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The 5-year survival of hepatocellular carcinoma (HCC) is difficult due to the high recurrence
rate and metastasis. Tumor infiltrating immune cells (TICs) and immune-related genes (IRGs)
bring hope to improve survival and treatment of HCC patients. However, there are problems
in predicting immune signatures and identifying novel therapeutic targets. In the study, the
CIBERSORT algorithm was used to evaluate 22 immune cell infiltration patterns in gene ex-
pression omnibus (GEO) and the cancer genome atlas (TCGA) data. Eight immune cells were
found to have significant infiltration differences between the tumor and normal groups. The
CD8+ T cells immune signature was constructed by least absolute shrinkage and selection
operator (LASSO) algorithm. The high infiltration level of CD8+ T cells could significantly
improve survival of patients. The weighted gene co-expression network analysis (WGCNA)
algorithm identified MMP9 was closely related to the overall survival of HCC patients. K-M
survival and tROC analysis confirmed that MMP9 had an excellent prognostic prediction.
Cox regression showed that a dual immune signature of CD8+ T cells and MMP9 was in-
dependent survival factor in HCC. Therefore, a dual prognostic immune signature could
improve the survival of patient and may provide a new strategy for the immunotherapy of
HCC.

Introduction
Hepatocellular carcinoma is one of the common fatal malignant tumors in clinical [1]. It mainly developed
from hepatitis and cirrhosis [2]. The early symptoms of HCC are relatively insidious, and most patients are
already at an advanced stage when they are diagnosed [3]. Recently, new treatment methods have made
some progress in the treatment of liver cancer [4]. However, the patient’s prognosis is still not satisfactory
due to the high recurrence and metastasis of HCC [5]. Therefore, the determination of reliable prognostic
markers is the key to improving the prognosis of HCC patients.

The tumor immune microenvironment is the environment where tumors interact with the immune
system. The development of tumor was accompanied by mutual restriction between tumor and immune
cells [6]. On the one hand, the immune system plays an antitumor effect by recognizing and killing tumor
cells. On the other hand, tumor cells mainly promote tumorigenesis by immune suppression and immune
tolerance [7]. With the rise of immunotherapy, immune checkpoint inhibitors (PD-1, CART, CTLA4,
PD-L1 and PD-Ls) have made progress in the treatment and prognosis of HCC patients [8,9]. However, the
disadvantage is that the treatment strategy is only applicable to a small number of patients. And there are
problems in predicting immune signatures and identifying novel therapeutic targets. Studies revealed that
the infiltration of TICs (tumor infiltrating immune cells) in malignant tumor cells is closely related to the
expression of PD-1/PD-L1 [10,11]. The function and composition of TICs changed with the host immune
status. Studies have reported the prognostic value of TICs in lung cancer, breast cancer and squamous cell
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carcinoma [12–14]. Accordingly, an extensive study of the immune infiltration pattern of TICs would help elucidate
complex antitumor responses to improve the survival of HCC.

CIBERSORT [15] is a deconvolution algorithm based on a set of barcode gene expression, which is superior to
other methods in the identification and of immune cells. The method can accurately quantify the level of infiltration
of specific cell types. Moreover, the ESTIMATE can evaluate the tumor microenvironment’s matrix abundance and
tumor purity [16].

Our previous research has identified various biomarkers and potential inflammation-modulating therapeutic tar-
gets through experimental and bioinformatics method [17–19]. In the study, CIBERSORT was used to calculate the
proportion of immune cells in GEO and TCGA database. A dual prognostic immune signature of TIC and IRG was
constructed based on LASSO and WGCNA algorithms. Univariate and multivariate COX confirmed the potential
value of the dual signature for improving the survival prediction of HCC.

Materials and methods
Collection and extraction of data
GSE76427 that contained 115 HCC samples and 52 normal samples came from GEO (https://www.ncbi.nlm.nih.
gov/geo). The mRNA-seq (tumor = 371, normal = 50) expression data and corresponding clinical information were
download in the TCGA database (https://cancergenome.nih.gov/; July 2020). The expression data was processed by
log2 conversion. Samples with survival time < 1 day were excluded. The 2483 immune-related genes (Supplemen-
tary File S1) had been identified according to the ImmPort database (https://immport.niaid.nih.gov; July 2020). The
overlapping IRGs were selected between the TCGA, GEO and ImmPort dataset.

Analysis of immune fluctuation in HCC microenvironment
The CIBERSORT algorithm was used to calculate the proportion of 22 immune cells in each patient (perm = 1000).
And the difference of immune cell infiltration were evaluated in tumor and normal tissues. The ESTIMATE algorithm
was used to calculate the immune scores and matrix score of all samples. TIMER (https://cistrome.shinyapps.io/
timer/) is used to analyze the correlation between prognostic IRG signature and immune cell infiltration.

Construction of immune cell signature
The patient’s OS status and time was obtained from GEO and TCGA cohort. Univariate COX regression initially
screened immune cells related to the patient’s life cycle (P<0.05). The LASSO model used a punishment mechanism
to screen out prognostic signatures associated with the survival of the patient. The overlapping TICs signatures were
selected between GEO and TCGA cohort. LASSO could be expressed as a constraint on the objective function.
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WGCNA analysis
The expression matrix was established based on the overlapping IRGs of GEO data. The R package ‘WGCNA v1.69’
was used to build a co-expression network. The modules with potent immune characteristics were determined by
calculating the correlation between each module and immune characteristics (P<0.05). The algorithm steps were as
follows:

The Pearson algorithm was used to calculate the similarity between two genes, and then construct a correlation
matrix.
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A topological overlap matrix was created by calculating the adjacency matrix.
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Figure 1. Analysis of 22 immune cell infiltration according to CIBERSORT algorithm

(A) Heatmap of 22 immune cells. (B) Differences of 22 immune cells infiltration between the HCC and Normal group. (C) The

percentage of immune cells in HCC sample. (D) Average infiltration rate and correlation analysis.

The module membership was built.

ME = princomp
(
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)

MMq
i = cor (Xi, MEq)

Evaluation of prognostic value
The prognostic performance of immune signature was evaluated by Kaplan–Meier survival and tROC curve. The
‘Correlation Analysis’ module of GEPIA2 was used to evaluate the correlation between IRG signature and immune
cell marker genes. Univariate and multivariate Cox regression were used to analyze the immune characteristics and
clinical parameters.

Statistical
Bioinformatics analysis was executed by using R v3.6.1 and its corresponding packages. P<0.05 was considered sta-
tistically significant.

Results
Immune cell infiltration pattern of HCC
The CIBERSORT algorithm described the infiltration pattern of 22 immune cells in the GEO cohort and TCGA
cohort. The immune score of each sample was calculated according to the ESTIMATE algorithm (Supplementary File
S2). Heat map of the distribution of 22 immune cells in the GEO cohort (Figure 1A). B cells naive (P<0.001), B cells
memory (P=0.019), T cells CD8 (P=0.004), Macrophages M0 (P=0.017), Macrophages M2 (P<0.001), Dendritic
cells resting (P<0.001), Mast cells resting (P=0.043), Mast cells activated (P=0.044), there were significant infiltration
differences between HCC and normal tissues (Figure 1B). The percentage of immune cells in each HCC sample was
shown in Figure 1C. And the average infiltration rate of immune cells and the correlation matrix were shown in Figure
1D.
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Figure 2. Definition and prognostic analysis of CD8+ T Cells

(A) LASSO analysis identified eight TICs in GEO cohort. (B) Determine the minimum value of λ to be eight based on TCGA cohort.

(C) Identification of CD8+ T cells. (D) Survival analysis of CD8+ T cells.

4 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2021) 41 BSR20204219
https://doi.org/10.1042/BSR20204219

Figure 3. Identification of key IRGs based on WGCNA

(A) 1291 overlapping IRGs from three databases. (B) A dendrogram of IRGs including gray modules (genes not classified into mod-

ules). (C) Module–module correlation analysis diagram. (D) Correlation analysis between CD8+ T cells and eight immune character-

istics. (E) Correlation heatmap of modules and immune traits. The turquoise module showed outstanding correlation. (F) In-depth

analysis of the correlation between turquoise module and T cell CD8.
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Figure 4. Construction of MMP9 signature

(A and B) Multivariate COX regression of nine IRGs in GEO cohort and TCGA cohort. (C) Correlation analysis between the expression

of MMP9 and immune cells based on TIMER.

Determination and prognostic significance of TIC signature
The eight TICs immune signatures were obtained based on univariate COX regression and LASSO analysis (Figure
2A,B). CD8+ T cells was identified by Venn analysis (Figure 2C). The survival curve showed that the high infiltration
level of CD8+ T cells could significantly improve survival of HCC (Figure 2D).

Identification of IRG modules related to TIC signature
The expression data of 1291 overlapping IRGs were screened to perform WGCNA analysis (Figure 3A). The six mod-
ules were identified by constructing a scale-free network (Figure 3B). The module correlation analysis demonstrated
that turquoise strongly correlated with the yellow module (Figure 3C). CD8+ T cells was significantly correlated with
eight immunophenotypic parameters (PD-1, PD-L1, CD8A, CD8B, ImmuneScore, ImmuneScore, ESTIMATEScore,
TumorPurity) (Figure 3D). The turquoise module had a strong correlation with nine immunophenotypic parameters
(Figure 3E). Further analysis indicated that the turquoise module were significantly correlated with CD8+ T cells (cor
= 0.80, P = 3.5e-63) (Figure 3F). Therefore, the turquoise module (278 IRGs) was identified as a key module.

Construction and prognostic value of immune IRG signature
The 36 IRGs were identified to be significantly related to the patient’s OS in the GEO cohort (P<0.05) through
univariate COX regression analysis. Nine IRGs signatures were obtained by LASSO COX analysis (Supplementary
Figure S1). MMP9 was identified as a prognostic immune signature based on GEPIA2 correlation analysis (Table 1
and Supplementary Table S1) and multivariate COX regression analysis (Figure 4A,B). TIMER evidenced that the
high expression of MMP9 significantly increased the infiltration level of the B cells (cor = 0.529, P = 3.05e-26),
CD8+ T cells (cor = 0.421, P = 4.13e-16), CD4+ T cells (cor = 0.356, P = 9.68e-12), macrophage (cor = 0.473, P
= 2.12e-20), neutrophil (cor = 0.34, P = 8.96e-11), dendritic cells (cor = 0.584, P = 1.72e -32). Interestingly, the
increased expression of MMP9 could reduce tumor purity (Figure 4C).

The GEO cohort found that the expression of MMP9 was significantly up-regulated in tumor tissues (P=0.00016).
The high expression of MMP9 corresponded to the poor survival of HCC (P=0.0013). The tROC curve analysis
evidenced that the MMP9 signature had an excellent prognostic predictive effect (Figure 5A). The TCGA cohort
analysis results also confirmed that MMP9 had significant prognostic value (Figure 5B).
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Table 1 Correlation analysis between gene signature and CD8A, CD8B

Gene CD8A CD8B
Cor P.value Cor P.value

CD1B 0.24 3.2e−08 0.23 5.4e−08

CETP 0.16 2e−04 0.14 0.0011

CXCL10 0.45 0 0.41 0

CXCL9 0.72 0 0.64 0

HLA-E 0.48 0 0.45 0

ITGAL 0.49 0 0.43 0

LGMN 0.54 0 0.53 0

MMP9 0.18 4.6e−05 0.17 9.4e−05

TNFRSF18 0.22 2.8e−07 0.23 1.1e−07

Figure 5. Prognostic value of MMP9

(A and B) Analysis of expression patterns, survival and tROC based on GEO cohort and TCGA cohort.

We characterized the mutants of the TCGA cohort based on the expression of MMP9. The 20 genes were observed
with the highest mutation frequency in the TCGA cohort. We found that basically all genes had higher mutation
frequency in the high expression group than in the low expression group (Figure 6). All samples were dominated by
mutations of TTN, TP53 and MUC16.

The immune infiltration landscape of MMP9 in HCC
To further confirm the immunity of MMP9, we evaluated the immune infiltration landscape of different expres-
sion groups based on TCGA data. We found that T cells CD4 memory resting (high = 23.41%, low = 22.23%),
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Figure 6. Correlation analysis between the MMP9 and HCC mutations from TCGA cohort

(A and B) The mutation status of the top 20 genes in the high and low expression group.

Macrophages M2 (high = 17.95%, low = 18.10%) and Macrophages M0 (high = 12.28%, low = 12.02%) were
among the infiltration ratios more than 50% (Figure 7A,B). Compared with the low expression group, B cells naı̈ve
(P=0.032), B cells memory (P=0.006), T cells CD8 (P=0.002), T cells CD4 näıve (P<0.001), T cells CD4 memory
resting (P=0.036), T cells CD4 memory activated (P<0.001), T cells follicular helper (P=0.029), T cells regulatory
(Tregs) (P<0.001), NK cells activated (P<0.001), monocytes (P<0.001), macrophages M0 (P<0.001), dendritic cells
resting (P<0.001), dendritic cells activated (P=0.03) and mast cells resting (P<0.001) had significant differences
(Figure 7C).

Independent prognostic analysis of TIC signature and IRG signature
The univariate COX regression model of GEO cohort indicated that a dual signature of CD8+ T cells (HR = 0.020,
P=0.017) and MMP9 (HR = 0.772, P<0.001) was significantly related to the survival of HCC patients. Multivari-
ate COX revealed that a dual signature of CD8+ T cells (HR = 0.000247, P=0.0198) and MMP9 (HR = 0.783443,
P=0.0021) was an independent predictor of the prognosis of HCC (Figure 8A). Similarly, TCGA cohort analysis also
confirmed this result (Figure 8B).

Discussion
Tumor microenvironment played a critical role in the tumor progression. Abundant evidence shows that TICs play an
essential role in predicting tumor progression and prognosis [20]. The distribution of TICs is significantly different
between different tumor stages or different types of tumors. The evaluation of the number, phenotype and spatial
distribution of TICs may provide reliable treatment strategies of patients. At present, most studies have focused on
RNA signatures to predict prognosis and the role of TICs in the progression and treatment of HCC [21–25]. However,
the predictive capability of single biomarker is usually defective. Conversely, the combination of immunotherapy and
targeted therapy is expected to improve the survival after standard treatment in cancer. But the value of the dual
signature combining TIC and IRG in improving the survival of HCC has not been studied yet. Therefore, in the
preent study, a dual immune prognostic model was constructed through GEO, TCGA and ImmPort dataset, which
may provide a new strategy for improving the survival and immunotherapy of HCC.

This study described the distribution of TICs in HCC based on CIBERSORT. LASSO analysis confirmed that only
CD8+ T cells was significantly correlated with the overall survival of HCC. We found that the infiltration pattern
of CD8+ T cells was significantly different between HCC and normal groups. High infiltration levels of CD8+ T

8 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. Immune infiltration levels in high and low expression groups of MMP9

(A and B) The infiltration proportion of 22 immune cells in the high and low expression groups. (C) Differences in the level of immune

cell infiltration between the high and low expression groups.

cells could improve the prognosis of HCC. Besides, we studied the complicated relationship between T-cell CD8
and routine clinical parameters to reveal whether T cell CD8 is an independent variable of HCC. Interestingly, Cox
regression analysis confirmed that CD8+ T cell is an independent prognostic factor of HCC. Sometimes CD8+ T
cells killed cancer cells, but they promoted cancer cell proliferation occasionally. Most CD8+ T cells are activated and
transformed into cytotoxic T lymphocytes to play a direct killing effect by recognizing TAA [26]. However, CD8+
T cells promotes the proliferation of HCC by maintaining immune tolerance [27]. Huang et al. reported that the
expression of PD-L1 is significantly related to CD8+ T cells in HCC [28]. Guo et al. found that the expression of CD8
+ T cells in HCC was significantly higher than in normal tissues [29]. CD8+ T cells is related to the progression and
prognosis of HBV-HCC [30]. These studies indicate that T cell CD8 plays an essential role in the process of HCC.
And it is a specific marker for evaluating the prognosis of HCC.

Cytotoxic T lymphocytes (CTL) in the HCC microenvironment are mainly CD8+ T cells [31]. Interferon (IFN)-γ
produced by CD8+ T cells is a key factor in antitumor immunity. It can increase antigen presentation, proinflam-
matory cytokine production and directly kill tumor cells [32]. Preclinical studies have found that exposure of tu-
mors to IFN-γ secreted by antigen-specific CD8+ T cells can lead to tumor cells’ genetic instability. DNA damage
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Figure 8. Independent prognostic analysis

(A and B) Univariate and multivariate COX analysis based on GEO cohort and TCGA cohort.

response-related copy number variation, DNA editing, and DNA repair-related gene changes [33]. CD8+CXCR5+T
in HCC produces IL-21 (interleukin-21), which induces B cells to differentiate into plasma cells that produce Ig G.
And it plays a key role in the humoral immunity of HCC, which is related to a good prognosis [34]. HIF-α1 induced
the increase of TREM-1 expression in TAMs, impairing the cytotoxic function of CD8+T cells and inducing apop-
tosis. And it blocks spontaneous and PD-L1 antibody-mediated anti-HCC effects [35]. The depleted CD8+ T cells
seem to have evolved in the liver, and immunotherapy may restore the depleted T cells in the HCC [36]. Therefore,
CD8 + T cells play an important role in the progression of HCC.

MMP9 is a member of the zinc-dependent endoprotease family. It is involved in processes such as inflammation,
apoptosis and immunity [37]. Wang et al. found that high expression of MMP9 was significantly associated with
HCC metastasis [38]. And The MMP9 expression was significantly correlated with the penetration level of TICs. Liu
et al. confirmed that macrophages M2 affects the progression of HCC through MMP9 [39]. MMP9 acted actively to
regulate the immune response and pathogenesis of HCC [40,41]. In our study, the survival curve, tROC curve and
COX regression analysis confirmed that MMP9 was an independent indicator predicting the survival of HCC.

In conclusion, our study confirmed that a dual immune signature of CD8+ T cells and MMP9 could improve
the survival of HCC. But the application potential of a dual immune signature in HCC immunotherapy still needs
sufficient experimental verification.
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Table S1 Symbol and gene name correspondence list 

 

Symbol Gene name 

CD1B CD1b molecule 

CETP cholesteryl ester transfer protein, plasma 

CXCL10 chemokine (C-X-C motif) ligand 10 

CXCL9 chemokine (C-X-C motif) ligand 9 

HLA-E human leucocyte antigen, E 

ITGAL integrin alpha L 

LGMN legumain 

MMP9 matrix metallopeptidase 9 

TNFRSF18 TNF-receptor-superfamily-member 18 

CD8A CD8a molecule 

CD8B CD8b molecule 

PD-1 programmed death 1 

PD-L1 programmed death ligand 1 

CART chimeric antigen receptor T cells 

CTLA4 cytotoxie Tlymphocyte associated antigen 4 

 


