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Aberrant RNA alternative splicing (AS) variants play critical roles in tumorigenesis and prog-
nosis in human cancers. Here, we conducted a comprehensive profiling of aberrant AS
events in acute myeloid leukemia (AML). RNA AS profile, including seven AS types, and
the percent spliced in (PSI) value for each patient were generated by SpliceSeq using
RNA-seq data from TCGA. Univariate followed by multivariate Cox regression analysis were
used to identify survival-related AS events and develop the AS signatures. A nomogram
was developed, and its predictive efficacy was assessed. About 27,892 AS events and
3,178 events were associated with overall survival (OS) after strict filtering. Parent genes
of survival-associated AS events were mainly enriched in leukemia-associated processes
including chromatin modification, autophagy, and T-cell receptor signaling pathway. The 10
AS signature based on seven types of AS events showed better efficacy in predicting OS of
patients than those built on a single AS event type. The area under curve (AUC) value of the
10 AS signature for 3-year OS was 0.91. Gene set enrichment analysis (GSEA) confirmed
that these survival-related AS events contribute to AML progression. Moreover, the nomo-
gram showed good predictive performance for patient’s prognosis. Finally, the correlation
network of AS variants with splicing factor genes found potential important regulatory genes
in AML. The present study presented a systematic analysis of survival-related AS events and
developed AS signatures for predicting the patient’s survival. Further studies are needed to
validate the signatures in independent AML cohorts and might provide a promising perspec-
tive for developing therapeutic targets.

Introduction
Acute myeloid leukemia (AML) is one of the most aggressive and heterogeneous hematologic malignan-
cies characterized by uncontrolled clonal expansion of poorly differentiated myeloid cells [1,2]. It is esti-
mated that 19,940 new cases and 11,180 new deaths occurred in the US in 2020 [3]. Increasing evidence
demonstrated that the course of AML is marked by poor prognosis and recurrent relapse that are closely
associated with older age, cytogenetic abnormalities, and genetic mutations. Various investigations have
focused on developing novel therapeutics in recent years [4,5], while the overall survival (OS) of AML pa-
tients has not significantly improved in the several past decades. Thus, there is an urgent need to identify
additional prognostic biomarkers and develop effective therapies to cure AML [1].

RNA alternative splicing (AS) is a critical regulatory process of gene expression post-transcription [6]
that contributes to proteome diversity, and functional and phenotypic complexity by generating distinct
RNA isoforms from a single gene through different arrangements, including removal of intronic regions
and selective inclusion or exclusion of specific exons [7]. Alternative AS events have become a hallmark
of cancer, and potential targets for developing new therapeutics [8]. Many AS events have been identi-
fied that are correlated with several cancer-related hallmarks, such as epithelial–mesenchymal transition
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(EMT) [9], apoptosis resistance, invasion and migration, and susceptibility to drug resistance [10]. Transcriptional
plasticity controlled by AS events can be employed by cancer cells to produce isoforms that promote cell proliferation
or migration. Cis-regulating sequences and splicing factors (SFs) are regarded as important mediators in the process of
pre-mRNA maturation. These common cis-regulatory elements can be divided into exonic splicing enhancers, exonic
splicing silencers, intronic splicing enhancers, and intronic splicing silencers, each of which has different affinities to
SFs. However, trans-acting factors, such as heterogeneous nuclear ribonucleoprotein (hnRNP) protein families, lead
to the activation or inhibition of specific splice sites [11]. For example, RBM47, an important RNA-binding protein,
was proved to promote EMT by regulating AS of tight junction protein 1 (TJP1) [12] and suppress tumor growth via
inhibiting nuclear factor erythroid 2-related factor 2 (NRF2) activity [13] in lung adenocarcinoma. Previous studies
proved that the dysregulation of SFs leads to aberrant AS events [14]. The potential regulatory network between SFs
and AS events is also imperative to be investigated for discerning important SFs.

In the present study, the comprehensive profiling of genome-wide alternative splicing events of AML cohort from
The Cancer Genome Atlas (TCGA) was screened using a strict criterion with SpliceSeq. Survival-related AS events
were identified, and the key prognostic AS events selected by the lasso penalized Cox model were used to construct a
robust signature for predicting patient’s outcome. Functional enrichment analysis of parent genes of survival-related
AS events integrated with prognostic SF-AS events network suggests the pathways that have been reported to con-
tribute to AML progression. A prognostic nomogram including clinical parameters was developed to aid in predicting
patient survival.

Materials and methods
Data acquisition and processing
RNA sequencing data of AML patients along with clinical information were downloaded from TCGA. RNA alter-
native splicing profiling, including seven AS types, and percent spliced in (PSI) value for each patient was generated
by SpliceSeq software. PSI represented the transcript ratio of the parent gene to the type of seven AS events [15].
Strict filter processes were implemented to reliably determine the AS events. The inclusion criteria were as follows:
(1) the percentage of samples with PSI value was greater than 80; (2) patients with complete and definitive clinical
characteristics including age, gender, FAB subtype, cytogenetics risk category, bone marrow blast cell percent, cellu-
larity percent, and lymphocyte percent; (3) patients who have follow up survival time were enrolled after the initial
pathological diagnosis of AML; and (4) patients that have the corresponding RNA-seq splicing variant. Patients with
ambiguous features were excluded. Finally, 152 patients were used for further analysis.

Additionally, we used the specific pattern of ‘ABCB9 24994 AP’ to assign each AS event a unique annotation term,
in which ‘ABCB9’ represented the parent gene symbol, ‘24994’ stood for the ordered index of this specific AS event
in the TCGASpliceSeq database, and ‘AP’ indicated the splicing type.

Identification of survival-related AS events
To determine the potential clinical prognostic significance of each type AS event, overall survival (OS)-related AS
events with P<0.05 were identified using univariate Cox proportional hazard regression analysis. Interactive sets
between seven types of OS-related AS events were displayed using the UpsetR package [16] in R platform (version
3.6.3).

Functional enrichment analysis
Parent genes of OS-related AS events were used for functional enrichment analysis by the clusterProfiler package [17].
Gene ontology terms categories including biological process (BP), cellular component (CC), and molecular function
(MF), and pathways referenced from the Kyoto Encyclopedia of Genes and Genomes (KEGG) were analyzed. The
false discovery rate (FDR) less than 0.05 was considered as statistically significant.

Gene set variation analysis (GSVA) was applied to identify the significantly enriched GO terms and pathways,
which were curated annotated gene sets in Molecular Signatures Databases (MSigDB) [18] and parent genes of
survival-related AS events using the GSVA package [19]. Differential gene sets in the high-risk group compared to
those in the low-risk group were assessed using the limma package [20] with |logFC| > 0.58 and FDR < 0.05.

Development of the prognostic signature based on AS events for AML
patients
The key AS features in each AS type were identified by lasso penalized Cox regression model with 10-fold
cross-validation using the top significant AS events. The minimum number of AS events that comprises the final
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signature was determined by the Akaike information criterion (AIC) [21] to develop the prognostic signature by
multivariate Cox stepwise regression analysis. The signature predictive performance was determined by the receiver
operating characteristics (ROC) curve using the survivalROC package [22]. The risk score for each patient was cal-
culated, and the patients were divided into low- and high-risk groups according to the median risk score. Finally, the
prognostic utility of the signature was assessed by the log-rank test.

Development of an AS-Clinicopathologic Nomogram
To individually predict the survival rate of AML patients, a nomogram incorporating the 10-AS-event-based signature
with clinicopathologic variables described above was performed using the rms package [23]. A backward stepwise
variable selection with the AIC was used to determine the final nomogram. Then, the decision curve analysis (DCA)
was conducted to estimate the clinical utility of the nomogram by quantifying net benefits against a range of threshold
probabilities [24].

Gene set enrichment analysis (GSEA) for the AS signature
To uncover the potential pathways of AS events that are involved in the process of carcinogenesis and progression,
GSEA, a computational algorithm that determines the potential statistically significant and concordant differences
for a priori defined set of genes in two biological conditions, was implemented with the JAVA program from MSigDB
database [18]. The genes were ranked according to differential significance in the annotated ‘C2: curated gene sets’
and ‘C5: GO gene sets’ between low- and high-risk groups. The significant enriched gene set with P<0.05 was assessed
via 1000 permutations.

Construction of the correlation network between SFs and AS
The expression profile of SFs genes in the mRNA splicing pathway was extracted from the RNA-seq dataset of AML
patients. Spearman correlation matrix between the expression level of OS-associated SFs and PSI values of AS events
that were included in the construction of each prognostic signature was analyzed. P values were adjusted by Benjamini
and Hochberg (BH) correlation. Then, the potential SFs-AS regulatory network was generated among the significant
correlation pairs (adjusted P<0.05) by Cytoscape (version 3.6.1).

Results
Characteristics of AS event profiles in AML cohort
The general analysis workflow of our study is shown in Figure 1A. RNA splicing variant profiles were generated by
SpliceSeq software. We curated 152 AML patients with AS events data and clinical information for this study. The
median follow-up was 12.5 months (range 1–94 months). AS events were divided into seven types including alternate
acceptor site (AA), alternate donor site (AD), alternate promoter (AP), alternate terminator (AT), exon skip (ES),
retained intron (RI), and mutually exclusive exons (ME) (Figure 1B). A total of 27,892 AS events were detected in
8,338 genes, comprised 1,989 AAs in 1,493 genes, 1,567 ADs in 1,207 genes, 5,402 APs in 2,573 genes, 6,044 ATs in
2,900 genes, 9,116 ESs in 3,852 genes, 1,722 RIs in 1,110 genes, and 127 MEs in 125 genes (Figure 1C). The intersection
distribution pattern of seven AS types is displayed in Figure 1D. These data showed 37 genes carrying seven types
of AS events, and more than 30% of genes have greater than four types of AS events, which suggested that different
combinations of splicing types jointly contribute to the transcriptome diversity. In addition, the predominant AS type
in AML accounts for over 32% of all AS events.

Identification and functional enrichment analysis of survival-related AS
events
The prognostic association of each AS event with patient’s OS was determined using the univariate Cox regression
analysis, and 3,178 AS events from 2,051 parent genes were found to be significantly associated with patient’s OS
(P<0.05), accounting for 11.40% of the total AS events and 30% of total parent genes in AML (Figure 1E). Among
these AS events, one gene could have more than four AS types that were related to OS (Figure 1F), such as ES, AT,
AD, and AA events of the NPEPPS gene. Additionally, the number of each survival-related AS types were calculated,
and the Wald test statistic of the top 20 most significant AS events for each AS type were displayed using forest plot
(Figure 2 and Supplementary Table S1). Most of the AS events in ES, RI, AA, and AD were correlated with favorable
prognostic factors.

Previous studies have revealed that alternative splicing variants could change the structures and isoform of func-
tional proteins that are involved in the pathogenesis of various cancers [6,25]. To illuminate the potential biological
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Figure 1. Overview of alternative splicing profiling in AML cohort

(A) A general analysis workflow of the study. (B) Illustrations for seven types of AS events, including AA, AD, AP, AT, ES, ME, and

RI. (C) Seven types of AS events and corresponding parent genes. (D) Upset plot of gene interactions between the seven types of

the total AS events (n = 27,892). (E) Volcano plot of OS-related AS events (n = 3,178). (F) Upset plot of gene interactions between

the seven types of OS-related AS events.
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Figure 2. Forest plot of top 20 most significant OS-related AS events for each AS type (P<0.05)

(A–G) Z-score and P values of top 20 overall survival associated AA, AD, AP, AT, ES, ME, and RI events, respectively. The Z value

represents the Wald statistic, and its value is equal to the regression coefficient coef divided by its standard error se (coef), P values

indicate whether the AS event is significantly associated with patient’s outcome.
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Figure 3. Analysis of GO terms category and KEGG pathway of the parent genes from OS-related AS events (A.djust P

<0.05)

(A) GO terms analysis, including biological process, cellular component, and molecular function, of OS-related AS events. (B) KEGG

pathway of OS-related AS events.
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Figure 4. Development of the final prognostic signature based on the seven AS types

(A) The hazard ratio of AS events in the final signature. (B) Distribution of patients’ risk scores, patients’ survival time, and the PSI

value of the ten model AS events genes in high- and low-risk groups. (C) Kaplan–Meier curve of final prognostic signature built upon

all seven types of AS events, in which red line indicates high-risk subgroup while blue line indicates low-risk subgroup (P<0.05).

(D) The area under curve value of 3-year OS for the final signature.

functions of parent genes from these survival-related AS events in AML, all parent genes from OS-related AS events
were further used for functional enrichment analysis. A total of 465 terms were found under the biological process
category, highlighting the mechanisms of cell cycle control, chromatin and histone modification, autophagy, and reg-
ulation of protein assembly in aberrant splicing related patterns of AML (Figure 3A and Supplementary Table S2).
Additionally, 112 terms of cellular component and 38 terms of molecular function were significant, such as ‘chromo-
some region’, ‘centrosome’, ‘transcription coregulator activity’, and ‘protein serine/threonine kinase activity’ (Figure
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Figure 5. Univariate and multivariate Cox regression analysis of the risk score and clinical parameters in AML patients

(P-value <0.05)

(A) Univariate Cox regression analysis. (B) Multivariate Cox regression analysis

3A and Supplementary Table S2). Fourteen significant KEGG pathways were enriched, and several pathways were
implicated in leukemia progression (Figure 3B), including ‘mRNA surveillance pathway’, ‘T cell receptor signaling
pathway’, ‘Phosphatidylinositol signaling system’, ‘Base excision repair’, and ‘Ubiquitin mediated proteolysis’. The data
suggested that these parent genes of prognostic AS events were involved in vital biological processes of AML.

Development of the prognostic signature based on the survival-related
AS events
Lasso penalized Cox regression model with 10-fold cross-validation was used to select the key AS events from the
top significant survival-related AS events in each AS type. First, the final signature comprising 10 AS events from 7
AS types was developed using the same way, which included 1 AA event, 3 AP events, 2 AT events, 3 ES events, and
1 RI event (Figure 4A). Based on the risk score calculated by the final signature, patients were divided into high- and
low-risk groups according to the median value of risk score. With the risk score of patients increased in both groups,
the number of deaths was increasing (Figure 4B). Kaplan–Meier survival analysis of the final signature showed great
prognostic prediction for patients in high-risk group that have significantly shorter OS than their counterparts in
low-risk group (P<0.00001, Figure 4C). In addition, receiver operating characteristic curves were applied to assess
the predictive efficiency of the signature, the final AS signature that were constructed by a specific AS type exhibited
a robust and high predictive performance with the AUC value above 0.91 for the 3-year OS (Figure 4D). Then, seven
prognostic signatures for each AS type were also developed using the key AS events by multivariate Cox regression
analysis (Supplementary Table S3). The risk score for each patient was calculated based on the signature in each
splicing type. Patients in the high-risk group defined by 7 AS signatures identified with 11 AA events, 11 AD events,
6 AP events, 7 AT events, 7 ES events, 6 ME events, and 9 RI events all have significantly worse OS than those in
the low-risk group (P<0.00001 and Supplementary Figure S1A–G). The distribution of patient’s risk score, survival
status, and the pattern of splicing variants in AS signature for each AS type are displayed in Supplementary Figure
S2A-G. The area under curves (AUCs) varied in different splice type prognostic signatures, while all AUCs for the
3-year survival of patients were greater than 0.75 (Supplementary Figure S3A–G). Moreover, similar AUCs of 1-year
survival for all eight prognostic signatures were observed (Supplementary Figure S4A–H).

To further investigate the independent predictive capacity of the final signature in stratified AML patients, the uni-
variate Cox regression analysis indicated that patients with older age, high-risk cytogenetics category, and high-risk
score have a significantly shortened OS (Figure 5A). Importantly, the risk score could serve as an independent indi-
cator after adjusting for other clinical parameters (Figure 5B), including age, gender, blast cell percentage, cellularity
percentage, cytogenetics risk category, and lymphocyte percentage.

To provide a quantitative method to predict the individualized survival probability of AML patients, a nomogram
integrating the risk score of the final signature and clinical factors was constructed (Figure 6A). The actual and pre-
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Figure 6. The AS-clinicopathologic nomogram for prediction on survival probability in patients with AML

(A) Development of AS-clinicopathologic nomogram for predicting 1-, 2-, and 3-year OS for AML patients, with the final AS signature,

age, gender, blast cell percentage, cellularity percentage, lymphocyte percentage, and cytogenetics risk category incorporated.

(B–D) Calibration plot of the AS-clinicopathologic nomogram-predicted and observed 1-, 2-, 3-year survival in AML patients. The

dashed line represents the ideal performance, and the actual performance of the final AS signature is shown by blue lines. (E) Deci-

sion curve analysis of the AS-clinicopathologic nomogram. The red line represents the net benefits of the final signature nomogram

for predicting the OS for AML patients. The blue line stands for treat-all scheme varying with threshold probability, while the black

line represents the net benefit of treat-no scheme.
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Table 1 Differentially expressed GO terms based on GSVA analysis of parent genes from
survival-related AS events from C5 GO terms in MSigDB database between high- and low-risk
groups patients (Adj. P <0.05)

GO terms LogFC AveExpr t P.Value Adj.P.Val B

GO REGULATION OF
CELLULAR KETONE
METABOLIC PROCESS

-0.1644 -0.0018 -4.4947 1.37E-05 0.0092 2.9358

GO NEGATIVE REGULATION
OF TRANSMEMBRANE RECEPTOR

PROTEIN SERINE THREONINE
KINASE SIGNALING
PATHWAY

0.1655 -0.0095 4.0244 8.99E-05 0.0201 1.2556

GO INTERFERON
GAMMA PRODUCTION

-0.2014 0.0003 -3.9483 0.0001 0.0201 0.9973

GO NEGATIVE REGULATION
OF CELL MOTILITY

-0.1234 -0.0107 -3.9375 0.0001 0.0201 0.9611

GO NEGATIVE
REGULATION OF
LOCOMOTION

-0.1256 -0.0122 -3.9227 0.0001 0.0201 0.9112

GO PROTEIN
TYROSINE KINASE
BINDING

-0.1509 0.0073 -3.8792 0.0002 0.0210 0.7662

GO NEGATIVE
REGULATION OF
CELLULAR RESPONSE
TO GROWTH FACTOR
STIMULUS

0.1302 -0.0102 3.7849 0.0002 0.0249 0.4563

GO SMAD
PROTEIN SIGNAL
TRANSDUCTION

0.1765 -0.0002 3.7834 0.0002 0.0249 0.4513

GO HOMOTYPIC
CELL CELL
ADHESION

-0.2023 0.0095 -3.7388 0.0003 0.0251 0.3071

GO POSITIVE
REGULATION OF
JUN KINASE

ACTIVITY

-0.1894 0.0228 -3.5808 0.0005 0.0339 -0.1929

GO POSITIVE
REGULATION OF
PEPTIDE SECRETION

-0.1238 -0.0138 -3.5071 0.0006 0.0377 -0.4200

GO ENZYME
REGULATOR

ACTIVITY

-0.0738 -0.0036 -3.4813 0.0007 0.0377 -0.4988

GO DNA BINDING
TRANSCRIPTION

FACTOR ACTIVITY

0.0855 0.0042 3.4803 0.0007 0.0377 -0.5017

GO TRANSFORMING
GROWTH FACTOR

BETA RECEPTOR
SIGNALING PATHWAY

0.1060 -0.0036 3.4716 0.0007 0.0378 -0.5280

GO POSITIVE
REGULATION OF

T CELL PROLIFERATION

-0.1685 0.0062 -3.3835 0.0009 0.0427 -0.7920

dicted performance of the nomogram for 1, 2, and 3 years in AML patients showed high predictive accuracy (Figure
6B–D). Decision curve analysis (DCA) indicated that patients with AML can benefit from the prediction by the final
signature (Figure 6E).

GSVA and GSEA of the final signature based on 10 AS events
To further throw light on the differential functional gene sets in AML, gene set variation analysis was performed, and
15 activated GO terms were significantly enriched in MSigDB C5 GO (Table 1) and 10 significantly pathways were
found in C2 curated gene sets (Table 2), such as ‘co-stimulation by the CD28 family’, ‘RADMACHER AML prog-
nosis’, and ‘REACTOME FLT3 signaling’. Furthermore, patients with high risk score predicted by the signature have
a worse prognosis. Gene set enrichment analysis was applied to investigate the potential pathways (Figure 7). ‘TCR
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Table 2 Differentially expressed pathways based on GSVA analysis of parent genes from
survival-related AS events from C2 curated gene sets in MSigDB database between high- and
low-risk groups patients (Adj. P <0.05)

Pathway LogFC AveExpr t P.Value Adj.P.Val B

REACTOME COSTIMULATION
BY THE CD28

FAMILY

-0.2840 -0.0205 -4.8911 2.51E-06 0.0036 4.4716

PARK HSC AND
MULTIPOTENT
PROGENITORS

-0.1900 -0.0063 -4.3184 2.81E-05 0.0136 2.2952

PECE MAMMARY
STEM CELL DN

0.2058 0.0063 4.1734 5.01E-05 0.0162 1.7769

REACTOME METABOLISM
OF VITAMINS AND

COFACTORS

-0.1409 -0.0020 -4.1459 5.58E-05 0.0162 1.6802

KUMAR TARGETS
OF MLL AF9

FUSION

-0.1118 0.0076 -4.0506 8.09E-05 0.0168 1.3488

ELVIDGE
HYPOXIA DN

-0.1538 -0.0008 -3.9581 0.0001 0.0208 1.0331

RADMACHER AML
PROGNOSIS

-0.1746 -0.0032 -3.9290 0.0001 0.0208 0.9350

REACTOME FLT3
SIGNALING

-0.1127 -0.0058 -3.5445 0.0005 0.0302 -0.3057

SANSOM APC
TARGETS DN

-0.1736 -0.0105 -3.4294 0.0008 0.0365 -0.6564

REACTOME MAPK6
MAPK4 SIGNALING

-0.1840 -0.0218 -3.2583 0.0014 0.0494 -1.1593

pathway’, ‘P38 MK2 pathway’, ‘KEGG oocyte meiosis’, and ‘Rectome signaling by RHO GTPases’ were found enriched
in the high-risk group, these were consistent with the results of functional enrichment and the findings of GSVA men-
tioned above. The CD28 family of receptors, which are key members of the immunological synapse, including CD28,
CTLA-4, ICOS, and PD-1, are able to deliver co-stimulatory or inhibitory signals on T cells through interacting with
their ligands [26]. It may indicate that tumor cells can exploit regulators, such as CTLA-4, and PD-1, that involved in
above identified pathways to engage T cells to generate immunosuppressive microenvironment, which contributed
to the pathogenesis and progression of AML.

Identification of regulatory relations between splicing factors (SFs) and
AS event
It is well-recognized that dysregulated AS events were mediated by several SFs. The correlation analysis was performed
to assess the correlation between SFs expression and the PSI scores of survival-related AS events with the coefficient
greater than 0.4 as cut-off value (P<0.001), 15 SFs were identified to be significantly associated with OS-related AS
events. HSPB1, MSI2, RBM47, PCBP3, and PCBP4 ranked as the top 5 SFs according to the node number equal or
more than 15 (Figure 8). MSI2, RBM47, and PCBP3 were significantly higher expressed in patients than that in normal
cases, while HSBP1 had decreased expression (Supplementary Figure S5). To determine which SF was associated with
the patient’s survival, 68 SFs were found to be significantly associated with AML patients’ OS using univariate Cox
regression analysis based on gene expression (P<0.05, Supplementary Table S4). Of these OS-related SFs, high expres-
sion of RBM47 (HR = 1.0986, P=0.0293) was associated with an unfavorable prognosis, while increased expression
of PCBP3 (HR = 0.9238, P=0.0219) was linked with prolonged survival. Furthermore, correlations between the PSI
values of OS-related AS events and the expression of OS-related SFs were investigated, only IGF2BP3 was found to be
associated with 45 AS events. In addition, increased expression of IGF2BP3 markedly predicted shortened OS (HR
= 1.3650, P=3.64E-5). As an RNA-binding protein, previous studies demonstrated that IGF2BP3-mediated target-
ing of oncogenic transcripts of Myc and CDK6 promotes hematopoietic progenitor proliferation in MLL-rearranged
B-ALL [27]. In addition, CDK6 is a direct target of MLL fusion proteins and plays an important role in the prolifera-
tion of MLL-rearranged leukemia [28]. MLL-fusions could lead to an aggressive acute myeloid leukemia. These data
suggested that IGF2BP3 with its RNA-binding partners may serve as a potential therapeutic target in AML disease
through interacting with CDK6.
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Figure 7. Gene set enrichment analysis of the parent genes of OS-related AS events in high- and low-risk groups

(A) PID TCR pathway. (B) PID P38 MK2 pathway. (C) KEGG oocyte meiosis. (D) Reactome COPI Independent golgi to

ER retrograde traffic. (E) Reactome negative regulation of met activity. (F) Reactome signaling by RHO GTPases.

Discussion
Alternative splicing events represent a vital molecular regulatory mechanism in modifying mRNA isoforms that can
generate a diversity of mRNA and proteins with different regulatory and functional properties [7]. Previous studies
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Figure 8. The correlation network of the SFs with OS-related AS events

(A) The correlation network of the expression of SFs with the PSI values of OS-related AS events. Rhombus represents the SFs, and

circle represents AS events. In addition, red line represents the positive correlation between SFs and AS events, blue line stands

for the negative correlation between SFs and AS events. (B) The correlation network of the expression of OS-related SFs with the

PSI values of OS-related AS events. Rhombus represents the survival-related SFs, and circle represents AS events. In addition, red

line represents the positive correlation between SFs and AS events, blue line stands for the negative correlation between SFs and

AS events.
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have indicated that the plasticity of AS events can be deliberately exploited by cancer cells to produce the aberrant
changes at different levels, such as the altered activity and expression abundance of the genes that contribute to can-
cer cell survival, proliferation, migration, and therapeutic resistance [29–31]. Studies have suggested that aberrant AS
events are implicated in cancer development [30]. The large-scale RNA sequencing data in publicly database has made
it easy to investigate the AS events that occurr in various cancers. Several studies in the investigation of AS events
have revealed that alternative spliced variants and cancer-specific splicing variants could be identified as potential
diagnostic and prognostic biomarkers in different cancers [32–34]. For example, Zhen Zong et al. proposed a prog-
nostic signature for risk stratification in colorectal cancer based on alternative splicing profiling [35]. AML is a fetal
hematologic malignancy characterized by uncontrollable clonal disorder of the myeloid cells. Although treatment
advances have extended the survival of younger patients, the prognosis of older patients with AML, who account for
the majority of new cases, remains poor. Thus, there is an urgent need to identify novel prognostic and therapeutic
biomarkers to monitor disease development. The abnormalities in AS events in AML progression and drug resis-
tance have attracted interests as several studies identified mutations in splice factors can serve as important drivers
of hematological malignancies [36,37]. However, the prognostic significance of AS events in AML is unclear.

In the present study, we performed a systematic identification and analysis of survival related AS events in 152 pa-
tients with AML from TCGA portal. About 3,178 AS events were significantly associated with OS. Clinically, survival
benefit was found in all the seven alternative splicing patterns. Specifically, one gene can generate several mRNAs that
result in different transcripts and various protein isoforms with opposing functional effects. Interestingly, most top
20 survival-related AS events of seven splicing types tend to have a favorable prognosis. Additionally, some parent
genes harboring different AS events have opposite prognostic effects for patients (Supplementary Table S1), for ex-
ample, the ES variant type of ADD1 gene had a protective effect on the patient’s survival, while the AP type predicted
unfavorable survival. Even the AS type at different locations in the same gene showed the opposite effect on survival.
Functional enrichment analysis revealed that these parent genes were involved in several pathways that have been
demonstrated to mediate leukemia progression such as T-cell receptor signaling [38] and prevent the production
of potentially toxic proteins from aberrant mRNA translation events [39]. It is not surprisingly that some parental
genes of survival-related AS-events are enriched in a number of viral/infection related GO terms. This might be
due to AS event is one of the main adaptive protection mechanisms against external intrusions through maintaining
protein diversity. Acute myeloid leukemia is a type of aggressive blood malignancies that diverse immune-related re-
sponses are involved in the disease progression, including immune response to infection. In addition, a large number
of studies have found that changes in AS events are related to cancer and many other diseases. It is estimated that 300
splicing-related genes are mutated in all types of cancer from the International Cancer Genome Consortium (ICGC),
several hnRNP family members, SR proteins and along with SR-protein kinases, and RBM proteins are the most fre-
quently mutated genes [40]. The prognostic genes we identified included FLT-3, IDH1, TP53, BCL2, SRSF1, CD44,
RBM4, STAT3, hnRNPU, and hnRNPL, which was consistent with previous studies that these genes play critical roles
in leukemogenesis and drug resistance through altered splicing of tumor suppressor, oncogenes and dysregulation of
the apoptotic signaling pathways [36].

AS events in cancers were considered as a great untapped potential in monitoring patient’s survival when compared
with the transcriptome-level analysis. The PSI value, a ratio between reads including or excluding exons, makes it
possible for calculating seven types of AS events within tumors. Combined with follow-up data, the predictive model
was constructed based on each type of AS pattern. The model comprised of alternate donor site (AD) events showed
higher distinguishing capacity for predicting survival of AML patients than the classifiers built with other six types of
AS events. Furthermore, the combination of all seven types of AS patterns could promote to identify a better prognos-
tic predictor, the final OS-related AS signature showed a robust and markedly improved performance with the AUC
above 0.91. This suggested that AS events could be applied to predict the prognosis for AML patients. Xie ZC et al.
recently proposed prognostic alternative splicing regulatory network based on the AS events profiling of AML [41];
however, it mainly focused on the splicing network of AS events and splicing factors, and the predictive efficacy of
alternate terminator model (AUC = 0.781) is inferior to our final AS signature in terms of ROC analysis. The predic-
tive independency of the final signature can be influenced by some clinical parameters. For example, older age is an
unfavorable factor for AML patients, while the signature still had significant stratification irrespective of other clinical
parameters. Additionally, we supposed that the model combining our final signature and important clinical factors
may present a more reliable prediction efficacy for speculating patient’s survival. The prognostic nomogram inte-
grated with age, cytogenetics risk category, and the final signature provided individualized survival risk assessment.
We applied DCA analysis, a novel statistical approach of calculating the net benefit against a range of threshold prob-
abilities [42], to assess whether nomogram would help to improve patient outcome. Obviously, the decision curves

14 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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indicated that our final AS-clinicopathologic nomogram to predict survival probabilities adds more benefit than all
or none of the patients were treated.

Furthermore, differential biological processes and pathways enriched in low- and high-risk group stratified by the
final 10 AS-event signature were investigated by GSVA and GSEA algorithms. Similar cancer-related pathways that
found by functional enrichment analysis were observed. Several leukemia-related specific pathways [43–45], includ-
ing co-stimulation by the CD28 family, HSC and multipotent progenitors, targets of MLL-AF9 fusion pathway, AML
prognosis, TCR pathway, P38 and MK2 pathway, and FLT3 signaling, which were demonstrated to play crucial roles
in the regulation of leukemogenesis and progression. Moreover, biological pathways that contribute to tumorigene-
sis, such as invasiveness, migration, and proliferation, were identified. The exact underlying mechanisms of the AS
signature need further validation and may provide valuable therapeutic targets for AML treatment.

As the key regulatory elements of AS events, splicing factors (SFs) recognized and bind to cis-regulatory elements
during pre-mRNA process. Aberrant alternations in SFs expression have been observed in tumors [30,46] SFs con-
tribute to tumorigenesis via regulating AS events and serving as oncogenes or pseud-oncogenes [47]. In the present
study, the potential correlation network between SFs and survival-associated AS events revealed that RBM47, MSI2,
PCBP3, HSBP1, and DNAJC6 were key SFs that may be involved in the regulation of AS events process in AML pro-
gression. Indeed, it is consistent with previous evidence. RBM47 has been demonstrated to promote transforming
growth factor-β (TGF-β)-induced EMT by alternative splicing of the exon 20 of TJP1 in lung cancer cells [12], and
suppress breast cancer progression through altering splicing of a subset of its target mRNAs, such as dickkopf WNT
signaling pathway inhibitor 1 [48]. In addition, RBM47 elevated IL-10 expression and enhanced the immunosup-
pression of B cells [49]. MSI2 has been shown to be mainly expressed in hematopoietic stem cells, and it markedly
regulates normal hematopoiesis and promote aggressive myeloid leukemia [50]. Additionally, aberrant expression of
PCBP3 and HSBP1 were significantly associated with cancer development [51,52] and therapy resistance [53]. The
results suggested that these SFs may have critical roles in AML. Furthermore, among 68 survival-related SFs, high
expression of PCBP3 and decrease RBM47 expression predicted favorable survival for AML patients. The correlation
network of survival-related SFs and AS events identified IGF2BP3 as the only SF that correlated with AS events, and
most important, IGF2BP3 has been clinically relevant in leukemia, while its specific molecular mechanism in AML
has not been clearly deciphered [27].

Our current study provided a systematic analysis of AS events and developed risk prognostic risk signatures based
on the survival-related AS events in AML patients, while several limitations should be taken into consideration when
interpreting the findings. There are a relatively small number of AML patients enrolled in this study, and no normal
cases available for comparison analysis. The prognostic utility of survival-related signature needs the independent
external validation, while no accessible data set available. Importantly, the present study was conducted based on
publicly accessible high-throughput RNA sequencing data, and therefore, experimental and clinical verification are
warranted in further investigations.

In summary, we performed a comprehensive analysis on profiling the AS events in AML patients, developed a
robust survival-related AS signature for predicting patient’s outcome, and highlighted the key splicing factors that
tightly correlated with survival-related AS events. This might contribute to monitor the patient’ prognosis and provide
novel clues for targeted molecular implications.

Data Availability
The data analyzed in this study are available in the following repositories: 1. TCGA: https://portal.gdc.cancer.gov/. 2. TCGA
SpliceSeq: https://bioinformatics.mdanderson.org/TCGASpliceSeq.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
This study was supported by the Natural Science Foundation of Jiangxi Province [grant number 20192BAB215001] and the
Project of Science and Technology of Jiangxi Provincial Education Department [grant number GJJ201837].

CRediT Author Contribution
Biyu Zhang: Resources, Data curation, Methodology, Writing—original draft. Lei Yang: Data curation, Methodology. Xin Wang:
Data curation, Methodology. Denggang Fu: Conceptualization, Methodology, Writing—original draft, Project administration,
Writing—review and editing.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

15

https://portal.gdc.cancer.gov/
https://bioinformatics.mdanderson.org/TCGASpliceSeq


Bioscience Reports (2021) 41 BSR20204037
https://doi.org/10.1042/BSR20204037

Acknowledgements
We are grateful to the contributors of these public databases used in this study.

Abbreviations
AA, acceptor site; AD, alternate donor site; AIC, akaike information criterion; AP, alternate promoter; AS, alternative splicing;
AT, alternate terminator; AUC, area under curve; BP, biological process; CC, cellular component; DCA, decision curve analysis;
EMT, epithelial–mesenchymal transition; ES, exon skip; GSEA, gene set enrichment analysis; GSVA, gene set variation analysis;
KEGG, Kyoto Encyclopedia of Genes and Genomes; ME, mutually exclusive exons; MF, molecular function; MSigDB, Molecular
Signatures Databases; OS, overall survival; PSI, percent spliced in; RI, retained intron; ROC, the receiver operating characteris-
tics curve; SFs, splicing factors; TCGA, The Cancer Genome Atlas.

References
1 Marando, L. and Huntly, B.J.P. (2020) Molecular landscape of acute myeloid leukemia: prognostic and therapeutic implications. Curr. Oncol. Rep. 22,

61, https://doi.org/10.1007/s11912-020-00918-7
2 Thomas, D. and Majeti, R. (2017) Biology and relevance of human acute myeloid leukemia stem cells. Blood 129, 1577–1585,

https://doi.org/10.1182/blood-2016-10-696054
3 Siegel, R.L., Miller, K.D. and Jemal, A. (2020) Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30, https://doi.org/10.3322/caac.21590
4 Tamamyan, G., Kadia, T., Ravandi, F., Borthakur, G., Cortes, J., Jabbour, E. et al. (2017) Frontline treatment of acute myeloid leukemia in adults. Crit.

Rev. Oncol. Hematol. 110, 20–34, https://doi.org/10.1016/j.critrevonc.2016.12.004
5 Ramos, N.R., Mo, C.C., Karp, J.E. and Hourigan, C.S. (2015) Current approaches in the treatment of relapsed and refractory acute myeloid leukemia. J.

Clin. Med. 4, 665–695, https://doi.org/10.3390/jcm4040665
6 Climente-Gonzalez, H., Porta-Pardo, E., Godzik, A. and Eyras, E. (2017) The functional impact of alternative splicing in cancer. Cell Rep. 20,

2215–2226, https://doi.org/10.1016/j.celrep.2017.08.012
7 Ule, J. and Blencowe, B.J. (2019) Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol. Cell. 76, 329–345,

https://doi.org/10.1016/j.molcel.2019.09.017
8 Martinez-Montiel, N., Rosas-Murrieta, N. and Martinez-Contreras, R. (2015) Alternative splicing regulation: implications in cancer diagnosis and

treatment. Med. Clin. (Barc) 144, 317–323, https://doi.org/10.1016/j.medcli.2014.02.021
9 Pradella, D., Naro, C., Sette, C. and Ghigna, C. (2017) EMT and stemness: flexible processes tuned by alternative splicing in development and cancer

progression. Mol. Cancer 16, 8, https://doi.org/10.1186/s12943-016-0579-2
10 Leggere, J.C., Saito, Y., Darnell, R.B., Tessier-Lavigne, M., Junge, H.J. and Chen, Z. (2016) NOVA regulates Dcc alternative splicing during neuronal

migration and axon guidance in the spinal cord. Elife 5, e14264, https://doi.org/10.7554/eLife.14264
11 Kornblihtt, A.R., Schor, I.E., Allo, M., Dujardin, G., Petrillo, E. and Munoz, M.J. (2013) Alternative splicing: a pivotal step between eukaryotic transcription

and translation. Nat. Rev. Mol. Cell Biol. 14, 153–165, https://doi.org/10.1038/nrm3525
12 Kim, Y.E., Won, M., Lee, S.G., Park, C., Song, C.H. and Kim, K.K. (2019) RBM47-regulated alternative splicing of TJP1 promotes actin stress fiber

assembly during epithelial-to-mesenchymal transition. Oncogene 38, 6521–6536, https://doi.org/10.1038/s41388-019-0892-5
13 Sakurai, T., Isogaya, K., Sakai, S., Morikawa, M., Morishita, Y., Ehata, S. et al. (2017) RNA-binding motif protein 47 inhibits Nrf2 activity to suppress

tumor growth in lung adenocarcinoma. Oncogene 36, 5083, https://doi.org/10.1038/onc.2017.191
14 Anczukow, O. and Krainer, A.R. (2016) Splicing-factor alterations in cancers. RNA 22, 1285–1301, https://doi.org/10.1261/rna.057919.116
15 Ryan, M.C., Cleland, J., Kim, R., Wong, W.C. and Weinstein, J.N. (2012) SpliceSeq: a resource for analysis and visualization of RNA-Seq data on

alternative splicing and its functional impacts. Bioinformatics 28, 2385–2387, https://doi.org/10.1093/bioinformatics/bts452
16 Conway, J.R., Lex, A. and Gehlenborg, N. (2017) UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33,

2938–2940, https://doi.org/10.1093/bioinformatics/btx364
17 Yu, G., Wang, L.G., Han, Y. and He, Q.Y. (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16,

284–287, https://doi.org/10.1089/omi.2011.0118
18 Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J.P. and Tamayo, P. (2015) The Molecular Signatures Database (MSigDB) hallmark gene

set collection. Cell Syst. 1, 417–425, https://doi.org/10.1016/j.cels.2015.12.004
19 Hanzelmann, S., Castelo, R. and Guinney, J. (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 7,

https://doi.org/10.1186/1471-2105-14-7
20 Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W. et al. (2015) limma powers differential expression analyses for RNA-sequencing and

microarray studies. Nucleic Acids Res. 43, e47, https://doi.org/10.1093/nar/gkv007
21 Vrieze, S.I. (2012) Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the

Bayesian information criterion (BIC). Psychol. Methods 17, 228–243, https://doi.org/10.1037/a0027127
22 Huang, R., Liao, X. and Li, Q. (2017) Identification and validation of potential prognostic gene biomarkers for predicting survival in patients with acute

myeloid leukemia. Onco. Targets Ther. 10, 5243–5254, https://doi.org/10.2147/OTT.S147717
23 Zhang, Z. and Kattan, M.W. (2017) Drawing Nomograms with R: applications to categorical outcome and survival data. Ann. Transl. Med. 5, 211,

https://doi.org/10.21037/atm.2017.04.01
24 Rousson, V. and Zumbrunn, T. (2011) Decision curve analysis revisited: overall net benefit, relationships to ROC curve analysis, and application to

case-control studies. BMC Med. Inform. Decis. Mak. 11, 45, https://doi.org/10.1186/1472-6947-11-45

16 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

https://doi.org/10.1007/s11912-020-00918-7
https://doi.org/10.1182/blood-2016-10-696054
https://doi.org/10.3322/caac.21590
https://doi.org/10.1016/j.critrevonc.2016.12.004
https://doi.org/10.3390/jcm4040665
https://doi.org/10.1016/j.celrep.2017.08.012
https://doi.org/10.1016/j.molcel.2019.09.017
https://doi.org/10.1016/j.medcli.2014.02.021
https://doi.org/10.1186/s12943-016-0579-2
https://doi.org/10.7554/eLife.14264
https://doi.org/10.1038/nrm3525
https://doi.org/10.1038/s41388-019-0892-5
https://doi.org/10.1038/onc.2017.191
https://doi.org/10.1261/rna.057919.116
https://doi.org/10.1093/bioinformatics/bts452
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1037/a0027127
https://doi.org/10.2147/OTT.S147717
https://doi.org/10.21037/atm.2017.04.01
https://doi.org/10.1186/1472-6947-11-45


Bioscience Reports (2021) 41 BSR20204037
https://doi.org/10.1042/BSR20204037

25 Urbanski, L.M., Leclair, N. and Anczukow, O. (2018) Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the
way to novel cancer therapeutics. Wiley Interdiscip. Rev. RNA 9, e1476, https://doi.org/10.1002/wrna.1476

26 Andersen, M.H. (2014) The targeting of immunosuppressive mechanisms in hematological malignancies. Leukemia 28, 1784–1792,
https://doi.org/10.1038/leu.2014.108

27 Palanichamy, J.K., Tran, T.M., Howard, J.M., Contreras, J.R., Fernando, T.R., Sterne-Weiler, T. et al. (2016) RNA-binding protein IGF2BP3 targeting of
oncogenic transcripts promotes hematopoietic progenitor proliferation. J. Clin. Invest. 126, 1495–1511, https://doi.org/10.1172/JCI80046

28 van der Linden, M.H., Willekes, M., van Roon, E., Seslija, L., Schneider, P., Pieters, R. et al. (2014) MLL fusion-driven activation of CDK6 potentiates
proliferation in MLL-rearranged infant ALL. Cell Cycle 13, 834–844, https://doi.org/10.4161/cc.27757

29 Paronetto, M.P., Passacantilli, I. and Sette, C. (2016) Alternative splicing and cell survival: from tissue homeostasis to disease. Cell Death Differ. 23,
1919–1929, https://doi.org/10.1038/cdd.2016.91

30 Liu, S. and Cheng, C. (2013) Alternative RNA splicing and cancer. Wiley Interdiscip. Rev. RNA 4, 547–566, https://doi.org/10.1002/wrna.1178
31 Oltean, S. and Bates, D.O. (2014) Hallmarks of alternative splicing in cancer. Oncogene 33, 5311–5318, https://doi.org/10.1038/onc.2013.533
32 Li, Y., Sun, N., Lu, Z., Sun, S., Huang, J., Chen, Z. et al. (2017) Prognostic alternative mRNA splicing signature in non-small cell lung cancer. Cancer

Lett. 393, 40–51, https://doi.org/10.1016/j.canlet.2017.02.016
33 Yu, M., Hong, W., Ruan, S., Guan, R., Tu, L., Huang, B. et al. (2019) Genome-wide profiling of prognostic alternative splicing pattern in pancreatic

cancer. Front Oncol. 9, 773, https://doi.org/10.3389/fonc.2019.00773
34 Marzese, D.M., Manughian-Peter, A.O., Orozco, J.I.J. and Hoon, D.S.B. (2018) Alternative splicing and cancer metastasis: prognostic and therapeutic

applications. Clin. Exp. Metastasis 35, 393–402, https://doi.org/10.1007/s10585-018-9905-y
35 Zong, Z., Li, H., Yi, C., Ying, H., Zhu, Z. and Wang, H. (2018) Genome-wide profiling of prognostic alternative splicing signature in colorectal cancer.

Front Oncol. 8, 537, https://doi.org/10.3389/fonc.2018.00537
36 de Necochea-Campion, R., Shouse, G.P., Zhou, Q., Mirshahidi, S. and Chen, C.S. (2016) Aberrant splicing and drug resistance in AML. J. Hematol.

Oncol. 9, 85, https://doi.org/10.1186/s13045-016-0315-9
37 Hahn, C.N., Venugopal, P., Scott, H.S. and Hiwase, D.K. (2015) Splice factor mutations and alternative splicing as drivers of hematopoietic malignancy.

Immunol. Rev. 263, 257–278, https://doi.org/10.1111/imr.12241
38 Chen, J., Schmitt, A., Chen, B., Rojewski, M., Rubeler, V., Fei, F. et al. (2008) Nilotinib hampers the proliferation and function of CD8+ T lymphocytes

through inhibition of T cell receptor signalling. J. Cell. Mol. Med. 12, 2107–2118, https://doi.org/10.1111/j.1582-4934.2008.00234.x
39 Jamar, N.H., Kritsiligkou, P. and Grant, C.M. (2018) Loss of mRNA surveillance pathways results in widespread protein aggregation. Sci. Rep. 8, 3894,

https://doi.org/10.1038/s41598-018-22183-2
40 Martinez-Montiel, N., Rosas-Murrieta, N.H., Anaya Ruiz, M., Monjaraz-Guzman, E. and Martinez-Contreras, R. (2018) Alternative Splicing as a Target for

Cancer Treatment. Int. J. Mol. Sci. 19, 545, https://doi.org/10.3390/ijms19020545
41 Xie, Z.C., Gao, L., Chen, G., Ma, J., Yang, L.H., He, R.Q. et al. (2020) Prognostic alternative splicing regulatory network of splicing events in acute

myeloid leukemia patients based on SpliceSeq data from 136 cases. Neoplasma 67, 623–635, https://doi.org/10.4149/neo˙2020˙190917N922
42 Zhang, Z., Rousson, V., Lee, W.C., Ferdynus, C., Chen, M., Qian, X. et al. (2018) Decision curve analysis: a technical note. Ann. Transl. Med. 6, 308,

https://doi.org/10.21037/atm.2018.07.02
43 August, A. and Dupont, B. (1995) Activation of extracellular signal-regulated protein kinase (ERK/MAP kinase) following CD28 cross-linking: activation in

cells lacking p56lck. Tissue Antigens 46, 155–162, https://doi.org/10.1111/j.1399-0039.1995.tb03114.x
44 Staudt, D., Murray, H.C., McLachlan, T., Alvaro, F., Enjeti, A.K., Verrills, N.M. et al. (2018) Targeting Oncogenic Signaling in Mutant FLT3 Acute Myeloid

Leukemia: The Path to Least Resistance. Int. J. Mol. Sci. 19, 3198, https://doi.org/10.3390/ijms19103198
45 Wei, J., Wunderlich, M., Fox, C., Alvarez, S., Cigudosa, J.C., Wilhelm, J.S. et al. (2008) Microenvironment determines lineage fate in a human model of

MLL-AF9 leukemia. Cancer Cell 13, 483–495, https://doi.org/10.1016/j.ccr.2008.04.020
46 Sveen, A., Kilpinen, S., Ruusulehto, A., Lothe, R.A. and Skotheim, R.I. (2016) Aberrant RNA splicing in cancer; expression changes and driver mutations

of splicing factor genes. Oncogene 35, 2413–2427, https://doi.org/10.1038/onc.2015.318
47 He, X., Yuan, C. and Yang, J. (2015) Regulation and functional significance of CDC42 alternative splicing in ovarian cancer. Oncotarget 6,

29651–29663, https://doi.org/10.18632/oncotarget.4865
48 Vanharanta, S., Marney, C.B., Shu, W., Valiente, M., Zou, Y., Mele, A. et al. (2014) Loss of the multifunctional RNA-binding protein RBM47 as a source of

selectable metastatic traits in breast cancer. Elife 3, e02734, https://doi.org/10.7554/eLife.02734
49 Wei, Y., Zhang, F., Zhang, Y., Wang, X., Xing, C., Guo, J. et al. (2019) Post-transcriptional regulator Rbm47 elevates IL-10 production and promotes the

immunosuppression of B cells. Cell Mol Immunol. 16, 580–589, https://doi.org/10.1038/s41423-018-0041-z
50 Kharas, M.G., Lengner, C.J., Al-Shahrour, F., Bullinger, L., Ball, B., Zaidi, S. et al. (2010) Musashi-2 regulates normal hematopoiesis and promotes

aggressive myeloid leukemia. Nat. Med. 16, 903–908, https://doi.org/10.1038/nm.2187
51 Ger, M., Kaupinis, A., Petrulionis, M., Kurlinkus, B., Cicenas, J., Sileikis, A. et al. (2018) Proteomic identification of FLT3 and PCBP3 as potential

prognostic biomarkers for pancreatic cancer. Anticancer Res. 38, 5759–5765, https://doi.org/10.21873/anticanres.12914
52 Choi, S.H., Nam, J.K., Kim, B.Y., Jang, J., Jin, Y.B., Lee, H.J. et al. (2016) HSPB1 inhibits the endothelial-to-mesenchymal transition to suppress

pulmonary fibrosis and lung tumorigenesis. Cancer Res. 76, 1019–1030, https://doi.org/10.1158/0008-5472.CAN-15-0952
53 Shen, L., Zhang, R., Sun, Y., Wang, X., Deng, A.M. and Bi, L. (2014) Overexpression of HSBP1 is associated with resistance to radiotherapy in oral

squamous epithelial carcinoma. Med. Oncol. 31, 990, https://doi.org/10.1007/s12032-014-0990-8

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

17

https://doi.org/10.1002/wrna.1476
https://doi.org/10.1038/leu.2014.108
https://doi.org/10.1172/JCI80046
https://doi.org/10.4161/cc.27757
https://doi.org/10.1038/cdd.2016.91
https://doi.org/10.1002/wrna.1178
https://doi.org/10.1038/onc.2013.533
https://doi.org/10.1016/j.canlet.2017.02.016
https://doi.org/10.3389/fonc.2019.00773
https://doi.org/10.1007/s10585-018-9905-y
https://doi.org/10.3389/fonc.2018.00537
https://doi.org/10.1186/s13045-016-0315-9
https://doi.org/10.1111/imr.12241
https://doi.org/10.1111/j.1582-4934.2008.00234.x
https://doi.org/10.1038/s41598-018-22183-2
https://doi.org/10.3390/ijms19020545
https://doi.org/10.4149/neo_2020_190917N922
https://doi.org/10.21037/atm.2018.07.02
https://doi.org/10.1111/j.1399-0039.1995.tb03114.x
https://doi.org/10.3390/ijms19103198
https://doi.org/10.1016/j.ccr.2008.04.020
https://doi.org/10.1038/onc.2015.318
https://doi.org/10.18632/oncotarget.4865
https://doi.org/10.7554/eLife.02734
https://doi.org/10.1038/s41423-018-0041-z
https://doi.org/10.1038/nm.2187
https://doi.org/10.21873/anticanres.12914
https://doi.org/10.1158/0008-5472.CAN-15-0952
https://doi.org/10.1007/s12032-014-0990-8


Supplementary materials 

Supplementary Figures and Legends 
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Supp Figure 1. Kaplan-Meier plots of prognostic signatures built with each type of AS event for 

AML patients (P < 0.05).  (A-G). Kaplan-Meier plot of prognostic signature built with AA, AD, AP, 

AT, ES, ME, and RI events, respectively. Red line indicates high-risk subgroup while blue line 

indicates low-risk subgroup. 
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Supp Figure 2. Development of the prognostic signature based on the PSI values of the OS-related 

AA, AD, AP, AT, ES, ME, and RI events. (A-G). Determination and analysis of the prognostic AS 

signatures in AML cohort. AML patients were divided into high- and low-risk subgroups based on 

the median cut of risk score calculated separately. The upper part of each assembly indicates 

distribution of patients’ survival status and survival times ranked by risk score, the middle part 

represents the risk score curve, and the bottom heatmap displays splicing pattern of the AS signature 

from each AS type. Color transition from blue to red indicates the increasing PSI score of 

corresponding AS event from low to high.  
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Supp Figure 3. ROC curves with calculated area under curves (AUCs) of prognostic signatures 

constructed by each type of AS event in AML cohort for risk prediction in 3 years.  

(A-G). The curves of time-dependent AUCs versus time (3-year) of prognostic signature constructed 

by AA, AD, AP, AT, ES, ME, and RI events, respectively.  
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Supp Figure 4. ROC curves with calculated area under curves (AUCs) of prognostic signatures 

constructed by either one type or all seven AS types in AML cohort for risk prediction in 1 years. (A-

G). The curves of time-dependent AUCs versus time (1-year) of prognostic signature constructed by 

AA, AD, AP, AT, ES, ME, and RI events, respectively. (H). The curves of time-dependent AUCs 

versus time (1-year) of the final AS signature. 
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Supp Figure 5. The gene expression of top five correlated SFs in AML patients and normal cases 

(GEPIA database, P < 0.05) (A). HSBP1; (B). MSI2; (C). RBM47; (D). PCBP3; (E). DNAJC6; (F). 

IGF2BP3 

 


