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Hydroxymethylbilane synthase (HMBS), which is involved in the heme biosynthesis
pathway, has a dipyrromethane cofactor and combines four porphobilinogen (PBG) mole-
cules to form a linear tetrapyrrole, hydroxymethylbilane. Enzyme kinetic study of human
HMBS using a PBG-derivative, 2-iodoporphobilinogen (2-I-PBG), exhibited noncompeti-
tive inhibition with the inhibition constant being 5.4 ± 0.3 mM. To elucidate the reaction
mechanism of HMBS in detail, crystal structure analysis of 2-I-PBG-bound holo-HMBS
and its reaction intermediate possessing two PBG molecules (ES2), and inhibitor-free ES2

was performed at 2.40, 2.31, and 1.79 Å resolution, respectively. Their overall structures
are similar to that of inhibitor-free holo-HMBS, and the differences are limited near the
active site. In both 2-I-PBG-bound structures, 2-I-PBG is located near the terminus of the
cofactor or the tetrapyrrole chain. The propionate group of 2-I-PBG interacts with the
side chain of Arg173, and its acetate group is associated with the side chains of Arg26
and Ser28. Furthermore, the aminomethyl group and pyrrole nitrogen of 2-I-PBG form
hydrogen bonds with the side chains of Gln34 and Asp99, respectively. These amino
acid residues form a single substrate-binding site, where each of the four PBG molecules
covalently binds to the cofactor (or oligopyrrole chain) consecutively, ultimately forming a
hexapyrrole chain. Molecular dynamics simulation of the ES2 intermediate suggested that
the thermal fluctuation of the lid and cofactor-binding loops causes substrate recruitment
and oligopyrrole chain shift needed for consecutive condensation. Finally, the hexapyrrole
chain is hydrolyzed self-catalytically to produce hydroxymethylbilane.

Introduction
In animals, plants, and bacteria, the porphyrin biosynthesis pathway is essential and the formed cyclic
tetrapyrrole, uroporphyrinogen III, is transformed to biological pigments such as hemes, chlorophylls,
and cobalamin (Supplementary Figure S1) [1,2]. In porphyrin biosynthesis, hydroxymethylbilane syn-
thase (HMBS, EC 2.5.1.61), also known as porphobilinogen deaminase, catalyzes the sequential con-
densation of four porphobilinogen (PBG) molecules to form a linear tetrapyrrole,
hydroxymethylbilane (HMB), in the cytosol (Figure 1) [3,4]. This enzyme, which functions as a
monomer, has dipyrrolmethane (DPM) as a unique cofactor in its active site, and a conserved cysteine
residue of the enzyme (Cys261 in human HMBS) is covalently bound to the cofactor. HMBS proceeds
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by stepwise addition of pyrrolylmethyl groups until a linear hexapyrrole is formed in the active site. The four
pyrrole rings of HMB are assembled on the DPM cofactor in the order of rings A, B, C, and D (Figure 1).
Regarding the stepwise addition of pyrrole rings, it is still controversial whether the substrate-binding site is
single or multiple [5,6]. The terminal tetrapyrrole is then hydrolyzed to yield the product HMB, leaving the
cysteine-bound DPM cofactor on which assembly continues. Depending on the differences in promoters con-
trolling transcription and alternative splicing, two isoforms of human HMBS are known: erythroid and
non-erythroid (ubiquitous) isoforms. The ubiquitous isoform used in this study has additional 17 amino acid
residues at the amino terminus. Uroporphyrinogen III synthase (EC 4.2.1.75) then cyclizes HMB by the
rearrangement of ring D to yield uroporphyrinogen III (Supplementary Figure S1). In the absence of uropor-
phyrinogen III synthase, however, HMB cyclizes spontaneously to form uroporphyrinogen I. Ultimately, uro-
porphyrinogen III, but not uroporphyrinogen I, becomes heme through the biosynthesis pathway
(Supplementary Figure S1).
The deficiency of activity of at least one enzyme in the heme biosynthesis pathway leads to a disease known

as porphyria [7]. Insufficiency of protoheme causes the overexpression of 5-aminolevulinate synthase isoform 1
(ALAS1) and excessive accumulation and excretion of porphyrin precursors such as 5-aminolevulinic acid and
PBG [1]. Particularly, lack of HMBS activity causes acute intermittent porphyria (AIP), which is the most

Figure 1. Reaction cycle of HMBS.

The DPM cofactor binds to apoenzyme via a thioether bond with the cysteine residue (Cys261 in human HMBS). Four

molecules of the monopyrrole PBG are condensed to form a linear tetrapyrrole HMB with the elimination of four ammonia

molecules by HMBS. Two pyrrole rings of the DPM cofactor and four rings for the tetrapyrrole product are denoted as c1, c2,

A, B, C, and D from the cysteine residue side. The numbering of the atoms of PBG is also denoted.
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frequent type of porphyria. AIP is an autosomal dominant inherited disorder involved in heme biosynthesis,
and its clinical symptoms include abdominal pain and neurological dysfunctions, but not cutaneous manifesta-
tions. More than 400 different gene mutations including missense, nonsense, deletion, and insertion related
with human HMBS have been reported to date [8]. In order to discuss the causes of the reduced activity of
these mutations leading to AIP, it is necessary to elucidate the detailed reaction mechanism of HMBS, includ-
ing substrate binding, oligopyrrole chain elongation, and HMB release. For that purpose, it is indispensable to
analyze the structure of intermediates formed during the enzymatic reaction.
Until date, the crystal structures of HMBS from humans [9,10], Escherichia coli [11,12], Arabidopsis thaliana

[13], Bacillus megaterium [14], and Vibrio cholerae [15] have been determined as holoenzymes. All of them
have a similar structure composed of three domains (domain 1, residues 1–116 and 216–239; domain 2, 117–
215; domain 3, 240–361 in human HMBS) and possesses the DPM cofactor covalently attached to a conserved
cysteine residue (Cys261 in human HMBS) in domain 3. The HMBS from B. megaterium has a partially oxi-
dized cofactor, dipyrromethene or dipyrromethanone [14], and that from A. thaliana has another partially oxi-
dized cofactor, dipyrromethenone [13]. It is considered that during the HMBS reaction, PBG binds to a
putative substrate-binding site in the neighborhood of the distal pyrrole (c2) of the DPM cofactor in the cleft
between domains 1 and 2. In human HMBS, an ordered sulfate ion derived from crystal mother liquor has
been found at the proposed substrate-binding site, where Arg26 and Ser28 lie within hydrogen bonding dis-
tance to a substrate molecule [10]. This site is occupied by the propionate group of ring c2 of the oxidized
cofactor in the E. coli HMBS [11]. The computational docking model of HMBS with some inhibitors has also
predicted that the putative substrate-binding site accommodates the inhibitors [16]. Although the crystal struc-
tures of substrate(s)-bound HMBS had not been described for a few decades, Pluta et al. recently reported a
crystal structure of a reaction intermediate (ES2) of HMBS, which has a DPM cofactor covalently bound to two
additional substrate pyrrole rings [16].
Some substrate derivatives such as 2-bromo-PBG [17,18], 9-fluoro-PBG (inhibition constant (Ki) = 6 mM,

competitive inhibition) [19], and 6-methyl-PBG (Ki = 3 mM, mixed-type inhibition) [5] have been reported to
be potent HMBS inhibitors. It has been observed by 13C-NMR spectroscopy that 2-bromo-PBG binds cova-
lently to the cofactor in the active site like PBG, and forms an enzyme–inhibitor complex [20]. The covalent
attachment of 6-methyl-PBG to HMBS has been exhibited by Mono Q column chromatography and electro-
spray mass spectrometry analysis [5]. In addition, the 2-fluoro-11-hydroxy analog of PBG has been reported as
a suicide inhibitor of HMBS, and its covalent bonding to HMBS has been shown by native polyacrylamide gel
electrophoresis [21]. In contrast, 2-methyl-PBG is a weak competitive inhibitor of HMBS (Ki∼ 1 mM) [19].
The crystal structures of inhibitor-bound HMBS have not been reported until date.
In this study, the enzyme kinetics and crystal structure of HMBS were analyzed using 2-iodoporphobilinogen

(2-I-PBG), a PBG-derivative, to detail the condensation mechanism of PBG molecules in the active site of
HMBS. It was found that 2-I-PBG inhibits the HMBS reaction in a noncompetitive manner. Furthermore, we
determined the crystal structures of the holo and ES2 intermediate of HMBS in complex with 2-I-PBG. To the
best of our knowledge, this is the first study to report the crystal structures of HMBS in complex with a sub-
strate analog. The present structures of HMBS show a single substrate-binding site for four condensation reac-
tions and provide clues to predict the mechanism of HMB detachment from the ES4 intermediate of HMBS. In
addition, molecular dynamics (MD) simulation of the ES2 intermediate demonstrated characteristic thermal
fluctuation of the lid loop and the cofactor-binding loop, which may induce substrate recruitment and shift of
the oligopyrrole chain required for consecutive condensation in the single substrate-binding site.

Materials and methods
Materials
PBG was purchased from Frontier Scientific (Logan, UT, USA). All other chemicals used in this study were of
reagent grade and obtained commercially.
Following the method described previously [22], 2-I-PBG was custom-synthesized by Mercachem (Nijmegen,

The Netherlands). PBG (70 mg, 0.31 mmol) was suspended in 1 M acetate buffer (pH 4.6), and 0.5 M iodine
in aqueous potassium iodide solution was added. The obtained compound was purified by dissolving it in
diluted ammonia solution. This solution was neutralized with an aqueous acetic acid solution to pH 6, and the
2-I-PBG solid was filtered (59 mg, 0.17 mmol). LCMS-UV analysis showed a purity of 92%; 1H-NMR (D2O/
DCl) δ 2.48 (t, 2H, –CH2CH2COOH), 2.65 (t, 2H, –CH2CH2COOH), 3.62 (s, 2H, –CH2COOH), 4.11 (s, 2H,
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–CH2NH2); LCMS (negative) m/z 351 (100, [M–H]−), 703 (81, [2M–H]−); LCMS (positive) m/z 336 (100, [M
+H–NH3]

+), 705 (11, [2M +H]+).

Expression and purification of holo form of HMBS (holo-HMBS)
The ubiquitous form of human HMBS was expressed in E. coli and purified as previously reported [23] with
some modifications described below. Cells were lysed in and dialyzed after ammonium sulfate fractionation
against 50 mM potassium phosphate buffer (pH 8.0). Gel filtration column chromatography was carried out
using a HiLoad 26/600 Superdex 200 pg column (Cytiva; Uppsala, Sweden) in the same buffer. The
HMBS-containing fractions were combined and diluted five-fold with cold distilled water and anion exchange
column chromatography was performed with Whatman DE52 resin (Cytiva, 2.5 × 5 cm), as described previ-
ously [23].
Two additional column chromatography were carried out to obtain substrate-free holo-HMBS. The concen-

trated HMBS fraction was diluted 25-fold with 20 mM potassium phosphate buffer (pH 8.0) containing 1.0 M
ammonium sulfate and applied to two 5-ml HiTrap Phenyl HP columns (Cytiva) connected in series equili-
brated with the same buffer. After washing the column, the bound enzyme was eluted with a decreasing linear
gradient of ammonium sulfate (1.0–0 M) in 20 mM potassium phosphate buffer (pH 8.0) at a flow rate of
1.0 ml/min. The HMBS-containing fractions were combined, concentrated, and desalted by ultrafiltration with
Amicon Ultra-15 (Merck KGaA; Darmstadt, Germany). Finally, anion exchange column chromatography was
performed with a Mono Q 4.6/100 PE column (Cytiva) equilibrated with 15 mM Tris–HCl buffer (pH 8.3) to
remove the substrate(s)-bound intermediate forms of HMBS from cofactor-bound holo-HMBS [24]. After the
column was washed with the same buffer, elution was achieved with a 60-ml linear gradient of NaCl (0–0.3 M)
in the same buffer at a flow rate of 1.0 ml/min. Holo-HMBS-containing fractions were eluted at ca. 25 ml in a
linear gradient and combined. Then, the obtained holo-HMBS solution was concentrated and desalted by ultra-
filtration with Amicon Ultra-15 and stored at −80°C. The molecular weight of the purified holo-HMBS was
confirmed by electrospray ionization time-of-flight mass spectrometry with a JMS-T100CS mass spectrometer
( JEOL; Tokyo, Japan) (Calc. of holo-HMBS: 39617, Found: 39620; Supplementary Figure S2A).

Preparation of ES2 intermediate of HMBS
To prepare a reaction intermediate of HMBS possessing two PBG molecules, ES2 intermediate, 0.1 ml purified
holo-HMBS (final conc. 4 mM) was mixed immediately with 15 ml PBG (final conc. 12 mM) in 15 mM Tris–
HCl buffer (pH 8.3) on ice. The reaction mixture was concentrated by ultrafiltration with Amicon Ultra-15, fil-
trated with Ultrafree MC 0.22 mm filter (Merck KGaA), and applied to a Mono Q 4.6/100 PE anion exchange
column equilibrated with 15 mM Tris–HCl buffer (pH 8.3). Subsequent washing and elution steps were carried
out for holo-HMBS. Fractions containing the ES2 intermediate eluted at ca. 31 ml in the linear gradient were
combined, concentrated, and desalted by ultrafiltration with Amicon Ultra-15. For crystallization, the concen-
trated ES2 intermediate was used immediately without freezing. The molecular weight of the ES2 intermediate
was confirmed by electrospray ionization time-of-flight mass spectrometry with a JMS-T100CS mass spectrom-
eter (Calc. of the ES2 intermediate: 40036, Found: 40039; Supplementary Figure S2B).

Enzyme kinetic study
HMBS activity was measured by optically quantifying the produced uroporphyrin [23,25]. The assay mixture
(0.9 ml) comprising 0.1 M Tris-HCl buffer (pH 7.4), 0.1 mM dithiothreitol, 2 mg/ml bovine serum albumin,
16.4 nM holo-HMBS, 0–10 mM 2-I-PBG, and 0–500 mM PBG was incubated at 37°C for 30 min. The enzyme
reaction was initiated by adding PBG and terminated by adding 0.1 ml 50% trichloroacetic acid. Enzymatically
produced HMB cyclized to uroporphyrinogen I spontaneously (Supplementary Figure S1). To completely
oxidize uroporphyrinogen I into uroporphyrin I, the sample solution was mixed with 0.4 ml 0.5% iodine–1%
potassium iodide solution and incubated at 37°C for 5 min. To quench excess iodine, 0.1 ml 1% sodium disul-
fite solution was added to the sample solution and incubated at 37°C for 5 min. After removal of the precipi-
tated protein by centrifugation, the amount of uroporphyrin in the supernatant was determined optically with
a Shimadzu UV-2550 spectrophotometer (Kyoto, Japan) using a molar extinction coefficient (ε) of 528 mM−1

cm−1 at 406 nm [26]. As 2-I-PBG includes a trace amount of PBG as an impurity, a slight amount of uropor-
phyrin I was detected in the reaction mixture even without adding PBG. To analyze enzyme kinetics, this was
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subtracted from the total amount of uroporphyrin I. The Cornish-Bowden method [27] was used to determine
the inhibition type and the Ki value for 2-I-PBG.

Preparation of inhibitor-free and 2-I-PBG-bound holo-HMBS crystals
Human holo-HMBS was crystallized using the sitting drop vapor diffusion method. A 1-ml drop of
holo-HMBS solution (ca. 11 mg/ml) in 15 mM Tris-HCl buffer (pH 8.3) containing 10 mM dithiothreitol was
mixed with a 1-ml drop of reservoir solution comprising 0.20 M diammonium hydrogen citrate, 22% (w/v)
PEG3350, and 10 mM dithiothreitol [9]. The sitting drops were equilibrated against 0.1 ml reservoir solution

Table 1. Crystallographic data collection and refinement statistics of human HMBS

Inhibitor-free
holo-HMBS

2-I-PBG-bound
holo-HMBS

Inhibitor-free
ES2

intermediate
2-I-PBG-bound ES2

intermediate

Data collection

Wavelength (Å) 0.90 1.50 (f’’ of iodine = 6.6) 0.90 1.50

Space group P212121 P212121 P212121 P212121

Cell dimensions (Å) a = 70.4, b =
80.8, c = 109.2

a = 73.9, b = 81.1, c =
109.0

a = 81.5, b = 79.5,
c = 108.7

a = 81.4, b = 81.4, c =
108.9

Resolution1 (Å) 43.1–1.84 (1.95–
1.84)

48.9–2.40 (2.55–2.40) 45.2–1.79 (1.90–
1.79)

45.2–2.31 (2.45–2.31)

Rsym
2 0.070 (0.452) 0.102 (0.623) 0.072 (1.081) 0.107 (0.566)

I/σI 10.73 (2.31) 11.3 (2.8) 9.3 (1.3) 5.5 (1.5)

Completeness (%) 98.2 (92.0) 98.4 (95.4) 99.8 (99.2) 99.4 (97.2)

Redundancy 4.0 (2.8) 3.4 (3.4) 3.4 (3.4) 3.4 (3.2)

CC(1/2) 0.997 (0.915) 0.997 (0.851) 0.998 (0.688) 0.994 (0.901)

Refinement

Resolution (Å) 43.1–1.84 48.9–2.4 45.2–1.79 45.2–2.31

No. reflections 53 343 25 902 66 528 32 254

Rwork
3 /Rfree

4 0.19/0.25 0.20/0.27 0.20/0.24 0.23/0.28

No. atoms

Protein 4747 4850 4900 4894

Coenzyme +
substrates

60 60 120 120

Inhibitor — 17 — 17

Water 159 64 368 76

B-factors

Protein 48.9 40.8 34.7 57.7

Coenzyme +
substrates

40.1 32.8 31.8 53.3

Inhibitor — 40.9 (occupancy = 0.72) — 60.6 (occupancy = 0.74)

Water 48.9 33.0 38.4 49.7

R.m.s. deviations

Bond lengths (Å) 0.006 0.010 0.010 0.006

Bond angles (°) 0.745 1.319 1.217 1.011

1Values in parentheses refer to the highest resolution shell;
2Rsym =∑hkl∑i|Ii(hkl)− <I(hkl)>|/∑hkl∑iIi(hkl);
3Rwork =∑hkl||Fo(hkl)|− |Fc(hkl)||/∑hkl|Fo(hkl)|;
4Rfree is the R-factor calculated for 5% of the data not included in the refinement.
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and incubated at 20°C for one week. Plate-shaped colorless single crystals of holo-HMBS were obtained
(Supplementary Figure S3A). An inhibitor-free holo-HMBS crystal was picked up with a cryoloop and soaked
in a cryoprotectant solution comprising 0.15 M ammonium citrate dibasic and 30% (w/v) PEG3350 at 25°C.
To prepare a 2-I-PBG-bound holo-HMBS crystal, the holo-HMBS crystal was soaked in a cryoprotectant solu-
tion comprising 0.18 M triammonium citrate, 28% (w/v) PEG3350, 10 mM dithiothreitol, and 5 mM 2-I-PBG
at 25°C for 2.5 min. Both crystals were flash-cooled and stored in liquid nitrogen until diffraction data were
collected.

Preparation of crystals of inhibitor-free and 2-I-PBG-bound ES2 intermediates
The ES2 intermediate of HMBS was crystallized in a similar manner to the holo-HMBS and platy colorless
single crystals of the inhibitor-free ES2 intermediate formed within two days (Supplementary Figure S3B). An
inhibitor-free ES2 intermediate crystal was picked up with a cryoloop and soaked in a cryoprotectant solution
comprising 0.20 M trisodium citrate, 26% (w/v) PEG3350, and 10 mM dithiothreitol at 25°C. To prepare
2-I-PBG-bound ES2 intermediate crystals, inhibitor-free ES2 intermediate crystals were grown under the same
conditions, except they were grown anaerobically. After two weeks, a crystal was picked up with a cryoloop and
soaked in a solution comprising 0.18 M trisodium citrate, 28% (w/v) PEG3350, 10 mM dithiothreitol, and
5 mM 2-I-PBG at 25°C for 2.5 min. Both prepared crystals were flash-cooled and stored in liquid nitrogen until
diffraction data were collected.

Structure determination
Diffraction data of the inhibitor-free and 2-I-PBG-bound holo-HMBS and ES2 intermediate crystals were col-
lected at 100 K using synchrotron radiation (λ = 1.50 Å or 0.90 Å for 2-I-PBG-bound complexes or inhibitor-
free enzymes, respectively) and the Rayonix MX225-HE detector (for the inhibitor-free and 2-I-PBG-bound
holo-HMBS, and the inhibitor-free ES2 intermediate) or Dectris EIGER X 16M detector (for the
2-I-PBG-bound ES2 intermediate) at the BL44XU beamline of SPring-8 (Hyogo, Japan). Diffraction data were
processed and scaled using XDS [28]. All crystals belonged to the space group P212121 (Table 1). The HMBS
structures were determined using the molecular replacement method with MolRep [29,30] and the human
holo-HMBS structure (Protein Data Bank (PDB) accession code: 3ECR) [9] as a search model. The structure of
the protein moiety and cofactor was refined with PHENIX [31] and manually adjusted with Coot [32]. For
2-I-PBG-bound forms, the resultant Fo–Fc electron density map showed significant electron density for
2-I-PBG. Anomalous difference Fourier map revealed the position of iodine atom. Then, 2-I-PBG was added to
the model and refined. Finally, water molecules were added to the model and refined. The diffraction and
refinement statistics are summarized in Table 1. The coordinates and structure factors of the inhibitor-free and
2-I-PBG-bound holo-HMBS and ES2 intermediates were deposited in PDB with the accession codes 7CCX,
7CCY, 7CCZ, and 7CD0.

MD simulation of ES2 intermediate
To examine the thermally activated internal motions of HMBS that should be relevant to the mechanism of
substrate binding and oligopyrrole chain shifting, MD simulations were performed using the inhibitor-free ES2
intermediate crystal structure. The disordered region in the lid loop (residues 58–75) was modeled by
MODELLER [33] using the ordered region of the inhibitor-bound holo-HMBS lid loop. The disordered
N-terminal tail (residues 1–18) was truncated. According to the protonation state evaluation by H++ [34],
Glu223 was protonated and His160 was doubly protonated. The AMBER FF03 force field was used [35], and
the atomic charges and other parameters for Cys261, to which the tetrapyrrole chain (composed of DPM and
two PBGs) is covalently bonded, were generated by AM1-BCC [36] using antechamber [37] in combination
with the GAFF force field [38]. HMBS was immersed in a truncated octahedral unit cell containing 10843
water molecules, 29 potassium ions, and 21 chloride ions. The whole system was initially equilibrated in the
same way as in our previous study [39]. In the production run, multiple 0.7-μs-long simulations (16 independ-
ent simulations of total 11.2 μs) were conducted at isothermal (310 K) and isobaric (0.1 MPa) conditions. All
MD simulations were conducted using AMBER14 [40].
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Results
Enzyme kinetics
To evaluate the effect of the substrate analog 2-I-PBG in the HMBS reaction, the HMB formation rate was
determined as the uroporphyrin I formation rate, which was calculated from absorbance changes at 406 nm. As
shown in Figure 2, the Cornish–Bowden plot of the data showed convergent lines with an appropriate intersec-
tion, and exhibited that 2-I-PBG inhibited the HMBS reaction in a noncompetitive manner, with a Ki value of
5.4 ± 0.3 mM (n = 4). Reported competitive and mixed-type inhibitors, such as 2-bromo-PBG [17] and
6-methyl-PBG [5], respectively, form covalent bonds with the cofactor and oligopyrrole chain, while 2-I-PBG
does not form as described below. This might indicate a difference in the inhibition of PBG analogs. As the Ki

of 2-I-PBG is similar to that of some PBG analogs such as 6-methyl-PBG (Ki = 3 mM) [5] and 9-fluoro-PBG
(Ki = 6 mM) [19], it should bind stably to the active site. Therefore, 2-I-PBG seemed to be suitable for crystal
structure analysis of HMBS in complex with a substrate analog.

Crystal structure of 2-I-PBG-bound holo-HMBS
Although a crystal of 2-bromo-PBG-bound HMBS was unavailable for X-ray diffraction due to instability in an
earlier investigation [17], we succeeded in preparing 2-I-PBG-bound enzyme crystals suitable for crystallog-
raphy. A data set was collected to 2.40 Å resolution and the crystal of holo-HMBS in complex with 2-I-PBG
belonged to the space group P212121 with unit-cell parameters a = 73.9 Å, b = 81.1 Å, and c = 109.0 Å. There
were two protein molecules in the asymmetric unit, and one of them included a 2-I-PBG molecule with an
occupancy factor of 0.72. Data collection and refinement statistics are summarized in Table 1. The overall struc-
ture of the 2-I-PBG-bound holo-HMBS was found to be similar to that of the inhibitor-free holo-HMBS
(Figure 3). In the 2-I-PBG-bound holo-HMBS, three domains and a DPM cofactor are conserved and Cys261
is covalently bound to the cofactor via a thioether bond. Although the two residues immediately before Cys261
were disordered in the previously reported holo-HMBS structure (PDB accession code: 3ECR) [9], they were
ordered in the structures of 2-I-PBG-bound and inhibitor-free holo-HMBS determined in this study. As well as
in the inhibitor-free holo-HMBS, numerous interactions between the DPM cofactor and protein moiety were
observed in the 2-I-PBG-bound holo-HMBS (Table 2). For example, Ser96, Lys98, Asp99, Thr145, Ser147,
Arg149, Arg150, and Arg173 participate in DPM cofactor binding. Compared to the present structure of
inhibitor-free holo-HMBS, where a loop of residues 58–76 in domain 1 was disordered, the residues 58–69
were ordered in the 2-I-PBG-bound holo-HMBS structure (Figure 3C). Such flexibility of this loop in the prox-
imity of the active site appears to be involved in the binding of 2-I-PBG and the substrate, although no direct
interactions between the loop (residues 58–69) and 2-I-PBG were observed. Hereafter, this loop is called the lid
loop.

Figure 2. Enzyme kinetic study of HMBS with 2-I-PBG.

The reaction conditions are described in the Materials and Methods section. Data are shown in the Cornish–Bowden plot. The

concentration of PBG was varied: 20 mM (circle), 50 mM (diamond), 200 mM (square), and 500 mM (triangle). The inset shows

the structure of 2-I-PBG.
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As shown in Figure 3, the 2-I-PBG molecule is noncovalently bound to holo-HMBS at the proposed
substrate-binding site in a cleft between domains 1 and 2. An anomalous peak was observed at the iodine atom
of 2-I-PBG (Figure 3B). Binding of 2-I-PBG to holo-HMBS is stabilized by the following interactions (Table 2).
The side chains of Ser28 and Asn169 and amide N of Leu170 form hydrogen bonds, and the side chain of
Arg26 forms an ionic bond with the acetate group of 2-I-PBG. The side chain of Arg173 and amide N of
Gly168 interact with the propionate group of 2-I-PBG through ionic and hydrogen bonds, respectively. The
side chain of Arg167 may be associated with the propionate side chain of 2-I-PBG. Furthermore, the side
chains of Gln34 and Ser96 form hydrogen bonds with the aminomethyl group of 2-I-PBG. The carboxy group
of Asp99 also forms a hydrogen bond with the pyrrole N of 2-I-PBG. The pyrrole ring of 2-I-PBG shows

Figure 3. Crystal structure of human HMBS in complex with 2-I-PBG.

(A) Overall structure. Domains 1, 2, and 3 are displayed in blue, green, and red, respectively. The DPM cofactor and 2-I-PBG

are shown as yellow and orange sticks, respectively. N and C termini of the protein are marked as N and C, respectively.

Disordered region of the lid loop is shown in a broken line. (B) Active site. The omitted electron density map of 2-I-PBG is

represented in blue mesh and contoured at 1.0 σ. Anomalous diffraction Fourier map is shown in orange mesh and contoured

at 5.0 σ. The DPM cofactor and 2-I-PBG are shown in magenta and salmon-pink sticks, respectively. Iodine atom of 2-I-PBG is

colored in purple. The two rings of the DPM cofactor are indicated as c1 and c2 from the side bound to Cys261. Several

residues represented as sticks are forming ionic interactions and hydrogen bonds with 2-I-PBG. (C) Superimposition of

2-I-PBG-bound holo-HMBS (colored as in (A)) with the inhibitor-free holo-HMBS (colored in cyan). The rmsd of Cα atoms was

0.367 Å. Disordered region of the lid loop of 2-I-PBG-bound holo-HMBS is shown in a broken line.
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face-to-face π–π stacking interaction with the distal pyrrole ring (c2) of the cofactor, and the distance between
the two rings is 3.9 Å. Although the α-carbon of the pyrrole ring c2 of DPM is close to the aminomethyl
carbon of 2-I-PBG, the distance between two carbon atoms (3.2 Å) is too long to form a covalent bond. A

Table 2. Interactions between pyrroles and protein moiety in HMBS

Inhibitor-free
holo-HMBS

2-I-PBG-bound
holo-HMBS

Inhibitor-free ES2

intermediate
2-I-PBG-bound ES2

intermediate

Substrate-binding
site

— 2-I-PBG — 2-I-PBG
Acetate: Arg26 Acetate: Arg26
Acetate: Ser28 Acetate: Ser28
Acetate: Asn169
Acetate: Leu170
(>NH)

Acetate: Leu170
(>NH)

Propionate: Arg173 Propionate: Arg173
Propionate: Gly168
(>NH)
Propionate: Arg167
Aminomethyl: Gln34 Aminomethyl: Gln34
Aminomethyl: Ser96
Aminomethyl:
acetate of 2-I-PBG
Pyrrole N: Asp99 Pyrrole N: Asp99
Pyrrole ring: Arg26 Pyrrole ring: Arg26
Iodine: Phe77

Pyrrole-binding site 1 ring c2 ring c2 ring B ring B
Acetate: Lys98 Acetate: Lys98 Acetate: Lys98 Acetate: Lys98
Acetate: Arg150 Acetate: Arg150 Acetate: Arg150 Acetate: Arg150
Acetate: Ala189
(>NH)

Acetate: Ala189
(>NH)

Acetate: Ala189
(>NH)

Acetate: Ala189
(>NH)

Propionate: Ser96 Propionate: Ser96 Propionate: Ser96 Propionate: Ser96
Propionate: Arg195 Propionate: Arg195 Propionate: Arg195
Propionate: Gly218
(>NH)

Propionate: Gly218
(>NH)

Propionate: Gly218
(>NH)

Propionate: Gly218
(>NH)

Pyrrole N: Asp99 Pyrrole N: Asp99 Pyrrole N: Asp99 Pyrrole N: Asp99

Pyrrole-binding site 2 ring c1 ring c1 ring A ring A
Acetate: Lys98 Acetate: Lys98 Acetate: Lys98 Acetate: Lys98
Acetate: Ser147 Acetate: Ser147 Acetate: Ser147 Acetate: Ser147
Acetate: Arg149 Acetate: Arg149 Acetate: Arg149 Acetate: Arg149
Propionate: Arg150 Propionate: Arg150 Propionate: Arg150 Propionate: Arg150
Propionate: Arg173 Propionate: Arg173 Propionate: Arg173 Propionate: Arg173

Propionate: Thr145 Propionate: Thr145
Propionate: Ser146
(>NH)

Propionate: Ser146
(>NH)

Propionate: Ser146
(>NH)

Propionate: Ser146
(>NH)

Pyrrole N: Asp99 Pyrrole N: Asp99 Pyrrole N: Asp99 Pyrrole N: Asp99

Pyrrole-binding site 3 — — ring c2 ring c2
Acetate: Ser262 Acetate: Ser262

Acetate: pyrrole N of
ring c1

Pyrrole N: Lys98
(>C=O)

Pyrrole N: Lys98
(>C=O)

Pyrrole-binding site 4 — — ring c1 ring c1
Acetate: Thr102 Acetate: Thr102
Acetate: Thr102
(>NH)

Acetate: Thr102
(>NH)
Pyrrole N: acetate of
ring c2

A schematic diagram of the substrate- and pyrrole-binding sites is depicted in Figure 7. Symbols of the pyrrole rings are shown in Figure 1.
Interactions with the main chain are shown in parentheses.
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cation–π interaction [41] between the side chain of Arg26 and the pyrrole ring of 2-I-PBG (=N+H2 – ring:
3.6 Å) and a face-on type halogen–π interaction between the iodine atom of the inhibitor and the aromatic ring
of Phe77 (–I – ring: 3.7 Å) were also observed. Among the reported PBG-derivative HMBS inhibitors,
2-methyl-PBG shows unusually weak competitive inhibition (Ki = ca. 1 mM) [19]. The absence of the halogen–
π interaction for 2-methyl-PBG could cause the high Ki value.

Crystal structure and MD simulation of inhibitor-free ES2 intermediate
The inhibitor-free ES2 intermediate structure was determined at 1.79 Å resolution and it was confirmed that
two PBG molecules were covalently bound to the DPM cofactor in the active site (Figure 4). Compared to the
substrate-free holo-HMBS, the substrate-derived dipyrrole is located in the space originally occupied by the
DPM cofactor, and the DPM cofactor and a cofactor-binding loop including Cys261 moves backward
(Figure 4C, Table 2). The side chain and amide N of Thr102 interacts with the acetate group of ring c1

Figure 4. Crystal structure of inhibitor-free ES2 intermediate of HMBS.

Domains 1, 2, and 3 of the ES2 intermediate are indicated in blue, green, and red, respectively. The DPM cofactor and a

covalently bound dipyrrole derived from two PBG molecules are shown as yellow and magenta sticks, respectively. (A) Overall

structure. The N and C termini of the protein are marked as N and C, respectively. (B) Close-up view of the active site. Dotted

lines indicate ionic and hydrogen bonds. Water molecules were drawn as red spheres. Two pyrrole rings of the DPM cofactor

and two pyrrole rings from the PBG molecules in the tetrapyrrole chain are denoted as c1, c2, A, and B from the

Cys261-connecting side. (C) Superimposition of inhibitor-free ES2 intermediate with inhibitor-free holo-HMBS (cyan). The rmsd

of the Cα atoms was 0.206 Å. Direction of movement of the DPM cofactor and the cofactor-binding loop in the ES2

intermediate during oligopyrrole chain elongation is indicated by an orange arrow.
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(Figure 4B). Further, the side chain of Ser262 interacts with the acetate group of ring c2, and carbonyl O of
Lys98 associates with pyrrole N of ring c2. These results suggest that the linkage of one PBG molecule to the
oligopyrrole chain of the HMBS reaction intermediate causes a shift in the chain by one pyrrole unit at each
stage of the catalytic reaction.
MD simulation of the ES2 intermediate demonstrates that the pyrrole rings of the two PBGs in the tetrapyr-

role chain (particularly ring A) are strongly bound to HMBS and immobilized (Figure 5A) because of extensive
electrostatic interactions between the negative charges in the acetate/propionate groups of PBG and the positive
charges in the surrounding basic residues of HMBS (Supplementary Movie S1). In particular, five arginine resi-
dues in domain 2 (Arg149, Arg150, Arg167, Arg173, and Arg195) contribute largely to the strong positive elec-
trostatic surface potential of the PBG-binding region (Supplementary Figure S4). In contrast, the pyrrole rings
of DPM are mobile (Figure 5A) and partially stabilized by lysine residues in the lid loop (Lys70, Lys74, and
Lys79) and arginine residues in domain 3 (Arg251, Arg255, and Arg355) that form intermittent electrostatic
interactions with the acetate/propionate groups of DPM (Supplementary Movie S2). Intermittent hydrogen
bonding between Ser262 and the acetate/propionate groups of DPM was also observed. The principal compo-
nent analysis of the thermal fluctuation of the ES2 intermediate shows that the lid loop, the cofactor-binding
loop, and the insertion region (residues 296–324, not present in bacterial HMBS) fluctuate largely in a collective
manner (Figure 5B and Supplementary Movie S3). The cofactor-binding loop moves in the direction that pulls
the DPM from the binding site, even though the shift of the tetrapyrrole chain was not observed due to the
strongly bound PBGs. The lid loop exhibits a large-amplitude open-close motion, and a short-lived helix for-
mation is occasionally observed, reflecting its helix-forming propensity [16]. The possible roles of these charac-
teristic thermal motions will be discussed later.

2-I-PBG-bound ES2 intermediate structure
The crystal structure of the ES2 intermediate in complex with 2-I-PBG was also determined at 2.31 Å resolution
(Figure 6). Two protein molecules were observed in the asymmetric unit, and one of them had a 2-I-PBG mol-
ecule with an occupancy factor of 0.74. Data collection and refinement statistics are summarized in Table 1.

Figure 5. Thermal fluctuation of tetrapyrrole chain and HMBS.

(A) Root mean square fluctuation (RMSF) of each pyrrole ring in the tetrapyrrole chain. The RMSF value is the average of the

five heavy atoms in each pyrrole ring. The RMFS values for individual atoms including those in the propionate and acetate

groups are displayed in the inset. (B) The direction of the collective motion of HMBS obtained from the principal component

analysis of the thermal fluctuation is shown by the set of arrows (magenta), which represents the second largest principal

mode (eigenvector). Domains 1, 2, and 3 are indicated in blue, green, and red, respectively. The tetrapyrrole chain is shown as

yellow sticks.
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Except for the PBG analog, the overall 2-I-PBG-bound ES2 intermediate structure was similar to that of the
inhibitor-free ES2 intermediate (Figure 6C). In the 2-I-PBG-bound ES2 intermediate, three domains and a
DPM cofactor linked to dipyrrole derived from two PBG molecules were found, and Cys261 was covalently
bound to the cofactor via a thioether bond. Similar to the structure of the inhibitor-free ES2 intermediate, the
residues 58–76 of the lid loop in domain 1 are disordered in the 2-I-PBG-bound ES2 intermediate.
In the structure of the 2-I-PBG-bound ES2 intermediate, 2-I-PBG was observed close to the terminus of a

tetrapyrrole chain, which was formed by the DPM cofactor and two PBG molecules, at the proposed substrate-
binding site in a cleft between domains 1 and 2 (Figure 6B). This corresponds to the situation where the third
substrate molecule is condensed to the tetrapyrrole chain in HMBS, becoming the ES3 intermediate. A 2-I-PBG
molecule was bound to the ES2 intermediate by the following interactions (Table 2). The side chains of Arg26
and Ser28 form ionic and hydrogen bonds with the acetate group of 2-I-PBG, respectively. Amide N of Leu170
also forms a hydrogen bond with the acetate group. The side chain of Arg173 forms an ionic bond with the

Figure 6. Crystal structure of ES2 intermediate in complex with 2-I-PBG.

Domains 1, 2, and 3 of the 2-I-PBG-bound ES2 intermediate are indicated in blue, green, and red, respectively. The DPM

cofactor, a covalently bound dipyrrole derived from two PBG molecules, and 2-I-PBG are shown in yellow, magenta, and cyan

sticks, respectively. (A) Overall structure. The N and C termini of the protein are marked as N and C, respectively. (B) Close-up

view of the active site. The pyrrole rings of the tetrapyrrole chain are denoted as c1, c2, A, and B from the Cys261-connecting

side. Several peripheral residues represented as sticks form ionic interactions and hydrogen bonds with the tetrapyrrole chain

and 2-I-PBG (yellow dotted line). Focusing on 2-I-PBG, a π–π stacking interaction, cation–π interaction, and pyrrole α-C–

aminomethyl C distance are indicated by dotted lines colored in blue, purple, and orange, respectively. (C) Superimposition of

the 2-I-PBG-bound ES2 intermediate with the inhibitor-free ES2 intermediate (light blue). The rmsd of the Cα atoms was

0.452 Å. (D) Superimposition of the 2-I-PBG-bound ES2 intermediate with the 2-I-PBG-bound holo-HMBS (light orange). The

rmsd of the Cα atoms was 0.322 Å.
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propionate group of 2-I-PBG. Arg173 also forms an ionic bond with the propionate group of ring A of the tet-
rapyrrole chain. The side chain of Gln34 shows a hydrogen bond with the aminomethyl group of 2-I-PBG. The
carboxy group of Asp99 forms hydrogen bonds with the pyrrole N of 2-I-PBG and both pyrrole nitrogens of
rings A and B of the tetrapyrrole. However, Asp99 does not interact with either ring c1 or c2 of the cofactor.
The pyrrole ring of 2-I-PBG showed a face-to-face π–π stacking interaction with the terminal pyrrole ring B of
the tetrapyrrole chain, and the distance between these two rings was 4.0 Å (Figure 6B). A cation–π interaction
[41] between the side chain of Arg26 and the pyrrole ring of 2-I-PBG was also observed (=N+H2 – ring: 4.2 Å).
Therefore, in the 2-I-PBG-bound ES2 intermediate structure, numerous bonds and interactions contribute to
the binding of 2-I-PBG in the neighborhood of the terminal pyrrole B of the tetrapyrrole chain. However, the
average temperature factor of 2-I-PBG in the 2-I-PBG-bound ES2 intermediate was relatively higher than that
in the 2-I-PBG-bound holo-HMBS (Table 1), indicating that the binding of 2-I-PBG to the ES2 intermediate is
relatively unstable. Unlike 2-I-PBG-bound holo-HMBS structure, a face-on type halogen–π interaction between
iodine atom of the inhibitor and aromatic ring of Phe77 was not observed, which might cause the unstable
binding of 2-I-PBG to the ES2 intermediate. Furthermore, we also attempted crystallization and structure ana-
lysis of ES3 intermediate of HMBS, and successfully obtained its crystals. However, structural analysis of ES3
intermediate has not yet been successful due to its instability.

Discussion
Substrate-binding site and HMBS mutants in patients with AIP
Both structures of HMBS in complex with the substrate analog 2-I-PBG revealed in this study suggest the pres-
ence of a single substrate-binding site close to the terminal pyrrole of the DPM cofactor in holo-HMBS
(Figure 6D). In both 2-I-PBG-bound HMBS structures, the negatively charged carboxy groups of 2-I-PBG
interact with positively charged (Arg26, Arg173, and Arg167) and polar amino acid residues (Ser28, Gln34,
Ser96, and Asn169) in the substrate-binding site (Table 2, Figure 7). In addition, the side chain of Asp99 and
amide nitrogens of Leu170 and Gly168 are involved in 2-I-PBG binding.

Figure 7. Schematic diagram of substrate- and pyrrole-binding sites in HMBS.

Interactions between pyrroles and peripheral residues are shown by broken lines. Acetate and propionate side chains are

indicated as –A and –P, respectively. The pyrrole-binding site 5 cannot be determined from the present crystal structures. For

the 2-I-PBG-bound ES2 intermediate and the assumed ES4 intermediate, the symbols for each ring are shown in angle

brackets and square brackets, respectively.
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Arg26 is a well conserved residue across species with available sequence data [10] and contributes to salt
bridge and cation–π interaction with acetate side chain and pyrrole ring of 2-I-PBG, respectively (Figures 3B,
6B). In the patients with AIP, Arg26Cys (0.3% residual activity) [42] and Arg26His (0.2%) [43] mutants have
been reported [44]. Arg26Ala mutation also has showed inactivation [9]. Furthermore, Arg26 in human HMBS
corresponds to Arg11 in E. coli enzyme, and Arg11Leu (1.4% residual activity) [45] and Arg11His (3.9%) [46]
mutants of E. coli HMBS show little activity. In the reaction intermediate separation assay using Mono Q
column chromatography, no enzyme–substrate complex has been detected for the E. coli Arg11His mutant
[47]. Therefore, Arg26 is particularly important for substrate binding, and its mutations lead to the loss of the
ionic interaction with the acetate group of the substrate PBG, resulting in enzymatic activity reduction.
Ser28 is also highly conserved across species [10] and contributes to the hydrogen bond with the acetate

group of 2-I-PBG in both 2-I-PBG-bound HMBS structures (Figures 3B, 6B). Ser28Asn mutant has been found
in the patients with AIP [48] and has a low activity (0.8% residual activity [6]). Thus, it is suggested that Ser28
participates in substrate binding, and that loss of substrate binding to the substrate-binding site caused by its
mutation results in reduced enzyme activity. The side chain of Gln34 forms a hydrogen bond with the amino-
methyl group of 2-I-PBG in both inhibitor-bound structures (Figures 3B, 6B). Gln34 is a highly conserved
residue across species [10], and it is known that Gln34Arg (0.7% residual activity) and Gln34Lys (0.2%)
mutants reported in the patients with AIP are inactive [6]. It is suggested that Gln34 is involved in substrate
binding and promotes the deamination of PBG in the HMBS reaction. In the 2-I-PBG-bound holo-HMBS
structure, the side chain of Ser96 participates in hydrogen bonds with the aminomethyl group of 2-I-PBG as
well as the propionate group of ring c2 of the DPM cofactor (Figure 3B). The Ser96Phe mutant has been
reported in the patients with AIP [49]. Thus, Ser96 may contribute to not only cofactor binding, but also sub-
strate binding at the appropriate position.
In both 2-I-PBG-bound structures, the side chain of Arg173 forms a salt bridge with the propionate groups

of 2-I-PBG and the second pyrrole from the terminal of the oligopyrrole chain (ring c1 of the 2-I-PBG-bound
holo-HMBS or ring A of the 2-I-PBG-bound ES2 intermediate) (Figure 6B). Arg173 is also well conserved
across species [10], and the Arg173Trp mutant in the patients with AIP has been reported to be inactive
because of the absence of the cofactor [50,51]. In addition, Arg173Gln mutant (0.6% [52] or 0.15% residual
activity [44]) found in the patients with AIP is inactive due to the absence of the cofactor [53]. Arg173 in
human HMBS corresponds to Arg155 in the E. coli enzyme, and Arg155Leu (0.3% residual activity) [45] and
Arg155His (1%) [47] mutants of E. coli HMBS are known to be inactive. In the reaction intermediate separ-
ation assay using Mono Q column chromatography with high PBG concentration (200 mM), Arg155Leu and
Arg155His mutants accumulated ES1 and ES3 intermediates, respectively [47]. Thus, Arg173 should be import-
ant for not only stabilization of cofactor binding, but also PBG binding to the substrate-binding site.
Based on the structures of 2-I-PBG-bound HMBS, a loop consisting of residues 164–170 in domain 2 might

contribute to not only inhibitor binding, but also substrate binding. Upon binding of 2-I-PBG to holo-HMBS,
the side chain of Arg167 flipped largely and interacted weakly with the propionate group of the inhibitor
(Figure 3B). In the case of the 2-I-PBG-bound ES2 intermediate structure, however, the side chain of Arg167
was not clear due to disorder. Arg167 is highly conserved across species [10], and Arg167Trp [54] (2.3%
residual activity [6]) and Arg167Gln (1.0% [6] or 0.7% [52]) mutants reported in the patients with AIP have
little activity. In the previously reported crystal structure of the Arg167Gln mutant, the electron density of the
side chain of the glutamine residue at 167 position had poor resolution [10]. Such substitutions of Arg167
might hamper substrate binding at the appropriate position. The side chain of Asn169 participated in hydrogen
bonding with the acetate group of the inhibitor in the 2-I-PBG-bound holo-HMBS (Figure 3B), whereas
Asn169 and 2-I-PBG appeared to be distant in the 2-I-PBG-bound ES2 intermediate (Figure 6B). Until date, no
mutation of this residue has been identified in the patients with AIP. Therefore, the significance of Asn169 for
substrate binding in the active site might be limited, although it is well conserved across species [10]. In the
2-I-PBG-bound holo-HMBS structure, the amide N of Gly168 interacted with the propionate group of 2-I-PBG
through hydrogen bonding. In addition, the hydrogen bond between amide N of Leu170 and the acetate group
of 2-I-PBG contributed to the binding of the substrate analog. Therefore, it is suggested that the loop consisting
of residues 164–170 would be useful to keep a substrate molecule at a proper position in the substrate-binding
site for subsequent condensation.
Moreover, Asp99 is a catalytically important residue in HMBS and is well conserved across species with

available sequence data [10]. The carboxy group of Asp99 forms hydrogen bonds with the pyrrole nitrogen of
2-I-PBG and terminal two pyrrole nitrogens of the oligopyrrole chain (rings c1 and c2 of the 2-I-PBG-bound
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holo-HMBS, or rings A and B of the 2-I-PBG-bound ES2 intermediate) (Figures 3B, 6B). In the patients with
AIP, it has been shown that Asp99Gly [55] (3.2% residual activity [6]), Asp99His [56] (3.3% [6]), and
Asp99Asn mutants [57] are inactive. Asp99 in human HMBS corresponds to Asp84 in the E. coli enzyme. It
has also been reported that the Asp84Glu mutant of E. coli HMBS retains less than 1% activity, while forming
highly stable enzyme-intermediate complexes [58]. Further, it has been known that Asp84Ala and Asp84Asn
mutants of E. coli HMBS cannot catalyze HMB formation, although they appear to assemble the DPM cofactor
[58]. Therefore, Asp99 in human HMBS promotes cofactor assembly, 2-I-PBG (also substrate) binding, and
substrate condensation. As a substrate-binding site, a pocket composed of the residues involved in the inhibitor
binding, such as Arg26, Ser28, Gln34, Ser96, Arg173, Arg167, Asn169, and Asp99, should accept the substrate.
In the present crystal structures of 2-I-PBG-bound HMBS, the aminomethyl group of 2-I-PBG was found in

the neighborhood of the terminal pyrrole ring (c2 or B) of the oligopyrrole chain, but no covalent linkage was
observed between the inhibitor and the terminal pyrrole ring. The distances between aminomethyl carbon
atom of 2-I-PBG and α-carbon atom of the terminal pyrrole of the chain were 3.2 Å in the 2-I-PBG-bound
holo-HMBS (Figure 3B) and 4.0 Å in the 2-I-PBG-bound ES2 intermediate (Figure 6B). These results are con-
sistent with the fact that a covalently 2-I-PBG-bound holo-HMBS was not detected by electrospray ionization
time-of-flight mass spectrometry analysis. In contrast to 2-bromo-PBG [20] and 6-methyl-PBG [5], for which
the covalently inhibitor-bound HMBS has been reported, a slightly different orientation of the PBG analog in
the substrate-binding site may make it difficult to form a covalent bond between the aminomethyl carbon of
2-I-PBG and α-carbon of ring c2, or make the bond unstable.

Catalytic mechanisms of substrate binding and oligopyrrole elongation
Recently, Bung et al. have suggested that stepwise synthesis (oligopyrrole elongation) occurs in HMBS by MD
simulations. They showed that the DPM cofactor of the ES1 and ES2 intermediates (P3M and P4M in ref. [6])
is retained at the original position found in holo-HMBS and additional PBG molecule(s) are combined to the
end of the oligopyrrole chain. In the present crystal structure of 2-I-PBG-bound holo-HMBS, no shift was
observed in the DPM cofactor (Figure 3C). This crystal structure appears similar to the MD-simulated ES1
intermediate structure (P3M) except for the absence of the covalent bond between the cofactor and the inhibi-
tor. However, the present crystal structure of the ES2 intermediate showed a shift in the DPM cofactor accom-
panied by the cofactor-binding loop (Figure 4C), in contrast to the MD-simulated ES2 intermediate structure
(P4M). A recent report of the crystal structure of the ES2 intermediate by Pluta et al. also exhibited such migra-
tion of the DPM cofactor compared to that in the holo form [16]. In the present crystal structures, the rings c1
and c2 of the DPM cofactor in the ES2 intermediate structure, compared to those in the holo-HMBS structure,
have little interaction with peripheral residues and the main chain (Table 2).
Our MD simulation of the ES2 intermediate further showed that basic residues, including those in the lid

loop (Lys70 and Lys74), interact intermittently with the acetate/propionate groups of DPM, partially stabilizing
the bound DPM. Such a loose binding at the pyrrole-binding sites 3, 4, and 5 may allow oligopyrrole chain
shift (Figure 7). Furthermore, the binding of a PBG molecule at the substrate-binding site would cause a
large-scale concerted rearrangement of the electrostatic interaction network, as was observed upon ATP
binding to a motor protein [59,60], which loosens the electrostatic interactions between the basic residues and
PBGs at the pyrrole-binding sites 1 and 2, allowing the shift of the oligopyrrole chain by one pyrrole unit. The
open-close motion of the lid loop, which contains lysine residues that interact with the acetate/propionate of
PBGs, may have a role in recruiting a PBG molecule to the substrate-binding site and shifting the oligopyrrole
chain. As the fluctuation of the insertion region correlates with those of the lid and cofactor-binding loops, the
inserting region may enhance the thermal motions of these functional loops.
Based on the present structural data, the following catalytic mechanism is suggested for the initial stage of

the HMBS reaction (Figure 8). First, the first PBG molecule binds to the substrate-binding site composed of
Arg26, Ser28, Gln34, Ser96, Asp99, Arg167, Asn169, and Arg173 next to the distal pyrrole (c2) of the DPM
cofactor (step 1). With the assistance of Gln34 and Asp99, ammonia is eliminated from PBG (step 2). A methy-
lene bridge is formed between the carbon atom of the methylidene group of the deaminated PBG and the
α-carbon atom of the distal pyrrole (c2) of DPM (step 3). Along with deprotonation of ring c2, a tripyrrole
chain formed of the DPM cofactor and the first PBG molecule moves backward by one pyrrole unit with the
cofactor-binding loop (step 4). Then, the second PBG molecule enters the same substrate-binding site, and the
oligopyrrole chain elongates and shifts backward to form the ES2 intermediate. Next, the third PBG molecule
binds to the same substrate-binding site of the ES2 intermediate, a methylene bridge is formed between the
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Figure 8. Catalytic mechanism of initial stage of HMBS reaction predicted from the crystal structures complexed with

2-I-PBG.

The acetate and propionate side chains are denoted by –A and –P, respectively. In step 1, PBG binds to a substrate-binding

site composed of Arg26, Ser28, Gln34, Ser96, Asp99, Arg167, Asn169, and Arg173. In step 2, Gln34 facilitates deamination of

an incoming PBG to form a methylene pyrrolinene intermediate. In step 3, a covalent bond is formed between ring c2 and the

intermediate. In step 4, deprotonation of ring c2 and movement of the oligopyrrole chain with the cofactor-binding loop

proceeds.
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pyrrole ring of PBG and the terminal pyrrole ring B of the tetrapyrrole chain, and the formed pentapyrrole
chain moves backward. Further covalent binding of the fourth PBG molecule to the ES3 intermediate forms an
ES4 intermediate possessing a hexapyrrole chain. Now, no more space would be left for the cofactor-binding
loop to move backward because the loop will contact the neighboring α-helix of domain 3. Subsequent cleavage
of the hexapyrrole chain in the ES4 intermediate will produce an HMB leaving holo-HMBS.

HMB release mechanism
To yield HMB, the hexapyrrole chain in the ES4 intermediate of HMBS must be hydrolyzed at a specific pos-
ition between pyrroles c2 and A. The 2-I-PBG-bound ES2 intermediate crystal structure provides some clues
about the mechanism of the hydrolysis reaction in the ES4 intermediate. According to the model suggested by
Pluta et al., the ES3 intermediate has some room behind the cofactor-binding loop including Cys261, so the
loop can slide toward domain 3 side by one pyrrole unit [16]. Although they have proposed the involvement of
Asp99 in the final dissociation of HMB from the hexapyrrole chain, it is unlikely because Asp99 is far from the
rings c2 and A, where the hydrolysis proceeds. On the contrary, in the present structures of the 2-I-PBG-bound
and inhibitor-free ES2 intermediates, >NH of pyrrole c1 in the pyrrole-binding site 4 showed some interaction
with the acetate group of pyrrole c2 in the pyrrole-binding site 3 (Figure 7). Given that the substrate-binding
site and the pyrrole-binding sites 1–5 accept each pyrrole of the hexapyrrole chain in the ES4 intermediate,
>NH of ring c2 and the acetate group of ring A may interact with each other (Figure 7). The acetate group of
ring A, but not the carboxy group of Asp99, may catalyze hexapyrrole chain hydrolysis to form HMB, as
shown in Figure 9. In the ES4 intermediate, the hydrolysis reaction may proceed self-catalytically once the
pyrrole N of ring c2 and the acetate group of ring A approach each other due to a conformational change.
Furthermore, a cluster of water molecules was observed beside the pyrrole ring c1 and the acetate group of ring
c2 in the inhibitor-free ES2 intermediate structure (Figure 4B), and a water molecule of the cluster may donate

Figure 9. Hypothetical mechanism of dissociation of HMB from the ES4 intermediate of HMBS.

Pyrroles A and c2 occupy the pyrrole-binding sites 3 and 4, respectively. Parts other than rings A and c2 are omitted for

simplicity. First, the acetate group of ring A acts as a general base catalyst to protonate the pyrrole ring c2. Then, the acetate

group of ring A acts as a general acid catalyst to cleave the methylene bridge. Finally, hydroxylation of the methylidene group

of ring A yields HMB.
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a proton to initiate the hydrolysis reaction in the ES4 intermediate. However, hydrolysis of the tetrapyrrole
chain could be suppressed because the pyrrole N of ring c2 is stabilized by hydrogen bond with the carbonyl O
of Lys98 in the ES2 intermediate.

Summary
In this work, an enzyme kinetic study of HMBS showed that 2-I-PBG, a derivative of substrate PBG, was a
noncompetitive inhibitor (Ki = 5.4 ± 0.3 mM). We determined the crystal structures of holo-HMBS and the ES2
intermediate in complex with 2-I-PBG, and found that 2-I-PBG was located in the neighborhood of the pyrrole
ring c2 of the DPM cofactor and the terminal pyrrole ring B of the tetrapyrrole chain, respectively. To the best
of our knowledge, this is the first report of the crystal structure of HMBS complexed with a substrate analog.
Since 2-I-PBG is present at the same site in both structures, it is considered that each of the four substrate
molecules binds to a single substrate-binding site in HMBS and is condensed consecutively on the DPM cofac-
tor in four successive reactions. Furthermore, MD simulation of the ES2 intermediate suggested that the
thermal fluctuation of the lid and cofactor-binding loops causes substrate binding and migration of the
cofactor-containing oligopyrrole chain required for the continuous condensation reaction. The resulting hexa-
pyrrole chain is hydrolyzed self-catalytically to yield HMB.
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Figure S1.  Porphyrin biosynthesis pathway.  

Solid and dashed arrows indicate enzymatic and non-enzymatic reactions, respectively. Each double 

arrow shows several steps of enzymatic reactions. HMBS is the third enzyme in the heme 

biosynthesis pathway in animals and forms one molecule of HMB from four molecules of PBG.  
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Figure S2. Electrospray ionization time-of-flight mass spectra of purified HMBS.  

The values in parentheses denote the charge states. Insets show spectra after deconvolution.     

(A) Substrate-free holo-HMBS fraction. The deconvoluted spectrum indicates the molecular mass is 

39620, which corresponds to the molecular weight of DPM cofactor-bound human HMBS (calcd 

39617). (B) A reaction intermediate fraction of HMBS. After deconvolution, the molecular mass is 

40039, which corresponds to the molecular weight of the ES2 intermediate of human HMBS (calcd 

40036).  
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Figure S3. Typical crystals of human HMBS.  

(A) Inhibitor-free holo form. Size: ca. 0.2 x 0.2 x 0.02 mm. (B) Inhibitor-free ES2 intermediate. 

Size: ca. 0.1 x 0.1 x 0.01 mm. 
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Figure S4. Electrostatic potential in the PBG-binding region of ES2 intermediate.  

Electrostatic potential due to the residues in domain 2 is shown on the surface of domain 2. The 

electrostatic potential was calculated by APBS [S1]. The tetrapyrrole chain (DPM and two PBGs) 

covalently bound to Cys261 is shown by yellow sticks. For visibility of the PBG-binding region, 

domains 1 (cyan) and 3 (magenta) on the near side are made transparent. 

 

 

Reference 

[S1]  Baker, N. A., Sept, D., Joseph, S., Holst, M. J. and McCammon, J. A. (2001) Electrostatics 

of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U. S. A., 

98, 10037−10041 https://doi.org/10.1073/pnas.181342398  
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Movie S1.  Molecular dynamics of ES2 intermediate and extensive electrostatic interactions 

involving PBGs.  

MD trajectory of the ES2 intermediate is shown at 0.1 μs interval (total 11.2 μs) where sixteen 

0.7-μs-long MD trajectories are combined into a single movie. The tetrapyrrole chain (DPM and 

two PBGs) covalently bonded to Cys261 is shown by yellow sticks. Note that while the pyrrole 

rings of DPM are mobile, those of PBGs (particularly ring A) are almost immobilized due to 

extensive electrostatic interactions between the acetate/propionate groups of PBGs and surrounding 

basic residues. The side chains of those residues (Arg26, Lys98, Arg149, Arg150, Arg167, Arg173, 

and Arg195) are shown by blue sticks.  
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Movie S2. Molecular dynamics of ES2 intermediate and intermittent electrostatic interactions 

involving DPM.  

This movie is the same as Movie S1 except that basic residues that form intermittent electrostatic 

interactions with the acetate/propionate groups of DPM are highlighted. The side chains of those 

residues (Lys70, Lys74, Lys79, Arg251, Arg255, and Arg355 ) are shown by blue sticks. 
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Movie S3. Principal mode of the ES2 intermediate.  

Principal component analysis was conducted for the thermal fluctuation of the ES2 intermediate, 

and the second largest principal mode (eigenvector) is shown. For visibility, the amplitude is 

magnified by a factor of 2. The movement of the cofactor-binding loop is most prominently seen in 

this mode. Cys261 and covalently bound tetrapyrrole chain are colored in yellow, and domains 1, 2, 

and 3 are colored in blue, green, and red, respectively. Note that the lid loop in domain 1, the 

cofactor-binding loop (and the C-terminal helix), and the insertion region in domain 3 fluctuate 

largely in a collective manner.  
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