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Genetic variants associated with iron homeostasis have been identified, but their as-
sociation with iron-related indices and variables among different ethnic populations re-
mains controversial. We aimed to explore the genotype frequency and allelic distribu-
tion of three iron-metabolism related variants in homeostatic iron regulator gene (HFE;
rs1800562 G/A), transmembrane protease, Serine-6 gene (TMPRSS6; rs855791 A/G), and
BTB domain-containing protein-9 gene (BTBD9; rs9357271 C/T) among a sample of the
Middle Eastern blood donors and to detect the association of these variants on blood in-
dices, and serum hepcidin/ferritin levels. Real-Time TaqMan genotyping assay for the speci-
fied variants was applied for 197 unrelated blood donors. Complete blood picture and serum
hepcidin/ferritin levels were assessed. All participants were carriers of rs1800562*G/G geno-
type for HFE. The frequency of A/A and A/G genotypes of TMPRSS6 rs855791 variant was
55% and 45%, and for C/C, C/T, and T/T of BTBD9 rs9357271, were 15%, 43%, and 42%,
respectively. Minor allele frequencies of rs855791*G and rs9357271*C were 0.23 and 0.37.
The GGC genotype combination (for HFE/TMPRSS6/BTBD9, respectively) was more fre-
quent in male participants. Higher serum hepcidin and hepcidin/ferritin ratio were observed
in TMPRSS6 (A/G) carriers. While subjects with BTBD9 C/T and TT genotypes had lower
serum ferritin values and higher levels of hepcidin and hepcidin/ferritin ratio compared with
C/C genotype. No significant associations were found with any other blood parameters.
In conclusion, TMPRSS6 rs855791 (A/G) and BTBD9 rs9357271 (C/T) variants were preva-
lent in the present blood donor population and may influence the serum hepcidin and/or
ferritin levels.

Introduction
Numerous biologic processes rely upon adequate iron levels [1]. Over the past decade, many
traits/disease-associated single-nucleotide polymorphisms (SNPs) have been reported by genome-wide
association studies, which have revolutionized our understanding of different genotype–phenotype asso-
ciations [2].
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Data from these studies have identified multiple SNPs associated with changes in serum iron-related parameters
and blood cell phenotypes in the general population [3–5]. This influential effect could be explained in part by the
intermediate effect on hepcidin and/or ferritin concentrations, although conflicting results in different populations
remain [6,7].

Among these SNPs, the HFE variants in the human homeostatic iron regulator gene (HFE; rs1800562) have
been suggested to exert multiple effects on the iron parameters and serum transferrin levels, in part independent
of hepcidin [8]. The protein encoded by this gene is an HLA class I-like membrane protein that associates with
β2-microglobulin and transferrin receptors on the cell surface [9]. HFE may reduce the affinity of transferrin re-
ceptor 1 for transferrin, [10] but its major role is in regulating hepcidin expression, likely via the bone morphogenetic
protein (BMP)–SMAD signaling pathway [11].

Another SNP implicated in iron regulation is the transmembrane protease, serine 6 gene (TMPRSS6; rs855791),
mapped on chromosome 22q12-13, which encodes matriptase-2 (MT-2) [12]. MT-2 is mainly expressed in the liver,
where it acts to down-regulate hepcidin expression [13]. It was found to be significantly associated with serum iron,
hemoglobin (Hb), the mean corpuscular volume (MCV), and the mean cell hemoglobin (MCH) in genome-wide
association studies (GWAS) in some populations [4,14,15].

Accumulating evidence revealed that some variants related to genes not directly implicated in iron home-
ostasis might also show an association with iron status parameters. For example, rs9357271 SNP in the BTB
domain-containing protein-9 gene (BTBD9) was associated with decreased serum ferritin in patients and their rela-
tives; despite the emergence of conflicting results [5,6]. The protein coded by this gene is ubiquitously expressed both
in the central nervous system and in the periphery, and both during development and adulthood. [16,17] Although
the BTBD9 variants may directly influence iron metabolism and may be associated with proteins that participate in
iron regulation signaling pathways (Figure 1A), yet the mechanism is not known [5].

Based on the earlier works [18,19], serum hepcidin concentration and serum ferritin showed a strong association
in both sexes that withstood adjustment for age, BMI, time of blood sampling, and other measured iron parameters
like iron and TIBC, as well as biochemical variables such as ALT, eGFR, and CRP [18]. Great interindividual varia-
tion in serum hepcidin concentration was observed [20]. This implies that population-based normality values may
have limitations when used for the interpretation of hepcidin concentrations. Such it appears that hepcidin values
should be interpreted in the context of biochemical tests used to evaluate iron metabolism [21]. Normalization of
hepcidin to ferritin levels in the form of hepcidin/ferritin ratio has been evaluated in several genetic studies [22,23].
For example, Dijk et al. found that low serum hepcidin/ferritin ratio was associated with HFE C282Y-homozygosity
compared with the wild genotype carriers and those with ferritin levels that remain within reference values. These
investigators concluded that ‘this ratio might be a useful index for assessing inadequate responses to iron loading and
might be of help in predicting which homozygotes may be at risk of developing clinically significant iron loading’
[22]. Additionally, Heeney et al. reported the clinical utility of this ratio in predicting TMPRSS6 mutation status in
patients with chronic iron deficiency [23]. In the case of normal liver function, the hepcidin/ferritin ratio might be
a useful indicator of erythropoiesis and iron kinetics, as reported by Lotfi and colleagues [18]. They have realized
the importance of this ratio in providing a practical algorithm to predict the spontaneous recovery from iron loss
following blood donation [18].

Taken collectively, based on the literature mentioned above and the limited studies that relate the specified SNPs
with serum iron-related parameters in the authors’ region, the present study has been conducted to determine the
prevalence of rs1800562 in HFE (p. Cys282Tyr), rs855791 in TMPRSS6 (p. Ala736Val) and the intronic variant
rs9357271 in BTBD9 among a sample of Middle Eastern population, and to evaluate the association of these variants
with the available iron-related parameters, including the serum hepcidin, ferritin, and hepcidin/ferritin ratio.

The criteria and the selection process of the specified variants are detailed in the ‘Materials and Methods’ section of
the present study. The identification and characterization of such associations may lead to better risk stratification for
iron-related disorders in this population according to their genetic profile and early implementation of the preventive
measurements and individualized iron-based therapeutic strategies for selected one.

Subjects and methods
Study participants
The present cross-sectional study enrolled 197 consecutive unrelated blood donors attending the blood bank at the
Sohag University Hospital, Sohag, Egypt. The participants selection criteria were age >18 years, non-pregnant, have
no history or laboratory findings of chronic disease, inflammatory disorders (leukocyte count more than 10 × 103/μl),

2 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2021) 41 BSR20202584
https://doi.org/10.1042/BSR20202584

Figure 1. In silico data analysis

(A) Gene–gene functional interaction network generated by GeneMANIA. The network nodes have been colored by function (i.e.

gene ontology annotation) (data source: https://genemania.org/search/homo-sapiens/HFE/TMPRSS6/BTBD9). (B) Protein–protein

interaction using STRING version 11. Each network node represents the protein produced by a single locus. Edges represent

protein–protein associations (i.e., contribute to a shared function; this does not necessarily mean they are physically binding to

each other). The line colors of the edges indicate the type of interaction evidence that is explained in the figure key. The Network

showed a relationship with iron-metabolism related proteins (data source: https://string-db.org). (C–E) Subcellular localization of

HFE, TMPRSS6, and BTBD9 proteins. Darker color, according to the provided color key, is indicating more abundance (data source:

https://compartments.jensenlab.org). Abbreviations: ANLN, anillin actin-binding protein; ATF2, activating transcription factor 2;

B2M, beta-2-microglobulin; BTBD9, BTB domain containing 9; CBR3, carbonyl reductase 3; CDH18, cadherin 18; CFI, complement

factor I; FBXO11, F-box protein 11; GALNS, galactosamine (N-acetyl)-6-sulfatase; GALNT2, polypeptide N-acetylgalactosaminyl-

transferase 2; HAMP, Hepcidin; HFE, homeostatic iron regulator; ID3, inhibitor of DNA binding 3; IGFBP4, insulin-like growth factor

binding protein 4; PTPRN, protein tyrosine phosphatase, receptor type N; SMARCB1, SWI/SNF related, matrix associated, act-

in-dependent regulator of chromatin, subfamily b, member 1; SKA1, spindle and kinetochore associated complex subunit 1; TFR2,

transferrin receptor 2; TFRC, transferrin receptor; TMPRSS6, transmembrane protease, serine 6; TPP1, tripeptidyl peptidase 1;

USP25, ubiquitin specific peptidase 25; major histocompatibility complex, class I-related, HLA-E, major histocompatibility com-

plex, class I, E; HLH protein.

history of medication, or any condition could affect or interfere with the measured blood parameters. For each par-
ticipant, the data related to demographic characteristics, the frequency of blood donation, and the history of iron
supplementation have been collected. Donors with missing demographic or genotypic information were excluded.
The study has been conducted following the guidelines in the Declaration of Helsinki 2008 and approved by the lo-
cal Medical and Bioethics Committees of Northern Border University and Sohag University, College of Medicine.
Informed consent has been obtained from each participant before taking part.

Criteria for selecting the study variants and in silico data analysis
Literature review and in silico approach were applied for retrieving and selection of common (i.e. minor allele fre-
quency > 0.05) SNPs located in genes coding for proteins related to iron-metabolism. Genomic sequence and vari-
ants were analyzed in ensemble.org, and the specified variants were selected for each gene (Table 1). Subcellular
localization was identified in the Compartments database (compartments.jensenlab.org). Gene–gene interaction was
analyzed using Gene Mania version 3.6.0 (https://genemania.org/search/homo-sapiens/HFE/TMPRSS6/BTBD9).
Protein–protein association networks and gene ontology were analyzed using String version 11.0 (string-db.org).
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Table 1 Characteristics of the selected gene variants

Locus Position Gene SNP ID Alleles MAF Type Citations

6p22.2 6:26092913 HFE rs1800562 G/A 0.06 (A) missense 222

22q12.3 22:37066896 TMPRSS6 rs855791 G/A 0.50 (G) missense 108

6p21.2 6:38398097 BTBD9 rs9357271 T/C 0.50 (T) intronic 22

Abbreviations: BTBD9, BTB domain-containing protein-9 gene; HFE, homeostatic iron regulator gene; MAF, minor allele frequency; SNP,
single-nucleotide polymorphism; TMPRSS6, transmembrane protease, serine 6 gene. Data are currently mapped to Genome Assembly GRCh38.p13
(Data source: www.ensembl.org)

Sample collection and the laboratory analysis
Seven milliliters of blood samples were withdrawn from all participants by early day time to minimize the ef-
fects of diurnal variation in hepcidin in vacutainer serum separator tubes and ethylenediaminetetraacetic acid
(EDTA)-vacutainers. The former tubes were centrifuged at 2500 rpm for 15 min, and the separated sera were sub-
jected to analysis of the routine infectious disease screening according to the local protocols. Ferritin and hepcidin
were measured by enzyme-linked Immunosorbent assay Human Ferritin Kit (BioVision, Inc) and Human Hepcidin
Quantikine Kit (R& D system) following the manufacturer’s instructions, respectively. The EDTA tubes were used for
complete blood count (cell Dyne-3700 fully automated cell counter; Abbott Diagnostics, Wiesbaden, Germany) with
blood film examination and for subsequent DNA extraction.

Iron metabolism-related genes genotyping
Genomic DNA was purified from whole blood using the QIAamp DNA Blood Mini kit (Qiagen, Hilden, Germany)
following the manufacturer’s protocol. The concentration and purity of the extracted genomic DNA were assessed by
NanoDrop ND-1000 (NanoDrop Technologies, Inc. Wilmington, DE, U.S.A.). Genotyping for the selected three SNPs
in iron metabolism-related genes (HFE; rs1800562; TMPRSS6; rs855791 and BTBD9; rs9357271) were assayed us-
ing TaqMan Real-Time polymerase chain reaction (PCR) allelic discrimination assay as described in details in our
previous work [24]. PCR reactions were run in a 25-μl final volume containing 40 ng genomic DNA, TaqMan geno-
typing Master Mix, and TaqMan SNP Genotyping Assay Mix following the standard protocols. Appropriate controls
were used in each reaction plate. The authors who ran the PCR reactions were blinded to the identity of the samples.
PCR amplification was done using StepOne™ Real-Time PCR System, and allelic discrimination was called by the
SDS software (version 1.3.1, Thermo Fisher Scientific Inc., Waltham, MA, U.S.A.). All quality control measures were
applied according to the standard protocols, and replicates of 10% of samples were run with a 100% concordance rate.

Statistical analysis
Categorical variables were presented as frequency counts and compared using the chi-square test., Meanwhile, the
continuous data were expressed as mean +− standard deviation and compared using Student’s t-test or Mann–Whitney
U tests according to data distribution and variance homogeneity. Genotype frequencies for each selected variant were
tested for Hardy–Weinberg equilibrium (HWE). The odds ratio (OR) and the 95% confidence interval (CI) were cal-
culated by logistic regression analysis for each variant [25]. Overall and sex-stratified analyses were run. Univariate
analysis was performed to test associations. A bivariate correlation matrix using Spearman’s rank correlation analysis
was applied to correlate the laboratory results’ different parameters. A multivariate test using the principal component
analysis for data exploration was run to test the possibility of participant clustering according to sex and/or genotyp-
ing. Statistical significance was set at P-value < 0.05. Statistical Package for Social Science software version 23.0 was
used for the statistical analysis.

Results
Baseline characteristics of the study population
The study enrolled 197 blood donors; 179 men (90.0%) aged 29.1 +− 6.3 years and 18 women (9.1%) aged 30.2 +− 11.6
years old. More than half of the participants (56%) gave blood once for transfusion, 25% donated twice throughout
their entire life, while less than a quarter underwent blood donation more than two times. Laboratory results are
shown in Supplementary Table S1. No significant differences were found in blood parameters among men and women.
In contrast, lower values of MCH and MCHC were observed in young subjects under 30 years old (P=0.003 and 0.018,
respectively).
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Table 2 Genetic association models for the study variants

Genotype Female Male OR (95% CI) P-value

rs855791

Heterozygote comparison A/A 10 (56) 98 (55) 1.00 0.95

A/G 8 (44) 81 (45) 1.03 (0.39–2.74)

Allelic model A 28 (78) 277 (77) 1.00 0.95

G 8 (22) 81 (23) 1.02 (0.44–2.33)

rs9357271

Co-dominant model T/T 10 (55.6) 72 (40.2) 1.00 0.29

C/T 7 (38.9) 78 (43.6) 1.55 (0.56–4.28)

C/C 1 (5.6) 29 (16.2) 4.03 (0.49–32.90)

Dominant model T/T 10 (55.6) 72 (40.2) 1.00 0.21

C/T-C/C 8 (44.4) 107 (59.8) 1.86 (0.70–4.93)

Recessive model T/T-C/T 17 (94.4) 150 (83.8) 1.00 0.18

C/C 1 (5.6) 29 (16.2) 3.29 (0.42–25.67)

Over-dominant model T/T-C/C 11 (61.1) 101 (56.4) 1.00 0.70

C/T 7 (38.9) 78 (43.6) 1.21 (0.45–3.27)

Allelic model T 27 (75) 222 (62) 1.00

C 9 (25) 136 (38) 1.83 (0.83–4.02) 0.12

Log-additive — — — 1.77 (0.82–3.82) 0.13

Values are shown as number (percentage). Chi-square or Fisher’s exact tests were used. Abbreviation: OR (95% CI), odds ratio and confidence interval.

Table 3 Genotype combination frequencies in men and women

HFE TMPRSS6 BTBD9 All Female Male P-value
Crude OR
(95% CI) P-value

1 G A T 0.49 0.52 0.48 0.034 1.00 (reference) —

2 G A C 0.28 0.25 0.29 1.25
(0.64–2.43)

0.499

3 G G T 0.14 0.22 0.13 0.64
(0.29–1.41)

0.268

4 G G C 0.08 0 0.09 20.56
(1.16–36.29)

0.039

Chi-square or Fisher’s exact tests were used. Abbreviations: BTBD9, BTB domain-containing protein-9 gene; HFE, homeostatic iron regulator gene; OR
(95% CI), odds ratio and confidence interval; TMPRSS6, Transmembrane Protease gene, Serine-6. Bold value indicates significance at P<0.05.

Allelic discrimination analysis
All participants (n=197) had rs1800562*G/G genotype for the HFE gene. Thus, this variant was not included in the
further downstream analysis. On the other hand, rs855791 (A/G) of the TMPRSS6 gene showed only two genotypes:
A/A and A/G in 55% and 45% of the population, respectively, suggesting that this could be due to the small sample
size. This later variant was not consistent with HWE in the overall analysis and the male population when stratified
by sex (P>0.001). Whereas BTBD9 rs9357271 (C/T) variant was in agreement with HWE in overall and stratified
analyses (P>0.05) and showed three genotypes: C/C, C/T, as well as T/T accounting for 15%, 43%, and 42% of the
sample population, respectively. Minor allele frequencies of rs855791*G and rs9357271*C were 0.23 and 0.37 in the
study population (Supplementary Table S2).

On comparing genotype and allele frequencies in men and women, there was no significant difference observed
for both TMPRSS6 rs855791 and BTBD9 rs9357271 variants (Table 2). Paired loci analysis revealed more frequency
of GGC genotype combination in men (Table 3).

Univariate analysis
Associations of rs855791 TMPRSS6 and rs9357271 BTBD9 variants with biochemical results were depicted in Figure
2 and Figure 3. For TMPRSS6 gene, A/G genotype carriers exhibited higher levels of serum hepcidin (P=0.039) and
hepcidin/ferritin ratio (P=0.041). While in BTBD9 gene, subjects with C/T and TT genotypes had lower values of
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Figure 2. Association between rs855791 TMPRSS6 and laboratory results

(A) Number (No) of donation, (B) Serum hepcidin (pg/ml), (C) Serum ferritin (ng/ml), (D) Serum hepcidin/ ferritin ratio, (E) White

blood cells count (103/L), (F) Lymphocyte count (103/L), (G) Granulocytes count (103/L), (H) Red Blood Cells count (106/L), (I)

Hemoglobin level (g/dl), (J) Hematocrit concentration (%), (K) Mean cell volume, (L) Mean cell hemoglobin (pg), (M) Mean cell

hemoglobin concentration (g/dl), (N) Red cell distribution width (%), (O) Platelets count (103/L), (P) Mean Platelet Volume (fL).

Box plots represent median and quartile values. Mann–Whitney U test was used. P<0.05 was set to be statistically significant.

Abbreviations: FER, ferritin; GRA, granulocytes; HCT, hematocrit; HEP, hepcidin; H/F, hepcidin/ferritin ratio; HGB, hemoglobin;

LYM, lymphocyte; MCH, mean cell hemoglobin; MCHC, mean cell hemoglobin concentration; MCV, mean red cell volume; MPV,

mean platelet volume; PLT, platelets; RBC, red blood cells; RDW, red cell distribution width; WBC, white blood cells.

serum ferritin (P=0.007) and higher levels of hepcidin (P=0.010) and hepcidin/ferritin ratio (P=0.025) compared
with C/C genotype. No significant associations were found with any other blood parameters.

Multivariate analysis
As illustrated in Figure 4, the principal component analysis did not show discrete clustering of individuals based on
their sex or genotypes.

Discussion
There is a growing body of literature that recognizes the implication of multiple SNPs in several aspects of iron
metabolism through known and yet unknown mechanisms or to be associated with some iron-related regulatory
pathways [26]. In this sense, we explored in the present study the association of three iron homeostasis-related SNPs
on the iron parameters and serum hepcidin/ferritin levels in a cohort of Middle Eastern donors. We show that the
SNPs TMPRSS6; rs855791 and BTBD9; rs9357271 were potentially associated with variations in serum hepcidin,
serum ferritin, and/or hepcidin normalized to ferritin (the hepcidin/ferritin ratio).
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Figure 3. Association between rs9357271 BTBD9 and laboratory results

(A) Number (No) of donation, (B) Serum hepcidin (pg/ml), (C) Serum ferritin (ng/ml), (D) Serum hepcidin/ ferritin ratio, (E) White

blood cells count (103/L), (F) Lymphocyte count (103/L), (G) Granulocytes count (103/L), (H) Red Blood Cells count (106/L), (I)

Hemoglobin level (g/dl), (J) Hematocrit concentration (%), (K) Mean cell volume, (L) Mean cell hemoglobin (pg), (M) Mean cell

hemoglobin concentration (g/dl), (N) Red cell distribution width (%), (O) Platelets count (103/L), (P) Mean Platelet Volume (fL).

Box plots represent median and quartile values. Mann–Whitney U test was used. P<0.05 was set to be statistically significant.

Abbreviations: FER, ferritin; GRA, granulocytes; HCT, hematocrit; HEP, hepcidin; H/F, hepcidin/ferritin ratio; HGB, hemoglobin;

LYM, lymphocyte; MCH, mean cell hemoglobin; MCHC, mean cell hemoglobin concentration; MCV, mean red cell volume; MPV,

mean platelet volume; PLT, platelets; RBC, red blood cells; RDW, red cell distribution width; WBC, white blood cells.

Although some studies, including the one done by Traglia et al. [8] and replicated by Galesloot et al. [4] in the
Italian population, postulated the implication of HFE; rs1800562 in several aspects of iron parameters through
hepcidin-dependent and independent mechanisms. Currently, this specified SNP in HFE gene could not be fur-
ther analyzed because of its monomorphic genotype (GG; 100%) in the present population. However, this finding
was in line with previous studies that failed to detect this variant in adult hepatitis C virus-induced liver cirrhosis,
hemochromatosis, pediatric lymphoblastic leukemia survivors, or the controls in the same region [27–29]. These
studies, including ours, are consistent with that rs1800562 (G/A) frequency, in general, ranged from 0 to 9.9% and
seen to be nearly 0% in the North African population. Further large-scale multicenter studies are warranted to con-
firm this finding.

Several studies have realized the associations of the TMPRSS6 variants with decreased serum iron, [14] serum
ferritin, [30], and Hb levels [14,31,32]. The current study showed that A/G genotype carriers of this variant have
higher levels of serum hepcidin and hepcidin/ferritin ratio compared with the wild genotype carriers. Although this
variant showed a departure from HWE, authors did not reject this SNP from further analysis as they speculated this
could be attributed to the missing of the homozygous genotype of this SNP minor allele in the study population,
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Figure 4. Principal component analysis

No clear demarcation was found between males and females (A) or subjects with different genotypes (B and C).

according to Lewis and Knight affirmative conclusion that ‘No standard guidelines for rejecting SNPs that depart
from HWE have been developed’ [33].

Given the significant role TMPRSS6 plays in iron regulation by coding for the hepatic serine protease (MTP-2) that
can modulate the serum hepcidin levels in normal individuals [34] and regulate the hepatic production of hepcidin,
[35] this could explain the present association of the study missense rs855791variant with the serum hepcidin and
hepcidin/ferritin ratio. Consistent with others, Nai et al. [34] found that the C genotype of this specified variant could
inhibit hepcidin more efficiently than the T genotype in their in vitro experiment, and the CC homozygous carriers
had lower serum hepcidin levels and higher transferrin saturation than those with TT homozygotes in the general
population [34].

Regards BTBD9 C/T variant, associated with periodic limb movements in sleep (restless leg syndrome), currently
individuals with C/T and TT genotypes have lower values of serum ferritin and higher levels of hepcidin and hep-
cidin/ferritin ratio compared with C/C genotype. Although the function of BTBD9 protein was not described, and its
exact role in the context of iron homeostasis remains to be elucidated [24]. Our finding was in line with the previous
studies that reported an association of this variant with serum ferritin level in subjects with restless leg syndrome and
their relatives [6,36]. Serum ferritin levels could decrease by nearly 13% parallel to the at-risk SNP in this specified
gene [36]. However, it is worth noting that even where statistically significant differences in laboratory parameters
were observed between different genotypes, the differences were so small that their physiological significance is ques-
tionable.

Our multivariate analysis could not discriminate or cluster the study population based on their genotype. Excluding
the relatively small sample size, this may reflect that simultaneous testing multiple variants (not just three variants)
may be optimal for determining the genetic background’s contribution to different phenotypes, at least in some pop-
ulations. We need in the future to run such type of large-scale genomic analysis, which can lead to ‘discoveries that
may be hidden in individual analyses of a single or few sources’ as proposed recently by Allen [37].
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In conclusion, the present study demonstrated that TMPRSS6 rs855791 (A/G) and BTBD9 rs9357271 (C/T) vari-
ants were associated with serum hepcidin and/or serum ferritin levels in a preliminary sample of Middle Eastern
blood donors. However, the present study could be limited by the relatively small sample size and the study design’s
cross-sectional analysis. Large-scale, multi-central, and prospective follow-up studies are warranted to verify the cur-
rent conclusions.
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Table S1. Hematological results of the study participant 

 Overall Distribution     Sex Age* Number of donations 

 

Total 

(n=197) 

Skew Kur Women 

(n=18) 

Men 

(n=179) 

P-

value 

<30 y 

(n=104) 

≥30 y 

(n=93) 

P-

value 

Once 

(n=112) 

≥2 times 

(n=88) 

P-

value 

 Mean SD   Mean SD Mean SD  Mean SD Mean SD  Mean SD Mean SD  

HEP 

pg/mL 

539 623 1.28 2.76 541 870 539 596 0.693 580.6 645 493 598 0.264 936 483 1021.7 625.8 0.781 

FER 

ng/mL 

33.4 47.6 1.81 3.78 31.9 46.2 33.5 47.9 0.629 29.4 37.9 37.9 56.4 0.968 61.6 49.2 58.1 54.4 0.500 

H/F 15.6 32.1 5.14 37.7 7.2 10.5 16.4 33.5 0.269 20.2 40.9 10.4 16.7 0.097 23.7 28.0 35.9 51.8 0.171 

WBC  6.5 1.9 1.11 1.79 5.5 2.5 6.6 1.9 0.152 6.4 1.5 6.7 2.4 0.363 6.8 2.0 6.3 2.0 0.274 

LYM 2.7 0.7 0.76 0.34 2.6 0.6 2.7 0.7 0.567 2.7 0.7 2.8 0.8 0.537 2.6 0.7 2.8 0.8 0.173 

MID 0.8 0.3 1.31 2.33 0.6 0.3 0.8 0.3 0.189 0.7 0.2 0.9 0.4 0.232 0.8 0.3 0.8 0.3 0.261 

GRA 3.0 1.4 1.19 1.58 2.3 2.0 3.1 1.3 0.172 3.0 1.1 3.1 1.6 0.588 3.3 1.4 2.7 1.4 0.035 

LYM% 42.5 10.5 -0.29 0.40 49.8 12.4 42.0 10.2 0.056 42.0 10.4 43.2 10.7 0.588 39.2 11.1 46.2 8.6 0.001 

MID% 12.0 3.1 1.33 2.28 11.8 2.4 12.0 3.2 0.957 11.6 2.7 12.5 3.6 0.378 12.2 3.4 12.1 2.9 0.817 

GRA% 45.1 9.8 0.02 -0.86 38.4 12.4 45.6 9.4 0.061 45.6 9.9 44.4 9.6 0.526 47.7 9.5 41.7 9.2 0.003 

RBC 4.2 0.5 -0.02 0.10 4.1 0.3 4.2 0.5 0.530 4.2 0.4 4.2 0.6 0.643 4.3 0.5 4.1 0.5 0.182 

HB g/dL 12.7 1.5 -0.45 -0.28 12.6 1.1 12.7 1.5 0.884 12.5 1.4 13.0 1.6 0.131 13.0 1.4 12.4 1.6 0.071 

HCT 35.1 3.9 -0.32 0.15 34.7 2.5 35.1 4.0 0.769 34.7 3.7 35.5 4.2 0.306 35.6 3.6 34.1 4.2 0.076 

MCV 83.7 6.2 -1.11 3.00 84.8 4.0 83.7 6.4 0.656 83.1 5.3 84.5 7.2 0.142 83.9 6.0 83.1 6.8 0.618 

MCH 30.4 2.4 -1.38 2.92 30.9 1.7 30.3 2.5 0.685 30.0 2.1 30.9 2.7 0.003 30.5 2.3 30.2 2.7 0.531 

MCHC 36.3 1.0 0.07 -0.14 36.4 0.8 36.2 1.0 0.615 36.0 0.9 36.5 1.1 0.018 36.4 1.0 36.3 1.1 0.639 

RDW 13.9 1.0 2.31 8.73 13.5 0.4 14.0 1.0 0.176 13.9 0.9 14.0 1.1 0.694 14.0 1.1 13.9 0.9 0.525 

PLT 205 68.9 -0.15 0.41 244.4 97.1 202.9 66.1 0.125 210.4 75.7 200.0 59.6 0.457 207.0 70.2 204.0 70.9 0.843 

MPV 8.8 0.7 0.38 0.19 8.4 0.8 8.8 0.7 0.197 8.7 0.6 8.9 0.9 0.242 8.6 0.7 9.0 0.8 0.015 

Data are represented as mean and standard deviation (SD). Skewness (skew) and kurtosis (Kur) coefficients are considered acceptable between -2 and +2. In this 

case, a student t-test was applied. Otherwise, the Mann-Whitney U test was used.*The age of 30 years cut off was selected based on the mean age of the study 

participants. P<0.05 was set to be statistically significant.HEP: hepcidin, FER: ferritin, H/F: hepcidin/ferritin ratio, WBC: White Blood Cells, LYM: lymphocyte, 

GRA: granulocytes, RBC: Red Blood Cells, HGB: Hemoglobin, HCT: Hematocrit, MCV: Mean Red Cell Volume, MCH: Mean Cell Hemoglobin, MCHC: 

Mean Cell Hemoglobin Concentration, RDW: Red Cell Distribution Width, PLT: Platelets, and MPV: Mean Platelet Volume. 



TABLE S2 Genotype and allele frequencies of Transmembrane Protease, Serine 6 

(TMPRSS6),and BTB domain-containing protein gene (BTBD) stratified by sex 

 Genotype                Alleles 

rs855791 A/A A/G G/G P-value A G P-value 

All 108 (55) 89 (45) 0 (0.0) --- 305 (77) 89 (23) --- 

Female 10 (56) 8 (44) 0 (0.0) 0.947 28 (78) 8 (22) 0.956 

Male 98 (55) 81 (45) 0 (0.0)  277 (77) 81 (23) --- 

rs9357271 C/C C/T T/T P-value C T P-value 

All 30 (15) 85 (43) 82 (42) --- 145 (37) 249 (63) --- 

Female 1 (6) 7 (39) 10 (56) 0.328 9 (25) 27 (75) 0.123 

Male 29 (16) 78 (44) 72 (40)  136 (38) 222 (62) --- 

Data are shown as number (percentage). A Chi-square test was used for analysis.  

 


