGACACTCAAACTCTTAGACGCT	59.4	TCTCCGAGTGCAATGAGACG	59.8	
14	(AC)10	137	CCACCGTGTTAGAAACGCAG	59.5	TTCACTGCTAAGCCAAGGCA	59.9	
15	(AC)11	140	GCACCAGGATAGTCAGCACA	59.8	AGCACCTTTCACCTTGAGGG	59.9	
16	(AC)11	108	ATCACCCAGGATAACCACGC	59.8	GTGGGCCTTACATCTGCTCA	59.7	
17	(AG)10	118	CACGGTGGTTAAATCAGATTGGG	59.9	TAGGCCATGCAGTCATCACC	59.8	
18	(AC)10	136	GCAGGATATGGGTGTTTGCG	59.6	TAGCGTCTTTGCTCAGTGCT	59.7	
19	(AC)18	141	GGTATCGCTAACACCACCCA	59.5	CCGTTTGGTTAATGTCTTCGCT	59.5	
20	(AC)11	140	CCAGAGCTGCTATCAGTGCA	59.8	TAGAGATGAGAGGCGGTGGT	59.7	
21	(AC)15	116	GAAGCTTAGGTTTGCCTGGC	59.5	TTTAGCTCCTTCGCACCAGT	59.3	
22	(AC)12	141	GCTCCATGGTGAACTTCTGC	59.2	CAGCAGAATTGAGTTAACGGCA	59.5	
23	(AC)12	140	TCCATGGTGAACTTCTGCGT	59.6	ACAGCAGAATTGAGTTAACGGC	59.5	
24	(AC)13	142	AGGTTTAAAGTTGTACATTTCCGCA	59.7	GGAGGACATACTGTGGTGCA	59.4	
25	(AT)15	150	ATACGAGTCAGTGTGAGGCC	59.2	GGCTGGATCTCAGAAAGGTCA	59.4	
26	(AC)11	106	TGGGATGGACTCAGAGCTGA	60.0	CTGATCAGCTGCTGAGACGT	59.8	
27	(AC)11	118	TCACACCCTCATTTGCTCCC	60.0	CTGACAACACAGGAGCGACT	60.0	
28	(AG)16	127	TCTGTGTTCGTGTTTGTGCG	59.6	TGTATAGCCCGCAAACTGCT	59.7	
29	(AC)13	150	TTCTGGTCAAAGGCAACGGA	59.8	GGCTGATGGAAGATGACAGGT	59.8	
30	(AC)11	123	GCTCCGTCTCTTTGAGCTCA	59.8	CAACCGGCTGATAAACACCG	59.6	
31	(AC)11	142	TGTCCGTTACAACTGAGTACTGG	60.0	TCCACTCCAATGAGCTCTGC	59.7	
32	(AC)10	123	CTGCAATAACAGGCCAGCAC	59.8	TTTGGAGGCACAGAGACCAC	59.9	
33	(AC)11	119	GTCTCAGATACAGAAAGACAGGCT	59.8	TGTTGATTGGAGGGAGCAGG	59.7	
34	(AC)10	138	ACCATGCCATGTTAGCGCTA	59.8	TGGACATTCCCACATGCACA	59.9	
35	(AC)17	129	CATGGCTTCTGAAGGAGGCT	59.7	CCCTGTTAGATTGATGGGAGGG	59.9	
36	(AC)11	143	CCCTTTCATCCGTTACATGCTG	59.6	TCTGAGATCTCTAGTCAGGGCA	59.5	
37	(AG)16	139	TGTCTATCTGCCTTTCTGCCA	59.1	TCACCGTCATGCTAATCCTGG	59.9	

19 19 19 19 19 19 19 19	38	(AT)10	141	TCTGCACATTGGTCTTGCAAC	59.7	TCCTCGTATGTGTAAACCTACCTG	59.6
40							
41 (AC)10 139 AGCAGTGTTACAGGGCTCCC 60.0 ACCATGTCTCATCTGGACACC 59.4 42 (AC)10 140 ATCAGGAAACACATTGCCGCT 59.1 TGCAGCATTGAACACAATGGG 60.0 43 (AC)17 125 TCTGGAGGTCGTCAGCTG 59.7 TCCACCATCTCAATGCTCC 59.7 44 (AC)12 131 AGGCACATTTATCCACCGCT 59.7 ACAGGCCTTTCACATGCTCA 59.9 45 (AG)26 150 ACTCGAAATGACACCGTGCT 59.8 GGCAACTCTAATAGATGACTCATGG 59.8 47 (AC)11 123 CCTCAGATGGATCCACAGGGA 59.8 GGCAACTCTAATAGATGACTCATGG 59.8 48 (AC)12 134 CCTCAGACTCAGAGGA 60.0 AGGAGACCCAATGTTAGCCG 59.7 50 (AC)17 123 ACACCACACAGGGA 60.0 TATTCATCCCATGCACGC 59.7 51 (AC)17 123 ACAGGCACTCCATCCATCCACCAGC 59.8 GATTCAACGCAGGTCTGACG 59.3 52 (AC)11 142 TATAGAGCCATCCATCAGCC 59.9 ATCAGCTAACTCCAGCGG 59.3							
42 (AC)10 140 ATCAGAAACACATTTGCCGCT 59.1 TGCAGCATTGAACACAATGGG 60.0 43 (AC)17 125 TCTGTGAGGTCGTTCAGCTG 59.7 CCTGCATGTCTGTGTTTTGTCC 59.7 44 (AC)12 131 AGGCACATTTACCACCGCT 59.7 ACGGCTTTCACAGCTCA 59.8 45 (AG)26 150 ACTCTGAAATGACACCAGGCT 59.9 AGCATGTGCCAATCAACGG 59.8 46 (AC)26 143 CAGGGTACTCTCATGGTGC 59.8 GGCAACTCTAATGAGTGACCGAGG 59.7 48 (AC)12 134 CCTCAGATTGGATCCAGGAGG 59.8 CTTGGTGTGGAGAGGAGGG 59.7 49 (AT)11 123 CAACCAACAGGAGCACTG 59.7 TCGCAAGAGGAGCCATTGACCCAGGG 59.8 50 (AC)17 123 CAACGACACAGGAG 60.0 TAATTCACGCCATGCACGC 59.7 51 (AC)15 140 ATTTCAGCCCTCCATCACGC 60.0 TAATTCACGCCATGCACGC 59.3 52 (AC)11 142 TATAAGCCCTCACAGGG 59.8 AGTTCAACGCAGGTTGACG 59.3	_	` '					
43 (AC)17 125 TCTGTGAGGTGTTCAGCTG 59.7 CCTGCATGTCTGTGTTTGTCC 59.7 44 (AC)12 131 AGGCACATITATCCACCGCT 59.7 ACAGGCCTTCACATGCTCA 59.9 45 (AG)26 150 ACTCTGAAATGACACCGTGCT 59.9 AGCATGTGCCAATCAAACGG 59.8 46 (AC)26 143 CAGGGTACTCCATGGTGC 59.8 GGCAACTCTAATAGATGAACTCACG 59.6 47 (AC)11 123 CCTCAGATTGGATTCCAACCAC 59.8 CITGGTGTTGAGAGGAGGGG 59.7 48 (AC)12 134 GCTCATGACCACCAAGGGGA 60.0 AGGAGACCATGTTGCCG 59.8 49 (AT)11 123 ACAAGGACTACTGGCCAAGC 60.0 TAATTCATCGCCATGACGC 59.8 50 (AC)17 123 ACAAGGACTACTGAGCCT 59.8 GATTCAACCAGGGC 59.7 51 (AC)12 140 ATTCAAGCCACCACGAG 59.7 TCGCAAGAGGAGATGATGCC 59.7 51 (AC)11 136 GTGCATTCTGTCTCTGTTGC 59.8 GATTCAACCCAGGGG 59.3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
44 (AC)12 131 AGGCACATITATCCACCGCT 59.7 ACAGGCCTITCACATGCTCA 59.9 45 (AG)26 150 ACTCTGAAATGACACCGTGCT 59.9 AGCATGTGCAATCAAACGG 59.8 46 (AC)26 143 CAGGGTACTCTCATGGTGC 59.8 GGCAACTCTAATGAGTACACTGC 59.6 47 (AC)11 123 CCTCAGATTGGATTCCAGACCA 59.8 CTTGGTGTGGAGAGGAGGG 59.7 48 (AC)12 134 GCTCATGACCACCAGGGA 60.0 AGGAGAGCCAATGTTAGCCG 59.8 59 (AC)17 123 ACACCAACAGAGGCACGTC 59.7 TCGCAAGAGGAGTGATGCCC 59.9 50 (AC)17 123 ACAGGACTACTGGCCAGC 60.0 TAATTCACCGCAGTCGCC 59.9 51 (AC)12 142 ATTAGACCCTGCACCACGA 59.9 ATTGACTTCACCAGGTCTGAGG 59.3 52 (AC)11 136 GTCCAGACACTGAGGGG 59.8 CGTGCTAATCCCCCAGGGG 59.3 53 (AC)10 118 GTCCAGACACTGAGGCTG 59.8 CAGTGCATTCCACCACTCGTCT 59.2							
45 (AG)26 150 ACTCTGAAATGACACCGTGCT 59.9 AGCATGTGCCATCAAACGG 59.8 46 (AC)26 143 CAGGGTACTCTCCATGGTGC 59.8 GGCAACTCTAATACAGTGACTCATGC 59.6 47 (AC)11 123 CCTCAGATTGGATTCCAAGGCA 59.8 CTTGGTGTGAGAGGAGGGG 59.7 48 (AC)12 134 GCTTCATGACCACCAAGGG 60.0 AGGAGAGCCATGTTCAGCC 59.8 49 (AT)11 123 CAACCAACAAGGGCACGTC 59.7 TCGCAAGAGGAGATGATGCC 59.9 50 (AC)17 123 ACAAGGACTCATGCCCAGGC 60.0 TAATTCATCCCCAGGC 59.9 51 (AC)25 140 ATTCAGCCCTGCAGGAG 59.9 AATGAGCTTTACGATGGCG 59.3 52 (AC)11 142 TATAAGCCCTGCAGGAG 59.9 AATGAGCTTACCCGTGCAGG 59.3 53 (AC)10 118 GTCCAGACACTGAGAGGCTG 59.8 CGTGCTAATTCTCCCTGCT 59.2 55 (AC)11 136 CGCCTTAATTGTTCCCTGCAG 59.3 ACGTGTAAGGCCT 59.2 <							
46 (AC)26 143 CAGGGTACTCTCCATGGTGC 59.8 GGCAACTCTAATAGATGACTCATGC 59.6 47 (AC)11 123 CCTCAGATTGCATCCAGAGCA 59.8 CTTGGTTTGGAGAGGAGGG 59.7 48 (AC)12 134 GCTTCATGACCACCAGAGGA 60.0 AGGAGAGCCAATGTTAGCCC 59.8 49 (AT)11 123 CAACCAACAAGAGGCCC 59.7 TCGCAAGAGGAGTATGCCC 59.9 50 (AC)17 123 ACAAGGACTACTGGCCAGC 60.0 TAATTCACGCCATCAGC 59.9 51 (AC)25 140 ATTTCAGCCATCCAGCCCT 59.8 GATTCAACGCAGGTCTGACG 59.3 52 (AC)11 142 TATAAGCCTGCAGCACGA 59.9 AGTGGCATTCACGAGGGC 59.3 53 (AC)10 118 GTCCAGACACTGAGAGGCTG 59.8 ACGTGTAAGGCCTC 59.6 54 (AC)10 118 GTCCAGACACTGAGAGGCTG 59.8 ACGTGATACGACTCTCCCTCT 59.3 55 (AC)11 136 CGCCTTATTTCTCTCTCAGG 59.3 ACGTGCATTCCCTCCTCTCT 59.2							
47 (AC)11 123 CCTCAGATTGGATTCCAGAGCA 59.8 CTTGGTGTTGGAGAGGAGGG 59.7 48 (AC)12 134 GCTTCATGACCACCAAGGGA 60.0 AGGAGAGCCAATGTTGGCCG 59.8 49 (AT)11 123 CAACCAACAAGAGGACCTC 59.7 TCGCAAGAGGAGATGATGGCC 59.8 50 (AC)17 123 ACAAGGACTACTGGCCAGCG 60.0 TAATTCATCGCCATGCAGC 59.7 51 (AC)25 140 ATTCAGCCCTCCATCAGCCT 59.8 GATTCAACGCAGGTGACG 59.3 52 (AC)11 142 TATAAGCCCTGCAGCACGA 59.9 AATGAGCTTTACGATGGCC 59.3 53 (AC)10 118 GTCCAGACACTGAGAGGCTG 59.8 ACGTGTAAGTCCACTCGGGG 59.3 55 (AC)11 136 CGCCTTAATTGTTTCAGGAC 59.0 AGGTGTAAGTGCACTTGGTT 59.3 56 (AC)11 136 CGCCTTAATTGTTTACGCAC 59.0 CGCCCATATCAGTTCGTT 59.9 57 (AC)11 128 GCATTCCTTGAGCCGT 59.6 TGGATTAAGCGCATAGAGCCCT 59.9		. ,					
48 (AC)12 134 GCTTCATGACCACCAAGGGA 60.0 AGGAGAGCCAATGTTAGCCG 59.8 49 (AT)11 123 CAACCAACAAGAGGCACGTC 59.7 TCGCAAGAGGAGATGATGCC 59.7 50 (AC)17 123 ACAAGGACTACTGGCCAAGC 60.0 TAATTCATCCCCATGACGC 59.7 51 (AC)25 140 ATTTCAGCCATCAGCCT 59.8 GATTCAAGCAGGGTGACG 59.3 52 (AC)11 142 TATAAGCCCTGCAGCAGG 59.9 AATGAGCTTTACGATGGCGC 59.3 53 (AC)14 136 GTCCAGACACTGAGAGGCTG 59.8 CGTGCTAATCTCCCCAGAGGG 59.3 54 (AC)10 118 GTCCAGACACATGAGTGCTG 59.8 ACGTGCATCTGATTAGCCCTCTGT 59.3 55 (AC)11 136 CGCCTTAATGTCTCACGA 59.0 ACGTGATAATGACCTGCTT 59.9 57 (AC)11 128 GCATTTCTTTAGCCTAAGCCGA 59.0 CGCCCATATCCAGTTCGT 59.9 58 (AC)10 117 TCTCCACTGTGGGT 59.5 TTCCCACGTCCAGGTC 59.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
49 (AT111 123 CAACCAACAGAGGCACGTC 59.7 TCGCAAGAGGAGATGATGCC 59.9 50 (AC)17 123 ACAAGGACTACTGGCCAAGC 60.0 TAATTCATCGCCATGCACGC 59.7 51 (AC)25 140 ATTTCAGCCATCCATCAGCCT 59.8 GATTCAACGCAGGCTCAGCC 59.3 52 (AC)11 142 TATAAGCCTGCAGCACGAG 59.9 AATGAGCTTTCAGTCGCC 59.3 53 (AC)14 136 GTGCATTCTGTCTCTGTTGC 59.8 CGGTCTAACTCCCCAGAGG 59.6 54 (AC)10 118 GTCCAGACACTGAGAGGCTG 59.8 ACGTGTAAGTGCACTCGTCT 59.3 55 (AC)11 150 CAGGCAAACATGGTCCCAG 59.3 ACGTGCATTCAGTATGAGCCT 59.2 56 (AC)11 128 GCATTTCTTTAGCCAC 59.0 CGCCCCATATCCAGTTCGT 59.9 57 (AC)11 128 GCATTCTTTAGCCGAC 59.9 AGTACTTGTCCCAGGTG 59.9 58 (AC)10 117 TCTCCCTGTGGTTAGCCGT 59.9 AGTACTTGTCTCAGGTC 59.9 59<		` '					
50 (AC)17 123 ACAAGGACTACTGGCCAAGC 60.0 TAATTCATCGCCATGCACGC 59.7 51 (AC)25 140 ATTTCAGCCATCCATCAGCCT 59.8 GATTCAACGCAGGTCTGAGG 59.3 52 (AC)11 142 TATAAGCCCTGCAGCAGGAG 59.9 AATGAGCTTACGAGGGGC 59.3 53 (AC)14 136 GTGCATCTGTCTCCTGTTGC 59.8 CGTGCTAATCTCCCAGAGGG 59.6 54 (AC)10 118 GTCCAGACACTGAGAGGCTG 59.8 ACGTGTAATGCACTCTGCT 59.6 55 (AC)11 150 CAGGCAAACATAGTCCTGCAG 59.0 CGCCCATTCCAGTTCTGCT 59.2 56 (AC)11 136 CGCCTTAATTGTTTCACGCAC 59.0 CGCCCATTCCAGTTCTGCT 59.9 57 (AC)11 128 GCATTTTAGCCTAAGCCCA 59.0 CGCCCATTCCAGTTCAGTC 59.9 58 (AC)10 117 TCTCCTGTGGGTG 59.9 AGTACTTGACTCTCAGGTC 59.9 59 (AC)10 128 CGACAGTTCACGCTCA 59.8 CAACGCACATCCTCTAGGG 59.5							
51 (AC)25 140 ATTTCAGCCATCCATCAGCCT 59.8 GATTCAACGCAGGTCTGACG 59.3 52 (AC)11 142 TATAAGCCCTGCAGCACGAG 59.9 AATGAGCTTTACGATGGCGC 59.3 53 (AC)14 136 GTGCATTCTGTCTGTTGTGC 59.8 CGTGCTAATCTCCCAGAGGG 59.6 54 (AC)10 118 GTCCAGACACTAGAGGCTG 59.8 CGTGTAATCTCCCAGAGGG 59.3 55 (AC)11 150 CAGGCAAACATAGTCCTGCAG 59.3 ACGTGCATCTGATAAGGCCT 59.2 56 (AC)11 128 GCATTTCTTTAGCCTAAAGCCGA 59.0 CGCCCATATCCAGTTCGCT 59.9 57 (AC)11 128 GCATTTCTTTAGCCTAAGCCGA 59.6 TGGATTAAGCGGATAAGGCCC 59.9 58 (AC)10 117 TCTCCTGTGGTCTTGCCGT 59.9 AGTACTTGCTCCAGGTGC 59.0 59 (AC)10 128 CGACAGTTACACCTACCCTA 59.8 CAACCCACATCCTACTGAGG 59.5 60 (AC)17 125 ACACTTCACTGGTCTGGGT 59.8 TTGCTCCTCCACTTAGGGG 59.5	_						
52 (AC)11 142 TATAAGCCCTGCAGCACGAG 59.9 AATGAGCTITACGATGGCGC 59.3 53 (AC)14 136 GTGCATICTGTCCTCTGTTGC 59.8 CGTGCTAATCTCCCCAGAGGG 59.6 54 (AC)10 118 GTCCAGACACTGAGAGGCTG 59.8 ACGTGTAATCCACTGTCT 59.3 55 (AC)11 150 CAGGCAAACATAGTCCTGCAG 59.3 ACGTGCATCTGATAGGCCT 59.2 56 (AC)11 136 CGCCTTAATGTTTCACGCAC 59.0 CGCCCATATCCAGTTCTGCT 59.2 57 (AC)11 128 GCATTTCTTTAGCCTAAGCCGA 59.6 TGGATTAAGCGGATAAGGCCC 59.9 58 (AC)10 117 TCTCCTGTGATCCCGT 59.9 AGTACTTGCCTCCAGGTG 59.0 59 (AC)10 128 CGACAGTTACACCTACGCTCA 59.8 CAACGCCACATCCTTCAGGG 59.5 60 (AC)17 125 ACACTTCACTGGGTG 59.5 TTTCCCTGCCATGACTCGAG 59.8 61 (AT)10 147 CCTTCCATCATAGCCCTGTG 59.8 TCTTTTCTGCCTCTCTT 59.8							
53 (AC)14 136 GTGCATTCTGTCCTCTGTTGC 59.8 CGTGCTAATCTCCCAGAGGG 59.6 54 (AC)10 118 GTCCAGACACTGAGAGGCTG 59.8 ACGTGTAAGTGCACTCGTCT 59.3 55 (AC)11 150 CAGGCAAACATAGTCCTGCAG 59.3 ACGTGCATCTGATAGAGCCCT 59.2 56 (AC)11 136 CGCCTTAATTGTTCACCAC 59.0 CGCCCATATCCGTTCGCT 59.9 57 (AC)11 128 GCATTTCTTAGCCTAAAGCCGA 59.6 TGGATTAAGCGGATAAAGGCCC 59.9 58 (AC)10 117 TCTCCTGTGGTCTTACCCGT 59.8 AGTACTTGTCCTCCAGGTCC 59.9 59 (AC)10 128 CGACAGTTACACCTACGCTA 59.8 CAACGCACATCCTTCATGGG 59.5 60 (AC)17 125 ACACTTCACTGGGTG 59.8 CAACGCACATCCTTCAGG 59.8 61 (AT)10 147 CCTTCCTGTAAGCCCCTGT 59.8 TTGCCTTCACCATCAGG 59.8 62 (AC)11 147 AACATTCGCTTAAGCACCCTGG 59.8 CCCCTGTAAGAACAACCG 59.5		` '					
54 (AC)10 118 GTCCAGACACTGAGAGGCTG 59.8 ACGTGTAAGTGCACTCGTCT 59.3 55 (AC)11 150 CAGGCAAACATAGTCCTGCAG 59.3 ACGTGCATCTGATAAGGCCT 59.2 56 (AC)11 136 GGCCTTAATTGTTTCACGCAC 59.0 CGCCCATATCCAGTTCGCT 59.9 57 (AC)11 128 GCATTTCTTTAGCCTAAAGCCGA 59.6 TGGATTAAGCGGATAAGGCCC 59.9 58 (AC)10 117 TCTCCTGTGGTCTTACCCGT 59.9 AGTACTTGTCCTCCAGGTGC 59.0 59 (AC)10 128 CGACAGTTCACCTCACGTCA 59.8 CAACGCACATCCTTCATGGG 59.5 60 (AC)17 125 ACACTTCACTGGTGGGTG 59.8 CAACGCACATCCTAGACTCGGG 59.8 61 (AT)10 147 CCTTCCTGTGAGCGCTGT 59.8 TTGTGTGTCGCCCTCCTGT 59.8 63 (AT)10 137 TCTCCATCCATCCATACCCAGCA 59.0 AGCAAGGTCCAATAAAGAACCG 59.5 64 (AC)11 140 ACATCTGCTTGTGAGCT 59.7 CTCCACATCCATCATGAGCCA 59.7							
55 (AC)11 150 CAGGCAAACATAGTCCTGCAG 59.3 ACGTGCATCTGATAAGGCCT 59.2 56 (AC)11 136 CGCCTTAATTGTTTCACGCAC 59.0 CGCCCATATCCAGTTCTGCT 59.9 57 (AC)11 128 GCATTTCTTTAGCCTAAAGCCGA 59.6 TGGATTAAGCGGATAAGGCCC 59.9 58 (AC)10 117 TCTCCTGTGGTCTTACCCTCA 59.8 CAACCACATCCTTCATGGG 59.0 59 (AC)10 128 CGACAGTTCACCACTCA 59.8 CAACCACATCCTTAGGG 59.5 60 (AC)17 125 ACACTTCACGGTGT 59.8 CCACCACATCCTTAGGCTGGG 59.5 61 (AT)10 147 CCTTCCTCTGTAAGCGCTGT 59.8 TTGTTGTTGCCCTCGAG 59.8 62 (AC)11 147 AACGCTATTAGCACCCTGGG 59.8 CCCTGTGAGAGAGACTTCAGC 59.8 63 (AT)10 137 TCTCCATCCATCATCACACCAGG 59.0 AGCAAGGTCCAATAAAGAAACCG 59.5 64 (AC)11 140 ACATCTGTTGTAGAGCGT 59.7 CTCACAATCCATCAGCAACCCCA 59.9							
56 (AC)11 136 CGCCTTAATTGTTTCACGCAC 59.0 CGCCCATATCCAGTTCTGCT 59.9 57 (AC)11 128 GCATTTCTTTAGCCTAAAGCCGA 59.6 TGGATTAAGCGGATAAGGCCC 59.9 58 (AC)10 117 TCTCCTGTGGTCTTACCCGT 59.9 AGTACTTGTCCTCCAGGTGC 59.0 59 (AC)10 128 CGACAGTTACACCTACGCTCA 59.8 CAACGCACATCCTTATGGG 59.5 60 (AC)17 125 ACACTTCACTGGTGGTG 59.5 TTTCCCTGCCATGACTCGAG 59.8 61 (AT)10 147 CCTTCCTCTGTAAGCACCTGGG 59.8 TTGTTTGTCCCCTCCTGT 59.4 62 (AC)11 147 AACGCTATTAGCACCCTGGG 59.8 CCCTGTGAGGAGACTTCAGC 59.8 63 (AT)10 137 TCTCCACCATCCAAAACAGAG 59.0 ACGAAGAGAGACAAGCCCA 59.5 64 (AC)11 140 ACATTCGTTGTGTAGGGGT 59.7 CTCCACAATCCAATCAAGCAACAACCCC 59.7 65 (AC)11 144 GGCCGCCTCTTAGTATCGGGA 59.8 CCCGATCTGAACAACAAGCCCA 59.9							
57 (AC)11 128 GCATTTCTTTAGCCTAAAGCCGA 59.6 TGGATTAAGCGGATAAGGCCC 59.9 58 (AC)10 117 TCTCCTGTGGTCTTACCCGT 59.9 AGTACTTGTCCTCCAGGTGC 59.0 59 (AC)10 128 CGACAGTTACACCTACGCTCA 59.8 CAACGCACATCCTTCATGGG 59.5 60 (AC)17 125 ACACTTCACTGGTCTGGGTG 59.5 TTTCCCTGCCATGACTCGAG 59.8 61 (AT)10 147 CCTTCCTCTGTAAGCGCTGT 59.8 TTGTTGTTCTGCCCTCCTGT 59.4 62 (AC)11 147 AACGCTATTAGCACCCTGGG 59.8 CCCTGTGAGGAGACTTCAGC 59.8 63 (AT)10 137 TCTCCACTCCATACTAGCA 59.0 AGCAAGGTCCAATAAAGAAACCG 59.5 64 (AC)11 140 ACATCTGCTTGATGAGCT 59.7 CTCCACAATCCATCATGCGC 59.7 65 (AC)11 144 GGCCGCCTCTTAGTATGACC 60.0 AAGCAGAAAGAACAAGCCCA 59.9 66 (AC)10 141 GGAGACTGAGTAGACTGGGA 59.8 CCCGATCTGAACAAGAGCCC 59.9							
58 (AC)10 117 TCTCCTGTGGTCTTACCCGT 59.9 AGTACTTGTCCTCCAGGTGC 59.0 59 (AC)10 128 CGACAGTTACACCTACGCTCA 59.8 CAACGCACATCCTTCATGGG 59.5 60 (AC)17 125 ACACTTCACTGGTCTGGGTG 59.5 TTTCCCTGCATGACTCGAG 59.8 61 (AT)10 147 CCTTCCTCTGTAAGCGCTGT 59.8 TTGTTGTTCTGCCCTCCTGT 59.4 62 (AC)11 147 AACGCTATTAGCACCCTGGG 59.8 CCCTGTGAGGAGACTTCAGC 59.8 63 (AT)10 137 TCTCCATCCATCCTAAATCAGCA 59.0 AGCAAGGTCCAATAAAGAAACCG 59.5 64 (AC)11 140 ACATCTGCTTGTGTAGGCGT 59.7 CTCCACAATCCATCATGCGC 59.7 65 (AC)11 144 GGCCGCCTCTTAGTATGACC 60.0 AAGCAGAAAGAGACAAGCCCA 59.9 66 (AC)10 141 GGAGACTGAGTTGAATCGGGA 59.8 CCCGATCTGAAGAGAGCACAGAGCCA 59.9 67 (AT)11 140 TTGGATCCAGAGAGGACCTGTGA 59.6 ACATTGTTTACACCCGTATGAGC 59.1							
59 (AC)10 128 CGACAGTTACACCTACGCTCA 59.8 CAACGCACATCCTTCATGGG 59.5 60 (AC)17 125 ACACTTCACTGGTCTGGGTG 59.5 TTTCCCTGCCATGACTCGAG 59.8 61 (AT)10 147 CCTTCCTCTGTAAGCGCTGT 59.8 TTGTTTGTCTGCCCTCCTGT 59.4 62 (AC)11 147 AACGCTATTAGCACCCTGGG 59.8 CCCTGTGAGGAGACTTCAGC 59.8 63 (AT)10 137 TCTCCATCCATCCTAAATCAGCA 59.0 AGCAAGGTCCAATAAAGAAACCG 59.5 64 (AC)11 140 ACATCTGCTTGTGTAGGCGT 59.7 CTCCACAATCCATCATGCGC 59.5 65 (AC)11 144 GGCCGCCTCTTAGTATGACC 60.0 AAGCAGAAAGAGACAAGCCCA 59.9 66 (AC)11 144 GGCCGCCTCTTAGTATGACC 60.0 AAGCAGAAAGAGACAAGCCCA 59.9 67 (AT)11 140 TGTGATGCTAGAGTGACTCGTG 59.8 CCTGATCTGAACAAGAGTTGCC 59.1 68 (AT)11 140 GTGGATCGAGAGTGACCTGG 59.6 ACATTGTTTAACCCCGTATGAGC 59.3 <td></td> <td></td> <td></td> <td>GCATTTCTTTAGCCTAAAGCCGA</td> <td>59.6</td> <td>TGGATTAAGCGGATAAGGCCC</td> <td>59.9</td>				GCATTTCTTTAGCCTAAAGCCGA	59.6	TGGATTAAGCGGATAAGGCCC	59.9
60 (AC)17 125 ACACTTCACTGGTCTGGGTG 59.5 TTTCCCTGCCATGACTCGAG 59.8 61 (AT)10 147 CCTTCCTCTGTAAGCGCTGT 59.8 TTGTTGTTCTGCCCTCCTGT 59.4 62 (AC)11 147 AACGCTATTAGCACCCTGGG 59.8 CCCTGTGAGGAGACTTCAGC 59.8 63 (AT)10 137 TCTCCATCCATACTCAGCA 59.0 AGCAAGGTCCAATAAAGAAACCG 59.5 64 (AC)11 140 ACATCTGCTTGTGTAGGCGT 59.7 CTCCACAATCCATCATGCGC 59.7 65 (AC)11 144 GGCCGCCTCTTAGTATGACC 60.0 AAGCAGAAAGAGACAAGCCCA 59.9 66 (AC)10 141 GGAGACTGAGTTTGAATCGGGA 59.8 CCCGATCTGAACAAAGATTGCC 59.9 67 (AT)11 140 TGTGATGCTAGAGTGACTCGTG 59.8 CATTGTTTACACCCGTATGAGCT 59.1 68 (AT)11 140 GTGATGCTAGAGTGACTCGTG 59.1 TGCATCAGGATCTTTAACGCA 59.3 69 (AC)14 140 CAATAACCTACAGCAGTGACCTGT 59.1 TGCATCAGGATCTTTAACGCA 59.1<							
61 (AT)10 147 CCTTCCTCTGTAAGCGCTGT 59.8 TTGTTGTTCTGCCCTCCTGT 59.4 62 (AC)11 147 AACGCTATTAGCACCCTGGG 59.8 CCCTGTGAGGAGACTTCAGC 59.8 63 (AT)10 137 TCTCCATCCATCCTAAATCAGCA 59.0 AGCAAGGTCCAATAAAGAAACCG 59.5 64 (AC)11 140 ACATCTGCTTGTAGGCGT 59.7 CTCCACAATCCATCATGCGC 59.7 65 (AC)11 144 GGCCGCCTCTTAGTATGACC 60.0 AAGCAGAAAGAACAAGCCCA 59.9 66 (AC)10 141 GGAGACTGAGTTTGAATCGGGA 59.8 CCCGATCTGAACAAAGATTGCC 59.9 67 (AT)11 140 TGTGATGCTAGAGTGACTCGTG 59.8 CATTGTTTACACCCGTATGAGCT 59.1 68 (AT)11 140 GTGATGCTAGAGTGACTCGTGA 59.6 ACATTGTTTACACCCGTATGAGC 59.3 69 (AC)14 140 CAATAACCTACAGCAGTGACCTG 59.1 TGCATCAGGATCTTTAACGCA 59.1 70 (AC)14 140 AATAACCTACAGCAGTGACCTGT 59.4 CTGCATCAGACACCAGCC 5	59				59.8	CAACGCACATCCTTCATGGG	59.5
62 (AC)11 147 AACGCTATTAGCACCCTGGG 59.8 CCCTGTGAGGAGACTTCAGC 59.8 63 (AT)10 137 TCTCCATCCATCCTAAATCAGCA 59.0 AGCAAGGTCCAATAAAGAAACCG 59.5 64 (AC)11 140 ACATCTGCTTGTGTAGGCGT 59.7 CTCCACAATCCATCATGCGC 59.7 65 (AC)11 144 GGCCGCCTCTTAGTATGACC 60.0 AAGCAGAAAGAGACCAAGCCCA 59.9 66 (AC)10 141 GGAGACTGAGTTTGAATCGGGA 59.8 CCCGATCTGAACAAAGATTGCC 59.9 67 (AT)11 140 TGTGATGCTAGAGTGACTCGTG 59.8 CATTGTTTACACCCCGTATGAGCT 59.1 68 (AT)11 140 GTGATGCTAGAGTGACTCGTGA 59.6 ACATTGTTTACACCCGTATGAGC 59.3 69 (AC)14 140 CAATAACCTACAGCAGTGACCTG 59.1 TGCATCAGGATCTTTAACGCA 59.3 70 (AC)14 140 AATAACCTACAGCAGTGACCTGT 59.4 CTGCATCAGGATCTTTAACCCA 59.5 72 (AC)14 142 GTCCCAGAAAGAGCTCTGCA 59.7 TCACATTAGGAGCTACTGCTCA	60	(AC)17	125	ACACTTCACTGGTCTGGGTG	59.5	TTTCCCTGCCATGACTCGAG	59.8
63 (AT)10 137 TCTCCATCCATCCTAAATCAGCA 59.0 AGCAAGGTCCAATAAAGAAACCG 59.5 64 (AC)11 140 ACATCTGCTTGTGTAGGCGT 59.7 CTCCACAATCCATCATGCGC 59.7 65 (AC)11 144 GGCCGCCTCTTAGTATGACC 60.0 AAGCAGAAAGAGCACAAGCCCA 59.9 66 (AC)10 141 GGAGACTGAGTTTGAATCGGGA 59.8 CCCGATCTGAACAAAGATTGCC 59.9 67 (AT)11 140 TGTGATGCTAGAGTGACTCGTG 59.8 CATTGTTTACACCCGTATGAGCT 59.1 68 (AT)11 140 GTGATGCTAGAGTGACTCGTGA 59.6 ACATTGTTTACACCCGTATGAGC 59.3 69 (AC)14 140 CAATAACCTACAGCAGTGACCTG 59.1 TGCATCAGGATCTTTAACGCAC 59.3 70 (AC)14 140 AATAACCTACAGCAGTGACCTGT 59.4 CTGCATCAGGATCTTTAACGCA 59.1 71 (AC)10 141 TGCTACAGGAACTAACACCT 59.3 GAACATTCCGTACAACCAGGC 59.5 72 (AC)14 142 GTCCCAGAAAGAGCTCTGCA 59.7 TCACATTAGGAGCACTGTCGCTA<	61	(AT)10	147	CCTTCCTCTGTAAGCGCTGT	59.8	TTGTTGTTCTGCCCTCCTGT	59.4
64 (AC)11 140 ACATCTGCTTGTGTAGGCGT 59.7 CTCCACAATCCATCATGCGC 59.7 65 (AC)11 144 GGCCGCCTCTTAGTATGACC 60.0 AAGCAGAAAGAGACAAGCCCA 59.9 66 (AC)10 141 GGAGACTGAGTTTGAATCGGGA 59.8 CCCGATCTGAACAAAGATTGCC 59.9 67 (AT)11 140 TGTGATGCTAGAGTGACTCGTG 59.8 CATTGTTTACACCCGTATGAGCT 59.1 68 (AT)11 140 GTGATGCTAGAGTGACCTGGA 59.6 ACATTGTTTACACCCGTATGAGC 59.3 69 (AC)14 140 CAATAACCTACAGCAGTGACCTG 59.1 TGCATCAGGATCTTTAACGCAC 59.3 70 (AC)14 140 AATAACCTACAGCAGTGACCTGT 59.4 CTGCATCAGGATCTTTAACGCA 59.1 71 (AC)10 141 TGCTACGGCAACTAACACCT 59.3 GAACATTCCGTACAACCAGGC 59.5 72 (AC)14 142 GTCCCAGAAAGAGCTCTGCA 59.7 TCACATTAGGAGCTACTGTAACCC 59.6 73 (AC)21 136 AGAAGGGACAAGGTTAGCC 59.2 GCTGATCGGAGAACACAGGT	62	(AC)11	147	AACGCTATTAGCACCCTGGG	59.8	CCCTGTGAGGAGACTTCAGC	59.8
65 (AC)11 144 GGCCGCCTCTTAGTATGACC 60.0 AAGCAGAAAGAGACAAGCCCA 59.9 66 (AC)10 141 GGAGACTGAGTTTGAATCGGGA 59.8 CCCGATCTGAACAAAGATTGCC 59.9 67 (AT)11 140 TGTGATGCTAGAGTGACTCGTG 59.8 CATTGTTTACACCCGTATGAGCT 59.1 68 (AT)11 140 GTGATGCTAGAGTGACCTGGA 59.6 ACATTGTTTACACCCGTATGAGC 59.3 69 (AC)14 140 CAATAACCTACAGCAGTGACCTG 59.1 TGCATCAGGATCTTTAACGCAC 59.3 70 (AC)14 140 AATAACCTACAGCAGTGACCTGT 59.4 CTGCATCAGGATCTTTAACGCA 59.1 71 (AC)10 141 TGCTACCGGCAACTAACACCT 59.3 GAACATTCCGTACAACCAGGC 59.5 72 (AC)14 142 GTCCCAGAAAGAGCTCTGCA 59.7 TCACATTAGGAGCTACTGTAACCC 59.6 73 (AC)21 136 AGAAGGGACAAGGTTGAGC 60.0 GTCCAAAGAGGGTTGCCTA 59.8 74 (AC)22 142 GGCTGTCATTCCCTTTCTGC 59.2 GCTGATCGGAGACCAACAGGT	63	(AT)10	137	TCTCCATCCATCCTAAATCAGCA	59.0	AGCAAGGTCCAATAAAGAAACCG	59.5
66 (AC)10 141 GGAGACTGAGTTTGAATCGGGA 59.8 CCCGATCTGAACAAAGATTGCC 59.9 67 (AT)11 140 TGTGATGCTAGAGTGACTCGTG 59.8 CATTGTTTACACCCGTATGAGCT 59.1 68 (AT)11 140 GTGATGCTAGAGTGACTCGTGA 59.6 ACATTGTTTACACCCGTATGAGC 59.3 69 (AC)14 140 CAATAACCTACAGCAGTGACCTG 59.1 TGCATCAGGATCTTTAACGCAC 59.3 70 (AC)14 140 AATAACCTACAGCAGTGACCTGT 59.4 CTGCATCAGGATCTTTAACGCA 59.1 71 (AC)10 141 TGCTACGGCAACTAACACCT 59.3 GAACATTCCGTACAACCAGGC 59.5 72 (AC)14 142 GTCCCAGAAAGAGCTCTGCA 59.7 TCACATTAGGAGCTACTGTAACCC 59.6 73 (AC)21 136 AGAAGGGACAAGGTTGAGC 60.0 GTCCAAAGAGGCTGCGCTA 59.8 74 (AC)22 142 GGCTGCATTCCCTTTCTGC 59.2 GCTGATCGGAACACAGGT 59.8 75 (AC)10 148 AAATCTCCTCCACGTGGACC 59.4 TTTGGGCTGGACCTAACTGG	64	(AC)11	140	ACATCTGCTTGTGTAGGCGT	59.7	CTCCACAATCCATCATGCGC	59.7
67 (AT)11 140 TGTGATGCTAGAGTGACTCGTG 59.8 CATTGTTTACACCCGTATGAGCT 59.1 68 (AT)11 140 GTGATGCTAGAGTGACTCGTGA 59.6 ACATTGTTTACACCCGTATGAGC 59.3 69 (AC)14 140 CAATAACCTACAGCAGTGACCTG 59.1 TGCATCAGGATCTTTAACGCAC 59.3 70 (AC)14 140 AATAACCTACAGCAGTGACCTGT 59.4 CTGCATCAGGATCTTTAACGCA 59.1 71 (AC)10 141 TGCTACGGCAACTAACACCT 59.3 GAACATTCCGTACAACCAGGC 59.5 72 (AC)14 142 GTCCCAGAAAGAGCTCTGCA 59.7 TCACATTAGGAGCTACTGTAACCC 59.6 73 (AC)21 136 AGAAGGGAGCAAGGTTGAGC 60.0 GTCCAAAGAGGCTGCCTA 59.8 74 (AC)22 142 GGCTGTCATTCCCTTTCTGC 59.2 GCTGATCGGAGAACACAGGT 59.8 75 (AC)10 148 AAATCTCCTCCACGTGGACC 59.4 TTTGGGCTGGACCTAACTGG 59.6 76 (AC)16 142 ACACAGAGGGACAAACGTCA 59.2 ATGAGTTACGTCACCAGCCC 5	65	(AC)11	144	GGCCGCCTCTTAGTATGACC	60.0	AAGCAGAAAGAGACAAGCCCA	59.9
68 (AT)11 140 GTGATGCTAGAGTGACTCGTGA 59.6 ACATTGTTTACACCCGTATGAGC 59.3 69 (AC)14 140 CAATAACCTACAGCAGTGACCTG 59.1 TGCATCAGGATCTTTAACGCAC 59.3 70 (AC)14 140 AATAACCTACAGCAGTGACCTGT 59.4 CTGCATCAGGATCTTTAACGCA 59.1 71 (AC)10 141 TGCTACGGCAACTAACACCT 59.3 GAACATTCCGTACAACCAGGC 59.5 72 (AC)14 142 GTCCCAGAAAGAGCTCTGCA 59.7 TCACATTAGGAGCTACTGTAACCC 59.6 73 (AC)21 136 AGAAGGGAGCAAGGTTGAGC 60.0 GTCCAAAGAGGCTGCCTA 59.8 74 (AC)22 142 GGCTGTCATTCCCTTTCTGC 59.2 GCTGATCGGAGAACACAGGT 59.8 75 (AC)10 148 AAATCTCCTCCACGTGGACC 59.4 TTTGGGCTGGACCTAACTGG 59.6 76 (AC)16 142 ACACAGAGGGACAAACGTCA 59.2 ATGAGTTACGTCACCAGCCC 59.8 77 (AGC)7 144 TAGCAGAACGGTTAGCTCGG 59.5 GGGTAATGGTGACTCTGCCA 59.4 </td <td>66</td> <td>(AC)10</td> <td>141</td> <td>GGAGACTGAGTTTGAATCGGGA</td> <td>59.8</td> <td>CCCGATCTGAACAAAGATTGCC</td> <td>59.9</td>	66	(AC)10	141	GGAGACTGAGTTTGAATCGGGA	59.8	CCCGATCTGAACAAAGATTGCC	59.9
69 (AC)14 140 CAATAACCTACAGCAGTGACCTG 59.1 TGCATCAGGATCTTTAACGCAC 59.3 70 (AC)14 140 AATAACCTACAGCAGTGACCTGT 59.4 CTGCATCAGGATCTTTAACGCA 59.1 71 (AC)10 141 TGCTACGGCAACTAACACCT 59.3 GAACATTCCGTACAACCAGGC 59.5 72 (AC)14 142 GTCCCAGAAAGAGCTCTGCA 59.7 TCACATTAGGAGCTACTGTAACCC 59.6 73 (AC)21 136 AGAAGGGAGCAAGGTTGAGC 60.0 GTCCAAAGAGGCTGTCGCTA 59.8 74 (AC)22 142 GGCTGTCATTCCCTTTCTGC 59.2 GCTGATCGGAGAACACAGGT 59.8 75 (AC)10 148 AAATCTCCTCCACGTGGACC 59.4 TTTGGGCTGGACCTAACTGG 59.6 76 (AC)16 142 ACACAGAGGGACAAACGTCA 59.2 ATGAGTTACGTCACCAGCCC 59.8 77 (AGC)7 144 TAGCAGAACGGTTAGCTCGG 59.5 GGGTAATGGTGACTCTGCCA 59.4	67	(AT)11	140	TGTGATGCTAGAGTGACTCGTG	59.8	CATTGTTTACACCCGTATGAGCT	59.1
70 (AC)14 140 AATAACCTACAGCAGTGACCTGT 59.4 CTGCATCAGGATCTTTAACGCA 59.1 71 (AC)10 141 TGCTACGGCAACTAACACCT 59.3 GAACATTCCGTACAACCAGGC 59.5 72 (AC)14 142 GTCCCAGAAAGAGCTCTGCA 59.7 TCACATTAGGAGCTACTGTAACCC 59.6 73 (AC)21 136 AGAAGGGAGCAAGGTTGAGC 60.0 GTCCAAAGAGGCTGCGCTA 59.8 74 (AC)22 142 GGCTGTCATTCCCTTTCTGC 59.2 GCTGATCGGAGAACACAGGT 59.8 75 (AC)10 148 AAATCTCCTCCACGTGGACC 59.4 TTTGGGCTGGACCTAACTGG 59.6 76 (AC)16 142 ACACAGAGGGACAAACGTCA 59.2 ATGAGTTACGTCACCAGCCC 59.8 77 (AGC)7 144 TAGCAGAACGGTTAGCTCGG 59.5 GGGTAATGGTGACCTCGCA 59.4	68	(AT)11	140	GTGATGCTAGAGTGACTCGTGA	59.6	ACATTGTTTACACCCGTATGAGC	59.3
71 (AC)10 141 TGCTACGGCAACTAACACCT 59.3 GAACATTCCGTACAACCAGGC 59.5 72 (AC)14 142 GTCCCAGAAAGAGCTCTGCA 59.7 TCACATTAGGAGCTACTGTAACCC 59.6 73 (AC)21 136 AGAAGGGAGCAAGGTTGAGC 60.0 GTCCAAAGAGGCTGTCGCTA 59.8 74 (AC)22 142 GGCTGTCATTCCCTTTCTGC 59.2 GCTGATCGGAGAACACAGGT 59.8 75 (AC)10 148 AAATCTCCTCCACGTGGACC 59.4 TTTGGGCTGGACCTAACTGG 59.6 76 (AC)16 142 ACACAGAGGGACAAACGTCA 59.2 ATGAGTTACGTCACCAGCCC 59.8 77 (AGC)7 144 TAGCAGAACGGTTAGCTCGG 59.5 GGGTAATGGTGACTCTGCCA 59.4	69	(AC)14	140	CAATAACCTACAGCAGTGACCTG	59.1	TGCATCAGGATCTTTAACGCAC	59.3
72 (AC)14 142 GTCCCAGAAAGAGCTCTGCA 59.7 TCACATTAGGAGCTACTGTAACCC 59.6 73 (AC)21 136 AGAAGGGAGCAAGGTTGAGC 60.0 GTCCAAAGAGGCTGTCGCTA 59.8 74 (AC)22 142 GGCTGTCATTCCCTTTCTGC 59.2 GCTGATCGGAGAACACAGGT 59.8 75 (AC)10 148 AAATCTCCTCCACGTGGACC 59.4 TTTGGGCTGGACCTAACTGG 59.6 76 (AC)16 142 ACACAGAGGGACAAACGTCA 59.2 ATGAGTTACGTCACCAGCCC 59.8 77 (AGC)7 144 TAGCAGAACGGTTAGCTCGG 59.5 GGGTAATGGTGACTCTGCCA 59.4	70	(AC)14	140	AATAACCTACAGCAGTGACCTGT	59.4	CTGCATCAGGATCTTTAACGCA	59.1
73 (AC)21 136 AGAAGGGAGCAAGGTTGAGC 60.0 GTCCAAAGAGGCTGTCGCTA 59.8 74 (AC)22 142 GGCTGTCATTCCCTTTCTGC 59.2 GCTGATCGGAGAACACAGGT 59.8 75 (AC)10 148 AAATCTCCTCCACGTGGACC 59.4 TTTGGGCTGGACCTAACTGG 59.6 76 (AC)16 142 ACACAGAGGGACAAACGTCA 59.2 ATGAGTTACGTCACCAGCCC 59.8 77 (AGC)7 144 TAGCAGAACGGTTAGCTCGG 59.5 GGGTAATGGTGACTCTGCCA 59.4	71	(AC)10	141	TGCTACGGCAACTAACACCT	59.3	GAACATTCCGTACAACCAGGC	59.5
74 (AC)22 142 GGCTGTCATTCCCTTTCTGC 59.2 GCTGATCGGAGAACACAGGT 59.8 75 (AC)10 148 AAATCTCCTCCACGTGGACC 59.4 TTTGGGCTGGACCTAACTGG 59.6 76 (AC)16 142 ACACAGAGGGACAAACGTCA 59.2 ATGAGTTACGTCACCAGCCC 59.8 77 (AGC)7 144 TAGCAGAACGGTTAGCTCGG 59.5 GGGTAATGGTGACTCTGCCA 59.4	72	(AC)14	142	GTCCCAGAAAGAGCTCTGCA	59.7	TCACATTAGGAGCTACTGTAACCC	59.6
75 (AC)10 148 AAATCTCCTCCACGTGGACC 59.4 TTTGGGCTGGACCTAACTGG 59.6 76 (AC)16 142 ACACAGAGGGACAAACGTCA 59.2 ATGAGTTACGTCACCAGCCC 59.8 77 (AGC)7 144 TAGCAGAACGGTTAGCTCGG 59.5 GGGTAATGGTGACTCTGCCA 59.4	73	(AC)21	136	AGAAGGGAGCAAGGTTGAGC	60.0	GTCCAAAGAGGCTGTCGCTA	59.8
76 (AC)16 142 ACACAGAGGGACAAACGTCA 59.2 ATGAGTTACGTCACCAGCCC 59.8 77 (AGC)7 144 TAGCAGAACGGTTAGCTCGG 59.5 GGGTAATGGTGACTCTGCCA 59.4	74	(AC)22	142	GGCTGTCATTCCCTTTCTGC	59.2	GCTGATCGGAGAACACAGGT	59.8
77 (AGC)7 144 TAGCAGAACGGTTAGCTCGG 59.5 GGGTAATGGTGACTCTGCCA 59.4	75	(AC)10	148	AAATCTCCTCCACGTGGACC	59.4	TTTGGGCTGGACCTAACTGG	59.6
` '	76	(AC)16	142	ACACAGAGGACAAACGTCA	59.2	ATGAGTTACGTCACCAGCCC	59.8
78 (AGG)8 142 ATCGATCGACAGGTCAAGGC 59.9 GGGTACTCCGCTCTAGTTGC 59.9	77	(AGC)7	144	TAGCAGAACGGTTAGCTCGG	59.5	GGGTAATGGTGACTCTGCCA	59.4
	78	(AGG)8	142	ATCGATCGACAGGTCAAGGC	59.9	GGGTACTCCGCTCTAGTTGC	59.9

79	(AAT)8	144	CCACCAACATCTGTCTCCGT	59.7	TTCACCATGTAAAGCGGCCT	60.0
80	(AAT)8	144	ACCACCAACATCTGTCTCCG	59.7	TCACCATGTAAAGCGGCCTT	60.0
81	(ATC)7	138	AGCCCAATCTGAAACAGGAGG	60.0	CGTGGCTGATGTTCTTGCTG	59.8
01	· ' '	130	AGCCCAATCTGAAACAGGAGG	00.0	COTOCCIONICITOCIO	33.0
82	(AGG)7	121	CACAGTTGACAAGGCACAGC	60.0	AGAGGAACAGGATAGGATGGGA	59.5
83	(AAT)12	139	TGTAAAGCGACCTTGGGTGA	59.2	TCGGAGTGTAGTGAGTCACCT	59.9
84	(AGG)12	141	ACCCTCTTGTCACTGACAGC	59.6	AGCTACAACTGCTGTTAGGGT	59.0
85	(AGG)12	140	CCCTCTTGTCACTGACAGCA	59.6	AGCTACAACTGCTGTTAGGGTT	59.6
86	(AAC)8	118	CTCCAAAGCCTTGTGAAGCG	59.8	TCATTGTCAGTGCTGGTCCC	60.0
87	(AGC)7	133	ACAAGATGAAGAGGCAGGCT	59.0	TTCCCATCCTTCACCAGCAC	60.0
88	(AAC)7	121	ACATGATCTCTGCAGCTGCT	59.5	AGGTAATGACACCATGCAGCA	60.0
89	(ACC)9	136	ATCCACAGACTGATCCAGCG	59.5	TCTGACATCACCTCTGCCAG	59.1
90	(AAC)8	138	TCTCCAGTCAGCTCAACACG	59.7	GAGGGATGCTCTGACTTGCA	59.7
91	(AAC)8	131	ATGTGAAGACCCTGACCTGC	59.7	ATTGTGGTGGGTGAGACAGG	59.6
92	(AAG)10	140	TTTGAAGCTGCTAACACGCAA	59.3	AGCAGTAACGTTAGAGGGCAG	59.8
93	(AGG)8	133	TCAATGCCTTATTTAACCAATGGGA	59.0	TCTGAAAGGCATCTTTGAGGCT	60.0
94	(AGG)7	143	TCCTTGTGAATGACAGCGCT	60.0	TGCATTGTTATGTTATGGTGCCA	59.2
95	(AGC)8	141	GTCACACTCAGACAGACGCT	59.7	GTGTTCTCACCTGTCTGAGCA	59.9
96	(AGG)7	140	CCTACAGTCATGGCTCAGCA	59.5	TGGAGACAGTAAAGCAGCAGG	60.0
97	(AAT)7	141	GTTTCCTAGGCCAGTCAGCT	59.4	AATGCGACCTTGAGAGCCTT	59.7
98	(AGG)9	144	GAGGTAGCAAGAGGATGGAGG	59.3	TAACTGACCTGCCACTCACC	59.3
99	(AGC)10	138	AGAGCCAAGACTAGCAGTGC	59.8	TGACGGATATCAGCTGTGGC	59.9