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Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide, but effective im-
munotherapy is still limited for those affected. Therefore, there is an urgent need to explore
the specific mechanisms governing tumor immunity to improve the survival rate for those di-
agnosed with HCC. In the present study, we performed a new immune stratification of HCC
samples into two subclasses (A and B) from The Cancer Genome Atlas and the International
Cancer Genome Consortium databases, and comprehensive multi-omic analyses of major
histocompatibility complex genes, gene copy-number variations, somatic mutations, DNA
methylation, and non-coding RNAs. Subclass A was found to have a higher survival rate
compared with subclass B, and there were significant immunological differences between
the two clusters. Based on these differences, we identified DRD1 and MYCN as key hub
genes in the immune-phenotype gene expression regulatory network. These results provide
novel ideas and evidence for HCC regulatory mechanisms that may improve immunotherapy
for this cancer.

Introduction
The incidence of hepatocellular carcinoma (HCC) ranks sixth among malignant tumors, and it is the sec-
ond leading cause of cancer-related deaths in the world, with more than 60,000 deaths per year [1,2]. For
decades, significant progress has been made in the diagnosis and surgical treatment of HCC, and in radio-
therapy and chemotherapy. However, due to the difficulty in diagnosing HCC early, its high recurrence
rate, and associated distant metastasis, there have been no breakthroughs for reducing its mortality rate
[3–6]. A number of emerging research areas have become the focus for trying to solve these cancer-related
problems, such as regulation of methylation and glycosylation, and metabolism-related pathways [7–9].
However, the clinical prospects for these areas of research are not clear and are still far from any clinical
applications.

At present, immunotherapy shows good prospects for HCC treatment. In recent years, researchers have
found that CD8+ T-cell infiltrates are related to the prognosis of liver cancer [10,11]. Meanwhile, tumors
infiltrated by immunosuppressive cells such as regulatory T cells (Tregs) tend to be associated with poor
prognoses [12]. Recently, a major breakthrough in this field has been the development of the immune
checkpoint inhibitor (ICI) anti-programmed cell death protein 1 (PD-1). This ICI can block the inhibi-
tion of an anti-tumor T-cell signaling pathway, thereby enhancing the body’s existing anti-tumor immune
response. This method has proven its effectiveness in a variety of solid tumors, including those of HCC
[13–16]. For example, the PD-L1 inhibitor atezolizumab has achieved unprecedented results in the treat-
ment of patients with unresectable advanced HCC [17]. Up to now, six systemic therapies (atezolizumab
plus bevacizumab, sorafenib, lenvatinib, regorafenib, cabozantinib and ramucirumab) have been approved
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for use by the FDA. Furthermore, the combined application of PD-L1 inhibitors and tyrosine kinase inhibitors is being
explored. The breakthrough of ICIs heralds its great prospects in the field of HCC treatment [18,19]. However, only a
small proportion of people respond to the anti-tumor effects of this ICI. A recent study has suggested that this may be
due to the requirements for pre-existing T-cell infiltration and programmed death-ligand 1 (PD-L1) expression for
the ICI to function [20]. In the above process, INF-γ played a key role regulating the expression of PD-L1, and in the
identification of tumors with a cytotoxic immunophenotype [21,22]. In view of the complexity and dynamic nature of
immune responses in the tumor microenvironment (TME), it remains difficult to predict a patient’s response to ICI
therapy with certainty [23,24]. Okrah et al. used HCC RNA transcriptome data for immunotyping to predict HCC
patient prognoses [25], but such efforts cannot predict the effectiveness of HCC immunotherapy, and the molecular
mechanisms that establish and maintain immunophenotypes are still unknown. Therefore, there is an urgent need to
better understand the HCC gene network regulating immune phenotypes and the associated molecular mechanisms.
Here, we determined two classes of immunophenotype using unsupervised hierarchical analysis based on data from
five immune system cells that were strongly correlated with PD-L1 and interferon gamma (IFNγ) expression. A
comprehensive multi-omic approach using a variety of data (RNAseq, proteomics, and DNA methylation) was used
to establish a gene regulatory network for HCC immune phenotyping, and to further establish key regulatory hub
genes in the network. These regulatory hub nodes were strongly correlated with both the activation and suppression
of immune responses. The present results can be used both for risk assessment and for predicting immunotherapy
efficacy for HCC patients, and for the stratification of HCC patients according to possible immunotherapy benefits,
all of which are significant for guiding the clinical management of HCC patients.

Materials and methods
Datasets for gene expression and clinical characteristics
All gene expression data and clinical follow-up information were obtained from The Cancer Genome Atlas
(TCGA)-LIHC database (https://portal.gdc.cancer.gov/) and the International Cancer Genome Consortium database
(ICGC-LIRI-JP) (https://dcc.icgc.org/). Protein expression data (based on TCGA-LIHC data) were obtained from
The Cancer Proteome Atlas (https://www.tcpaportal.org/tcpa). The functional miRNA and lncRNA data (based on
TCGA-LIHC data) were obtained from TCGA. These TCGA-LIHC datasets were used as the training cohorts, and
ICGC-LIRI-JP datasets were used as the independent verification cohorts [26].

CIBERSORT immune-cell scoring
The CIBERSORT tool assesses immune-cell infiltration by deconvoluting RNAseq expression matrix data from
immune-cell subtypes based on the principle of linear support vector regression. We used this tool to calculate abso-
lute immune-cell scores based on RNAseq expression data from the gene signatures of 22 immune cells (permutation
= 1000).

Least absolute shrinkage selection operator (LASSO) and HCC analysis of subclass
We used the glmnet package in R software to reduce the dimensionality of TCGA-LIHC and ICGC-LIRI-JP datasets
through a LASSO-Cox regression algorithm. We repeated the LASSO operation 100 times and removed immune-cell
types that appeared more than 50 times among the 22 immune-cell types. The absolute values of the immune-cell
scores were then converted using ln(x + 1). The aggregation was performed using Euclidean distance and Ward
(unsquared distances).

DNA methylation analysis
The DNA methylation dataset from TCGA-LIHC database was obtained as a download from https://gdc.xenahubs.
net/download/TCGA-LIHC.methylation450.tsv.gz. After cleaning the data, we used the wateRmelon package in R
software for standardization, and then assessed differential methylation using the minfi package in R software.

TCGA-LIHC somatic mutation analyses
In the case of MutSig 2.0 q value < 0.05 and somatic mutation frequency > 5%, we compared the relative distribution
of TCGA-LIHC candidate genes provided by cBioPortal (http://www.cbioportal.org/) among different clusters. The
tumor map of somatic mutation pattern was performed by the R package “ComplexHeatmap”.
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Copy-number variation (CNV) analyses
Copy number variation (CNV) data was downloaded from http://www.firebrowse.org/. Subsequently, we used the
CoNVaQ network tool to establish a statistical model of Fisher’s exact test (https://convaq.compbio.sdu.dk/). The
CNV summary figure was generated by IGV 2.4.19, and the Circos diagram was drawn by the R software package
‘Rcircos’.

Statistical analyses
Statistical analyses were performed using R software (> v. 3.5.1). For all comparisons, P values <0.05 were considered
statistically significant.

Results
Immune subtypes of HCC samples based on PD-L1 and IFNγ expression
levels
There were 371 and 212 samples in the training cohort of TCGA-LIHC dataset and verification cohort of the
ICGC-LIRI-JP dataset, respectively. Immune-cell scoring for each sample was determined using the CIBERSORT
tool. We then used Spearman’s correlation method to calculate correlations between these immune-cell scores and
PD-L1 expression levels. The results showed that 10 types of immune cells (resting memory CD4+ T cells, Tregs,
resting mast cells, naive CD4+ T cells, monocytes, activated natural killer (NK) cells, M2 macrophages, memory B
cells, and resting NK cells) were negatively correlated with PD-L1 expression levels (Figure 1A). The expression of
INFγ, a PD-L1 transcription inducer secreted by activated T cells and NK cells, was positively correlated with M0
macrophages, follicular-helper T cells, M1 macrophages, CD8+ T cells, resting dendritic cells, activated memory CD4+

T cells, plasma cells, activated NK cells, and γδ T cells (Figure 1A). The subsequent LASSO-Cox regression calcula-
tions for these immune cells with strong PD-L1 and INFγ correlations determined that five immune-cell subtypes
were significant: resting memory CD4+ T cells, Tregs, resting mast cells, resting NK cells, and M2 macrophages.

Unsupervised hierarchical subclass analysis based on immune-cell
subsets
Based on the above immune-cell subset obtained by the LASSO-Cox regression, we performed unsupervised hierar-
chical clustering on TCGA-LIHC cohort. Two resulting HCC sample clusters were identified: subclass A (CA) and
subclass B (CB) (Figure 1B). Compared with CB, CA samples had higher levels of PD-L1 protein (Figure 1D). CB sam-
ples also showed more heterogeneity in the scoring of activated Tregs and M2 macrophages. Based on these results,
CA was designated as an immunophenotype with high cytotoxicity and CB was designated as an immunophenotype
with low cytotoxicity. Similar results were confirmed using the independent ICGC-LIRI-JP validation cohort (Figure
1C). In TCGA-LIHC and the ICGC datasets, we found that the single-sample gene set enrichment analysis (ssGSEA)
scores for the extended immune gene signatures (EIGS) were significantly higher in CB compared with CA (Figure
1E), and there were no significant cluster-group differences for clinical characteristics. In addition, we found that the
CA overall survival rate was significantly higher compared with CB (P=0.00075; Figure 1F).

To verify the validity of these classification results, we also assessed these classifications at the pan-cancer level.
After screening specific cohorts with low absolute immune-cell subpopulations scores, 11 cohorts were selected for
analysis (ACC, CHOL, COAD, ESCA, LAML, LGG, OV, PCPG, PRAD, READ, and THYM). Unsupervised hierar-
chical clustering showed that classification of these tumor samples was similar to the results for TCGA-LIHC and the
ICGC-LIRI-JP cohorts. For brevity, we have only included the clustering results for four of these tumor types (LAML,
LGG, THYM, and ESCA) (Supplementary Figure S1). In addition, the ssGSEA enrichment scores of the CA clusters
for these tumors were also higher than the scores of the CB clusters (Figure 2A).

Immunophenotypes and major histocompatibility complex (MHC) class I
gene expression differences
MHC class I molecules are involved in the recognition and presentation of foreign antigens in the body, the regulation
of immune responses, and they play key roles in the process of presenting tumor antigens [27]. Here, we assessed any
correlations between MHC class I molecules and immune clustering in TCGA-LIHC and the ICGC-LIRI-JP cohorts.
The results showed that the expression levels of B2M and HLA were significantly higher in CA compared with CB
(Figure 2B), indicating that CB tumor samples may escape immune surveillance through the decreased expression of
MHC genes and may partly explain the poor prognoses of CB.
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Figure 1. Immune subtypes of hepatocellular carcinoma based on PD-L1 and INFγ gene expression

(A) Correlations between PD-L1, INFγ and immune-cell infiltration ratios in TCGA and the ICGC cohorts. (B) The distribution of

immune subtypes and related clinical characteristics in TCGA cohort. (C) The distribution of immune subtypes and related clinical

characteristics in the ICGC cohort. (D) Analysis of differences in PD-L1 protein levels between subclass A (CA) and subclass B (CB)

in TCGA cohort. (E) Analysis of ssGSEA score differences in immune-related gene sets in TCGA and the ICGC cohorts between

subclass A (CA) and subclass B (CB). (F) There was a significant difference in overall survival rate between subtypes.

Differences in somatic mutations and CNVs between immune subtypes
Somatic mutation analyses of TCGA-LIHC cohort showed that CA and CB total mutation rates were not significantly
different. Interestingly, the relative mutation frequencies of MUC16 in CA were significantly higher compared with
CB, while that of TTN was lower than that of CB (Supplementary Figures S2 and 3). This result was also confirmed
using the pan-cancer validation cohorts (ACC, CHOL, COAD, ESCA, LAML, LGG, OV, PCPG, PRAD, READ, and
THYM) (Supplementary Figure S4).

In addition, the analysis of somatic cell CNVs showed that in TCGA-LIHC cohort, there were increased gene copies
(chromosomes 1q, 2p, 13q, and 17p) or genetic deletions (chromosomes 4q, 13q, 14q, and several hot spots in 19q)
in CB compared with CA (Figure 3A,B). The CNV analyses of multiple solid tumor cohorts from TCGA (LIHC, OV,
PRAD, and READ; from outside diameter to inside diameter) showed that the distributions of CNVs in the differ-
ent cohorts were significantly different, involving different segments of multiple chromosomes (Figure 3C,D). These
different mutation sites involved multiple chromosomes and are likely to extensively affect the transcription of many
genes. In order to explore gene functionality, we screened the two cluster groups for differentially expressed genes
(DEGs) and also performed a functional-enrichment analysis. The results showed that the up-regulated DEGs in CA
were mainly concentrated among metabolic processes, such as aminopolysaccharide metabolism and mucopolysac-
charide metabolism (Figure 4B), while up-regulated DEGs in CB were enriched in phylogeny and regulation of signal-
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Figure 2. ssGSEA scores at the pan-cancer level, and the expression of MHC-related molecules between subtype A (CA)

and subtype B (CB)

(A) Differences in ssGSEA scores between CA and CB at the pan-cancer level. (B) Differences in the expression of MHC-related

molecules between CA and CB in TCGA cohort. (C) Differences in the expression of MHC-related molecules between CA and CB

in the ICGC cohort. *P<0.05, **P<0.01, and ***P<0.01

ing pathways (Figure 4C). These results suggest that a possible reason for the poor prognoses of the low cytotoxicity
cluster group (CB) was due to the inhibition of normal metabolism.

DNA methylation differences between different clusters
Studies have shown that immune-activation genes can be epigenetically regulated through DNA methylation [28].
In order to explore the influence of DNA methylation on establishing and maintaining immune phenotype, we per-
formed a genome-wide methylation analysis using TCGA-LIHC cohort. We screened a total of 33 regions showing
differential methylation (FDR < 0.05), and a total of 25 gene promoter regions were identified as overlapping these
differentially methylated regions (Figure 4A). CA regions of DNA with higher beta values than those in the same CB
regions also showed gene expression levels that were relatively lower.

Analysis of non-coding RNA differences between clusters
In the analysis of differentially expressed microRNAs in TCGA-LIHC cohort, we identified 74 miRNAs (fold change
> 2, FDR < 0.05), and their predicted target-gene links totaled 64706. After filtering, we identified 148 links, of
which 91 were up-regulated in CA and 57 were up-regulated in CB (Figure 5A). Similarly, we found 365 differentially
expressed lncRNAs, of which 285 were up-regulated in CA and 80 were up-regulated in CB (fold change > 2, FDR <

0.05; Figure 5B). The miRNA target predictions produced 345 lncRNA-miRNA links, including 121 lncRNAs and 65
miRNAs (Figure 5C). Among the DEGs in the lncRNA–miRNA links, a 449 were up-regulated in CA, and 62 were
up-regulated in CB (Figure 5D).

Identification of key nodes in gene expression network
In the above analysis, a total of 148 genes in TCGA-LIHC database were identified, of which 57 genes were
up-regulated in CA and 91 genes were up-regulated in CB (Figure 6A). We performed a univariate Cox regression
analysis using these genes to identify those significantly associated with HCC prognosis. A total of 44 genes were
identified as relevant, of which 12 were up-regulated in CA and 32 were up-regulated in CB. The ssGSEA scores
based on these 44 genes were determined using the training cohort and then confirmed in both the validation cohort
and in other solid tumor cohorts. After using a multi-factor Cox regression method to calculate the risk scores for
these 44 genes, we used the scores to analyze sample prognoses in the training dataset and the validation dataset, and

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

5



Bioscience Reports (2021) 41 BSR20211241
https://doi.org/10.1042/BSR20211241

Figure 3. Differences in copy-number variations (CNVs) between subtypes

(A) CNV statistics for subclass A (CA) in TCGA cohort. (B) CNV statistics for subclass B (CB) in TCGA cohort. (C) CNV statistics for

CA in the pan-cancer cohort. From outside diameter to inside diameter: LIHC, OV, PRAD, and READ. (D) CNV statistics for CB in

the pan-cancer cohort.

found that these 44 genes had excellent prognostic value (P<0.0001, Figure 6B). We then used these same genes to
perform a protein–protein interaction (PPI) analysis and found that MYCN and DRD1 were key hub-gene nodes in
the PPI network (Figure 6C): DRD1 was highly expressed in CA and MYCN was highly expressed in CB. After ana-
lyzing any correlations between MYCN and DRD1 expressions and tumor immune-cell types, we found that the high
expression of DRD1 in CA was positively correlated with immune activation, and that the high expression of MYCN
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Figure 4. Analysis of methylation differences, and functional enrichment of pathways between subclasses

(A) Analysis of differentially methylated gene expression between subclass A (CA) and subclass B (CB). (B) Functional pathway

enrichment analysis of up-regulated genes in CA. (C) Functional pathway enrichment analysis of up-regulated genes in CB.

Figure 5. Volcano maps of differentially expressed miRNAs and lncRNAs

(A) Volcano map of the miRNAs differentially expressed between subclass A (CA) and subclass B (CB). (B) Volcano map of differ-

entially expressed lncRNAs between CA and CB. (C) Volcano map of lncRNA–miRNA interactions. (D) Distribution of differentially

expressed genes and lncRNA–miRNA differential-expression links.

in CB was positively correlated with immunosuppression. Lastly, we examined any correlations between immune-cell
infiltration types and MYCN and DRD1 expression in both the training cohort and the validation cohort (Figure 6D).
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Figure 6. Identification of hub-gene nodes in the gene expression network

(A) Statistical analysis of commonality between differentially expressed miRNAs, lncRNAs, differentially expressed genes, and

differentially methylated genes for the two subclasses. (B) The risk-prediction abilities of the 44 prognosis-related genes. Left:

TCGA cohort, right: ICGC cohort. (C) Protein–protein interaction (PPI) analysis emphasizes that MYCN and DRD1 were key nodes

in the network. (D) Analysis of the correlation between MYCN and DRD1 in the training cohort and validation cohort and the type

of immune cell infiltration.

Discussion
The TME has been shown to both induce immune suppression and to promote tumor progression through multiple
mechanisms [29]. The breakthrough of ICI treatment has garnered well-deserved attention, but as mentioned above,
only a small percentage of patients respond to it [30,31]. Revealing the immune-phenotype characteristics of the
TME and the complex mechanisms for its establishment and maintenance are key issues that must solved to better
understand cancer treatments. Here, differences in immune-cell infiltrations among HCC tumor samples provided for
a new tumor-sample stratification, and relevant results using it were verified using other tumor cohorts. Furthermore,
we used a multi-omics approach to perform an overall analysis that included epigenetics and mutations between the
two clusters. Lastly, we identified DRD1 and MYCN as key hub genes in the HCC regulatory network based on
immune phenotyping.

The CIBERSORT tool was used to evaluate immune-cell scores from hundreds of HCC samples using TCGA-LIHC
and the ICGC cohorts. Based on these scores, we screened immune-cell types that were highly correlated with the
expressions of PD-LI and INFγ. The LASSO-Cox regression analysis further determined prognosis-related candi-
date immune-cell types: T-cell subtypes, CD4 subtypes, Treg subtypes, mast-cell subtypes, NK-cell subtypes, and
macrophage subtypes. Using an unsupervised hierarchical subclass analysis, we identified two main clusters: a highly
cytotoxic immunophenotype (CA) with higher expression levels of PD-L1 and INFγ transcripts, and PD-L1 protein.
This CA group of HCC patient samples also had significantly better prognoses compared with the CB group of patient
samples. These results were also verified in 11 other patient tumor-sample cohorts. Overall, these results demonstrate
that our hierarchical clustering model was effective and consistent.

MHC class I molecules are key for tumor-antigen presentation and crucial for tumor immune surveillance [32,33].
A decrease in MHC class I expression may mean that tumors are more likely to escape immune surveillance, thereby
promoting tumor progression. Interestingly, in our analysis, the CA expression levels of B2M and HLA were signif-
icantly higher than those in CB for both the training and the validation cohorts of HCC samples. This immunophe-
notype difference may partially explain the different prognoses for the two clusters.

In addition, the decreased somatic mutation rate of MUC16 and the increased rate of TTN somatic mutations
were significant features of CB. A recent study has shown that MUC16 mutations may be related to the efficacy of
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ICI therapy and to the improvement of prognosis-related genomic factors in solid tumors [34]. A possible mecha-
nism for this is that MUC16 binds to the Siglec 9 receptor on NK cells, downregulating their cytotoxicity and thereby
allowing tumor cells to escape immune surveillance [35]. In addition, studies have confirmed that TTN mutations
are enriched in samples with high immunostimulatory characteristics [36]. The TTN-AS1 axis has also been re-
ported to be tumor-promoting in a variety of cancers including prostate cancer, HCC, and breast cancer [37–39],
and a decrease in its activity can inhibit tumor aggressiveness. Davoli et al. reported that CNVs may be related to
immune-evasion markers and a decreased response to immunotherapy [40]. Our analysis of somatic CNVs showed
that CB had increased copies of chromosomes 1q, 2p, 13q, and 17p, and a loss of copies for chromosomes 4q, 13q, 14q,
and 19q. These transcription-affected genes are involved a wide range of functions, and the DEGs up-regulated in CA
were mainly enriched in metabolic pathways. While interactions between metabolic processes and the TME are well
known, and changes in the immune status of the TME can affect tumor metabolism and lead to changes in tumor
biological behavior [41–43], clear mechanisms for this have not been demonstrated. The present results suggest that
poor CB prognoses may be due to the inhibition of normal metabolism caused by differences in immune status [43],
but this hypothesis requires further research to validate.

By combining the genes identified in the above analyses with a Cox prognostic analysis, we identified 44 genes with
significant prognostic values. Their predictive effectiveness for prognoses was verified using the risk scores calculated
using a multivariate Cox regression. We further identified both MYCN and DRD1 as key hub-gene nodes in the HCC
PPI network, with DRD1 being highly expressed in CA and MYCN being highly expressed in CB. Their expression
levels are likely to regulate the expression of other genes in this HCC network, but as a dopamine receptor gene, there
is no clear evidence that DRD1 is related to cancer. Interestingly however, Ostadali et al. found that DRD1 expression
was strongly correlated with the immune system, and that lymphocytes expressed DRD1 at high levels [44]. However,
conclusive evidence that these receptors play a role in lymphocytes remains unclear. The immunosuppressive effect
of MYCN expression in cancers, including neuroblastoma and lung cancer, is well known [45–47], and Masso-Valles
et al. reported that MYCN inhibition may be a potential cancer immunotherapy [45]. Consistent with this, our CB
sample group showed high expression levels of MYCN, and this expression was associated with immunosuppression
that may be an important factor for tumors escaping immune surveillance. This also emphasizes, once again, that
MYCN inhibitors may be a significant opportunity to enhance the effects of immunotherapy.

Exploring the heterogeneous response of ICIs at the genetic level helps to accurately identify sensitive HCC patients
to reduce unnecessary costs and avoid wasting precious time. Due to the complexity of the immune response in the
tumor microenvironment, although a lot of work has been done to try to illustrate the process, the current progress is
still not satisfactory. Our research attempts to provide a new perspective to explain the process and preliminarily prove
the importance of MYCN and DRD1 in the immune response. However, it is a systematic project to fully understand
the heterogeneous response of HCC patients to ICIs [19]. Therefore, as mentioned above, at the current stage, the
combined application of ICIs, tyrosine kinase inhibitors (TKIs) and anti-angiogenic drugs is a very valuable study for
improving the prognosis of HCC patients.

In general, our study explored the differential immune response of HCC patients based on transcriptome data
from a large sample set. However, the present study has some limitations. The mechanism of the immune response of
DRD1 and MYCN needs to be confirmed by molecular experiments in HCC. The possibility of its clinical application
still needs to be further explored.

Conclusion
In the present study, we identified a new and effective immune stratification for HCC through multi-omics data
analyses and demonstrated immunological differences between HCC sample clusters. Based on these differences, we
determined that DRD1 and MYCN are the key hub genes nodes of the immune-phenotypic gene expression regulatory
network, increasing our understanding of possible HCC mechanisms for improving immunotherapy.
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Supplementary Figure 1. Verification of subtype classification at the pan-cancer level. 

 



 

 

 

 

 

 

Supplementary Figure 2. Somatic mutation analysis of TCGA-LIHC cohort. 

 

 



 

 

 

 

 

 

Supplementary Figure 3. Somatic mutation analysis of the ICGC cohort. 

 

 



 

 

 

 

 

 

Supplementary Figure 4. Distribution statistics for the number of MUC16 and TNM 

gene mutations across the pan-cancer. (A) Distribution statistics for the number of MUC16 

gene mutations in subclasses A and B across the pan-cancer level. (B) Distribution statistics 

for the number of TNN gene mutations in subclasses A and B across the pan-cancer level. 


