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In recent decades, many genome-wide association studies on insomnia have reported nu-
merous genes harboring multiple risk variants. Nevertheless, the molecular functions of
these risk variants conveying risk to insomnia are still ill-studied. In the present study, we
integrated GWAS summary statistics (N=386,533) with two independent brain expression
quantitative trait loci (eQTL) datasets (N=329) to determine whether expression-associated
SNPs convey risk to insomnia. Furthermore, we applied numerous bioinformatics analyses
to highlight promising genes associated with insomnia risk. By using Sherlock integrative
analysis, we detected 449 significant insomnia-associated genes in the discovery stage.
These identified genes were significantly overrepresented in six biological pathways includ-
ing Huntington’s disease (P=5.58 × 10−5), Alzheimer’s disease (P=5.58 × 10−5), Parkinson’s
disease (P=6.34 × 10−5), spliceosome (P=1.17 × 10−4), oxidative phosphorylation (P=1.09
× 10−4), and wnt signaling pathways (P=2.07 × 10−4). Further, five of these identified genes
were replicated in an independent brain eQTL dataset. Through a PPI network analysis, we
found that there existed highly functional interactions among these five identified genes.
Three genes of LDHA (P=0.044), DALRD3 (P=5.0 × 10−5), and HEBP2 (P=0.032) showed
significantly lower expression level in brain tissues of insomnic patients than that in con-
trols. In addition, the expression levels of these five genes showed prominently dynamic
changes across different time points between behavioral states of sleep and sleep depri-
vation in mice brain cortex. Together, the evidence of the present study strongly suggested
that these five identified genes may represent candidate genes and contributed risk to the
etiology of insomnia.

Introduction
Insomnia is characterized by persistent dissatisfaction with sleep, which may play central roles in the eti-
ology of physical and mental health [1–3], including suicide [2], depression [4], and post-traumatic stress
disorder [5]. In the general population, it is estimated that the prevalence of insomnia is approximately
10–20% [6–8]. Previous twin studies have documented that insomnia and sleep characteristics are highly
influenced by genetic factors [9–11]. The heritability rates were estimated to be 59% in females, and 38% in
males [12]. Thus, growing studies show considerable interest in identifying the genetic basis of insomnia.

With the advance of technique, genome-wide association study (GWAS) is widely applied and consid-
ered as an effective method that could simultaneously examine the genetic association signals from mil-
lions of SNPs with complex traits of interest. In recent years, numerous genetic variants based on multiple
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GWAS [13–17], have been identified to be associated with insomnia complaints and insomnia symptoms. There were
more than 200 genomic loci from these reported GWAS including a wealth of information that are capable of revealing
new risk genes and biological pathways implicated in insomnia risk [13–15]. Nevertheless, these biological effects of
significant genetic variants from GWAS studies on insomnia risk remain unclear. Meanwhile, in light of the stringent
genome-wide threshold of statistical significance employed, there were a great number of genetic loci with small
effect size difficult to be identified in a single GWAS study. Therefore, more relevant investigations on uncovering
the biological mechanism of genetic variants with small-to-modest effect size may contribute to understanding the
missing heritability of insomnia.

Although there are many insomnia-related genetic loci to be detected, accumulating studies with strong evidence
have reported that abnormal expression in risk genes plays an important role in the pathogenesis of complex diseases
[13,18–21], including insomnia. In addition, multiple studies [22–25] have recently applied systematically integrative
methods to combine expression quantitative trait loci (eQTL) data and GWAS summary statistics for identifying the
underlying regulatory effect of the reported risk SNPs from previous GWAS. A recent study reported by He and his
co-workers [22] demonstrated a Bayesian statistical inference method called Sherlock to systematically uncover the
cis- and trans-regulatory effects of susceptibility genes on complicate disorders based on GWAS summary statistics
data and eQTL data. Based on this effective and powerful approach, a growing number of studies on different pheno-
types, such as major depressive disorders [26,27], gout disease [28], and schizophrenia [29], have identified numerous
new susceptibility genes, which cannot be detected in GWAS alone.

To the best of our knowledge, there is no systematically integrative study integrating the large-scale GWAS and
eQTL data to reveal the insomnia-associated risk genes. Thus, the primary aim of the current investigation is to
determine whether expression-associated SNPs could confer risk to insomnia and detect insomnia-associated risk
genes by using the Sherlock approach based on both eQTL and GWAS data. Furthermore, we adopted quantities of
bioinformatics tools based on multiple independent omics data to validate our findings.

Methods
Insomnia GWAS summary data
We applied a large-scale insomnia-related GWAS summary dataset from the UK Biobank database [13] for identify-
ing susceptibility SNPs and genes. There is a total of 386,533 individuals with 109,402 cases and 277,131 controls of
European descent included in the current investigation. Since the number of 40,000 samples allows for more than 90%
high-power detection of the small effect sizes of genetic variants [30], we infer the present study has sufficient power
for identifying risk genetic variants. In this chosen population, the insomnia prevalence was 28.3%. All included sub-
jects signed informed consent. Both phenotypic information and DNA samples were collected from participants. The
phenotype of insomnia was recorded according to the following question: “Do you have trouble falling asleep at night
or do you wake up in the middle of the night?” The answers of the question were provided to subjects for choosing: “A:
Never/rarely, B: Sometimes, C: Usually, D: Prefer not to answer. Genotype data were based on the combined UK10K
and 1000 Genome Projects reference panel (hg19) for imputation. In total, there were a number of 10,862,567 genetic
variants and related P values employed as input in current Sherlock Bayesian inference analysis.

GWAS data based on Null phenotype
In order to avoid the influence of random events, we employed published GWAS data (N=3960) [31] to construct a
fake insomnia-based GWAS data as a negative control. With regard to the constructed GWAS dataset, we randomly
assigned the disease status (namely, insomnia or control) into each individual of 3960 samples by using the method of
RANDBETWEEN (“insomnia”, “control”) in the Microsoft Excel. We called the randomly assigned insomnia as Null
trait. The statistical analysis utilized the widely used tool, namely PLINK v1.07 [32], based on the logistic regression
model. In light of the assumption that there were no true genetic effects of the GWAS on Null phenotype, the relatively
small sample size is not an issue.

Brain eQTL data
Considering that insomnia is the second most prevalent mental disorder that may be susceptible to the aberrant
function of the brain, it is plausible to assume that brain tissue is the most suitable sample for integrative analysis
of identifying insomnia-associated risk genes. Thus, we employed human brain prefrontal cortex tissue-based ex-
pression data from a previously reported study by Myers and co-workers [33] to perform an eQTL analysis. There
were 193 neuropathologically normal brain samples without clinical history of psychiatric phenotypes or other neu-
rologic traits included in subsequent analysis. All enrolled participants were European origins based on self-report.
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The expression profiles were obtained with the adoption of an Illumina HumanRefseq-8 Expression BeadChip, and
the genome-wide genotype data were genotyped with the use of an Affymetrix Human Mapping 500K Array Set.

The Bayesian statistical method of Sherlock analysis
Since the vast majority of disease-associated genetic variants identified by GWAS are mapped in non-coding genomic
regions [34], it is reasonable to infer that these identified risk variants in non-coding regions are more likely to affect
the expression level of a specific gene rather than the molecular function of its protein. Thus, we employed a Sherlock
Bayesian-based inference analysis to integrate GWAS summary data on insomnia from Jansen and co-workers [13].
The procedures of Sherlock inference approach are described as following steps: first, the Sherlock tool will identify
all SNPs that show significant association with gene expression (called as eSNP) from chosen eQTL data based on
brain cortical samples reported by Myers and co-workers [33]. After the definition of eSNP, Sherlock will examine the
association between eSNPs and insomnia with the use of GWAS summary data from Jansen et al. [13]. A positive score
would be given to an eSNP if this eSNP is also significantly associated with insomnia based on GWAS data. A negative
score would be recorded if this eSNP shows a non-significant association with insomnia. There would be no score to
be recorded if the SNP only shows significant association with insomnia but no prominent signal for alterations in
gene expression. The total score of a specific gene is based on the score of each eSNP by combining evidence from
GWAS and eQTL data. The logarithm of the Bayes factor (LBF) for a specific gene is a crucial indicator to determine
whether the gene contributes to insomnia risk. The LBF is computed with the use of Sherlock Bayesian-based analysis
by integrating the evidence from GWAS summary statistics and eQTL. The larger value of LBF represents the higher
probability that the gene can convey risk to insomnia. Considering that existing traditional analyses often ignore
SNPs with moderate effect size, Sherlock Bayesian-based analysis is an effective approach to systematically integrate
SNP with moderate-to-strong effect size from GWAS and eQTL data. Bonferroni correction method was employed
to correct the P values.

Pathway-based enrichment analysis
To explain the biological function of the prioritized insomnia-related risk genes from Sherlock Bayesian-based anal-
ysis, we utilized an easy use plug-in of Cytoscape platform [35] called ClueGO [36] to generate a functional organized
pathway-term network. First, we performed a pathway-based analysis depending on a popular public source of the
Kyoto Encyclopedia of Genes and Genomes (KEGG). By using over-representation analysis, we could identify and
prioritize functional associations between chosen genes and biological pathways. Furthermore, we performed a Gene
Ontology (GO) analysis including three categories of GO terms: molecular function, cellular component, and bi-
ological process. The method of “GO Term Fusion” was used to reduce the redundancies among GO terms. The
hypergeometric test was used to calculate P value and Bonferroni step down correction was used for multiple testing.

Phenotype- and drug-related gene set enrichment analysis
To explore whether identified genes were significantly enriched in gene sets related to phenotypes or drugs, we utilized
the web-based tool of WebGestalt [37] to perform functional enrichment analysis based on the resources of GLAD4U
[38], DrugBank [39], and the Human Phenotype Ontology [37]. The web-access tool has three main functions of
over-representation analysis, network topology-based analysis, and gene set enrichment analysis. Here we used the
function of overrepresentation analysis to analyze the submitted genes identified from the Sherlock integrative analy-
sis. Current enrichment analysis utilized all genome protein-coding genes as background genes. We only selected the
gene size of each gene set ranging from 5 to 2000 for the current analysis. The method of the Benjamini–Hochberg
false discovery rate was employed for adjustment.

Validation eQTL datasets using Sherlock integrative analysis
To further replicate the authenticity of these identified insomnia-associated genes, we re-performed the Sherlock
integrative analysis with the use of an independent eQTL dataset (i.e. 136 brain cortex samples) from GTEx portal
(data release v7) [40]. RNA-sequencing was used for quantifying the level of RNA expression, and the Illumina OMNI
5M SNP Array was used for SNP genotyping. Based on the additive genetic model, eQTL analysis was conducted
through the tool of Matrix eQTL [41] using linear regression analysis. For Sherlock Bayesian-based analysis, all the
parameters were set to be the same with those in discovery eQTL data. The P values calculated from Sherlock were
corrected with the application of the Bonferroni correction.
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MAGMA gene-based analysis
Furthermore, we intended to perform a gene-based enrichment analysis of the above-used GWAS summary dataset
on insomnia [13] by adopting an independent approach of the Multi-marker Analysis of GenoMic Annotation
(MAGMA). The IDs and P values of all SNPs were utilized as submitted information for the MAGMA tool. For
revealing the multi-variant convergent genetic effects, the multiple regression model was utilized to integrate the
linkage disequilibrium among SNPs within a specific genomic region. The definition that an SNP belongs to a spe-
cific gene depended on the location of the SNP. Whether it’s mapped into the gene body or a region extended +−20 kb
downstream or upstream of the gene [42]. More detailed illustrations of the MAGMA are demonstrated in the official
website of https://ctg.cncr.nl/software/magma. The SNP–SNP linkage disequilibrium information was computed as
reference for the 1000 Genome European Panel, and the location of each SNP in the present study was referred to as
the Human Genome Build 37.

PPI network-based analysis
Numerous studies have been published to show that susceptibility genes for complex diseases are predisposed to
be collectively interacted [20,43,44]. Furthermore, network-based analytic approaches have been widely used to
search for functional patterns of identified genes associated with traits of interest [45,46]. Therefore, we performed
a protein–protein interaction (PPI) network-based analysis of these identified insomnia-associated risk genes by us-
ing the GeneMANIA software [47], which is a user-friendly tool for speculating the functions of inputted genes and
prioritizing the promising genes for further molecular experiments. This tool could extend the identified genes with
functionally similar genes by integrating available proteomics and genomics data.

Replication of candidate gene expression in brain tissue of insomnia
patients
Under the assumption that aberrant expression of genes may convey risk to complex diseases, Sherlock
Bayesian-based analysis is used to identify disease-associated risk genes. To determine whether these five identified
susceptibility genes’ expression show a significant difference between insomnia and control brain samples, we down-
loaded one available RNA expression dataset by using Affymetrix Human Genome U133+ 2.0 chip from the NCBI’s
GEO database (accession number: GSE40562) and performed a differential gene expression (DGE) analysis. For this
dataset [19], there were three insomnia patients enrolled in the presetn study, and total RNA of the thalamus and the
parietal cortex of insomnia patients were extracted using RNeasy Mini Kit (Qiagen) according to the manufacturer’s
protocol. The Ethical Committee of National Institute for Viral Disease Prevention and Control, China CDC, ap-
proved for those human brain samples used in investigation. More detailed information on these samples including
their genetic, pathogenic, and neuropathological features was reported in previous studies [48,49]. The web-based
tool of GEO2R [50] was used to calculate the expression difference between insomnia and control. P-value < 0.05
was considered to be significant. The co-expression patterns of five identified genes were analyzed by the Pearson
correlation analysis, and the Corrplot R package was used for visualization. The R script used for this analysis is
shown in the github website (https://github.com/mayunlong89/insomnia/blob/master/coexpression.r).

Temporal changes in the expression of candidate genes in mice brain
cortex
To explore whether these identified candidate genes have significantly temporal changes in expression patterns in
brain cortex between sleep and wake (sleep deprivation), we performed a differential expression pattern analysis
at different time points by downloading the RNA expression data from NCBI GEO database (accession number:
GSE6514). For this dataset, the male mice (C57BL/6J) at age of 10 +− 1 week were used in the experiments. With a
dark–light cycle of 12 h, chosen mice were housed in a pathogen-free, humidity- and temperature-controlled room.
These male mice were subjected to 14 days of acclimatization for establishing a nighttime feeding pattern. The detailed
experimental information is recorded in a previous article [51]. The sleep deprivation procedure was initiated at
lights-on with gentle handling. Five sleep-deprived mice were killed at each time point of 3, 6, 9, and 12 h of total
sleep deprivation. Similarly, five undisturbed sleeping mice were killed at the same diurnal time points (i.e. 3, 6, 9,
and 12 h) as sleep-deprived mice. Additionally, at the time of lights-on at 7:00 AM called as anchor time, five control
mice were killed. The Affymetrix GeneChip Mouse Genome 430 2.0 array with >45,000 probe sets and ∼34,000
well-annotated genes. The intensity data of probes were analyzed with the application of the affy package of the R
software, which is used to evaluate the quality of expression and generate summary measures of expression. Student’s
t-test was used to calculate the expression difference between sleep and wake at each time point.
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Figure 1. The workflow of identifying and prioritizing the insomnia risk genes

Results
Sherlock Bayesian-based analysis prioritizes insomnia-associated risk
genes
The workflow of our current study is shown in Figure 1. First, we employed Sherlock analysis to explore the asso-
ciation between SNP and expression by integrating insomnia-related GWAS summary statistics based on 386,533
samples and brain eQTL data based on 193 samples. Based on this Bayesian method of Sherlock, a total of 449
genes were found to be nominally significantly associated with insomnia risk by alteration in its expression (P-value
< 0.05, Table 1, and Supplementary Table S1). For example, the top-ranked genes of FOXF2 (simulated P=8.89 ×
10−6), FAM193A (simulated P=1.22 × 10−4), PAIP1 (simulated P=3.33 × 10−4), MPG (simulated P=3.67×10−4),
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Table 1 Top-ranked 20 insomnia-associated genes identified by Sherlock integrative analysis

Gene symbol Supporting SNP1 eSNP-based P value2 GWAS-based P value3 Sherlock-based P value4

FOXF2 rs4836269 9.96 × 10−6 0.067 8.89 × 10−6

FAM193A rs7109421 9.92 × 10−6 0.010 1.22 × 10−4

PAIP1 rs11173336 9.87 × 10−6 0.018 3.33 × 10−4

MPG rs1867116 9.96 × 10−6 0.076 3.67 × 10−4

INO80 rs4477668 9.72 × 10−6 0.49 5.00 × 10−4

VPS13B rs6017342 9.74 × 10−6 0.61 5.98 × 10−4

TGFB3 rs2372321 9.99 × 10−6 0.029 7.78 ×10−4

LOC283537 rs9908305 9.83 × 10−6 0.076 8.00 × 10−4

LOC155340 rs810517 9.54 ×10−6 0.29 9.16 × 10−4

GLUL rs1866877 9.70 × 10−6 0.034 1.05× 10−3

RPS17 rs7810180 9.65 × 10−6 0.0028 1.22 × 10−3

ZNF621 rs11135930 9.96× 10−6 0.040 1.33 × 10−3

SMYD5 rs951821 9.80 × 10−6 0.056 1.34 × 10−3

PLLP rs418682 9.55 × 10−6 0.82 1.46 × 10−3

RWDD2B rs8098365 9.67 × 10−6 0.57 1.60 ×10−3

CAT rs2172962 9.42 ×10−6 0.59 1.74 × 10−3

SMEK1 rs286451 9.80 × 10−6 0.97 1.89 × 10−3

NDUFS6 rs1218887 9.36 × 10−6 0.16 1.90 ×10−3

LYL1 rs4694022 9.28 × 10−6 4.19×10−6 2.00 × 10−3

FAF1 rs4775953 9.30 × 10−6 0.0023 2.11 × 10−3

1SNP influences the expression level of risk gene.
2P-value from expression quantitative trait analysis of Myers et al.
3P-value from GWAS on insomnia of Jansen et al.
4P-value from calculation based on the Sherlock Bayesian integrative analysis. In light of Sherlock tool uses finite times of permutation test to calculate
the P value for each gene, some of these top-ranked genes have distinct logarithm of the Bayes factor values but obtain the same rankings (namely,
their P values are same).

INO80 (simulated P = 5.00 × 10−4), VPS13B (simulated P = 8.89 × 10−6), and TGFB3 (simulated P = 8.89 ×
10−6) with supportive eSNPs conveying risk to insomnia (Table 1). Among them, 20 genes that are associated with
insomnia or sleep-related phenotypes have been documented in the GWAS catalog database (Supplementary Table
S1). For example, Spada and co-workers reported the rs62388641 in the FOXF2 gene (P=1.0 × 10−6) is suggestively
associated with daytime sleep phenotypes [52].

Identification of significantly enriched pathways
Subsequently, we conducted a pathway analysis based on the KEGG source for these identified 449
insomnia-associated genes. There were six biological pathways significantly enriched by these inputted genes (Figure
2A and Supplementary Table S2; Corrected P-value < 0.05). Interestingly, these overrepresented pathways have
been well-documented to be implicated in psychiatric disorders or neurodegenerative diseases [53–59]. For example,
the pathways of Huntington’s disease (P=5.58 × 10−5), Alzheimer’s disease (P=5.58 × 10−5), Parkinson’s disease
(P=6.34 × 10−5), spliceosome (P=1.17 × 10−4), oxidative phosphorylation (P=1.09 × 10−4), and wnt signaling
pathway (P=2.07 × 10−4). Furthermore, we carried out a GO enrichment analysis according to three categories of
GO terms. With respect to the category of molecular function (Figure 2B and Supplementary Table S3), we found that
these identified insomnia-associated genes were significantly enriched in mRNA 3’-UTR binding (P=7.39 × 10−5)
and mRNA binding (P=1.01 × 10−4). With regard to the category of cellular component (Figure 2B), five terms were
significantly enriched; for example, mitochondrial part (P=3.22 × 10−5), mitochondrial protein complex (P=6.08
× 10−5), and mitochondrial membrane part (P=1.01 × 10−4). For the category of biological process (Figure 2B), we
observed three significantly enriched terms: regulation of DNA replication (P=8.28 × 10−5), protein export from
nucleus (P=1.65 × 10−4), and nuclear transport (P=1.82 × 10−4).

In addition, we utilized the WebGestalt software to conduct phenotype- and drug-based enrichment analysis. In-
terestingly, with regard to phenotype-focused enrichment analysis, we found a number of enriched gene sets related
to several defined phenotypes (Figure 2C and Supplementary Table S4). For example, the gene sets were related to ab-
normality of the cerebrum (P=4.88 × 10−5), abnormality of forebrain morphology (P=7.66 × 10−5), morphological
abnormality of the central nervous system (P=4.17 × 10−4), and neurodevelopmental delay (P=5.19 × 10−4). For
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Figure 2. Functional enrichment analysis of insomnia-associated genes identified by Sherlock Bayesian analysis

(A) Pathway enrichment analysis based on the KEGG database. (B) GO-terms enrichment analysis based on three wide-used

terms of molecular function, cellular component, and biological process. (C) Phenotype-based enrichment analysis of the Human

Phenotype Ontology based on the WebGestalt tool. (D) Drug-based enrichment analysis of the Drugbank database based on the

WebGestalt. (E) Drug-based enrichment analysis of the GLAD4U database based on the WebGestalt.

drug-focused enrichment analysis, 83 gene sets related to drugs were significantly enriched based on two widely-used
databases of DrugBank (Figure 2D and Supplementary Table S5) and GLAD4U (Figure 2E and Supplementary Table
S6).

Replication of identified risk genes using an independent eQTL dataset
For validation of above identified genes, we then reconducted the Sherlock Bayesian-based integrative analysis
with the same parameter settings using independent brain cortex eQTL data (N=136). Sherlock Bayesian-based
analysis identified 184 significant insomnia-associated genes (Supplementary Table S7). There were two genes of
C6orf201 and AK5 reported to be associated with sleep-related traits [52,60]. By compared with genes identified
from the discovery stage, we found that five significant genes were overlapped between discovery and replication stage;
namely, HEBP2 (simulated P=0.015), LDHA (simulated P=0.018), TEX264 (simulated P=0.02), FGFR3 (simulated
P=0.023), and DALRD3 (simulated P=0.029) (Figure 3A and Supplementary Table S8).

To further ensure the reliability of current investigation, we conducted MAGMA gene analyses for GWAS on
insomnia and GWAS on Null phenotype (referred to as negative control). For comparing the findings between
real and fake data, we employed three distinct thresholds of P values: 0.05, 0.01, and 0.001. At each threshold, we
observed that Sherlock-identified genes (Myers eQTL and GTEx eQTL) were obviously higher overlapped with
MAGMA-identified genes from GWAS on insomnia than those from GWAS on Null phenotype (Figure 3B,C).

PPI network-based analysis of five insomnia-risk genes
To determine whether identified insomnia-risk genes functionally interacted together, we performed a PPI
network-based analysis with the application of interactions of physical interactions, co-expression, predictions, path-
ways, and shared protein domains based on the well-documented database of GeneMANIA [47]. Figure 4 demon-
strated that these identified insomnia-risk genes is generated a biological network, suggesting that there exist highly
functional links among these identified risk genes. For example, two hub genes of LDHA and FGFR3 have the most
interactions with other genes (Figure 4). Additionally, the gene of TEX264 shows evidence of shared protein domains
with the insomnia-risk gene of HEBP2, and has co-expression evidence with DALRD3 (Figure 4)
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Figure 3. Identification of insomnia risk genes based on two independent eQTL datasets

(A) Venn plot demonstrated the overlapped genes between discovery (Myers eQTL) and replication stage (GTEx eQTL). (B) Sher-

lock-identified genes from Myers eQTL data (the discovery stage) were obviously higher overlapped with genes identified from

MAGMA analysis of GWAS on insomnia than those from MAGMA analysis of GWAS on null phenotype. (C) Sherlock-identified

genes from GTEx eQTL data (the replication stage) were obviously higher overlapped with genes identified from MAGMA analysis

of GWAS on insomnia than those identified from MAGMA analysis of GWAS on null phenotype.

Differential expression of identified risk genes between insomnia and
control brain samples
To determine whether the co-expression patterns among five identified genes were altered by disease status, we carried
out a Pearson correlation analysis with the use of corrplot package for a visualization based on the RNA expression
data from GSE40562 from the NCBI GEO database. Interestingly, we found prominent alterations of the co-expression
relationships among five genes categorized by insomnia status (Figure 5A,B and Supplementary Tables S9–S10). For
example, the positive correlation coefficient of LDHA with DALRD3 was 0.62 in all samples, but it was largely reduced
to 0.06 in insomnic patients. The negative correlation score of LDHA with TEX264 was reduced from −0.40 in all
samples to −0.18 in insomnic patients. Similarly, the negative correlation score between DALRD3 and TEX264 was
decreased from −0.48 in all samples to −0.31 in insomnic patients. In addition, the co-expression correlation between
DALRD3 and HEBP2 fundamentally changed from 0.54 in all samples to −0.24 in insomnic patients.

Furthermore, by conducting a DGE analysis, we found that three genes of DALRD3 (P=5.0 × 10−5), LDHA
(P=0.044), and HEBP2 (P=0.032) showed significantly down-regulated expression in insomnia brain samples com-
pared with controls (Figure 5C–E and Supplementary Table S8). Unfortunately, there was no significant evidence for
both FGFR3 and TEX264 between insomnia patients and controls (Supplementary Table S8). In addition, based on
the dataset of GSE6514, we found that the expression patterns of these five genes between sleep and sleep deprivation
remarkably changed across different time points in mice brain cortex (Figure 6A–E). For example, the gene of DALR3
has similar decreased expression patterns of sleep and wake states before the time point of 6 h, but subsequently the
gene expression is prominently increased in wake state and still decreased in sleep state (Figure 6A).

8 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. Protein–protein interactions network constructed by using five identified insomnia risk genes

The five insomnia-associated risk genes were provided as query (red nodes) and a number of additional genes were predicted to be

linked (green nodes). The interactions evidence was based on psychical interactions, pathway links, predicted links, co-expression,

and shared protein domains.

Discussion
Insomnia disorder is one of the most prevalent mental disorders worldwide [61]. Multiple lines of evidence from
family and twin studies have been reported to suggest the involvement of genetic components in the pathogenesis of
insomnia [9–11]. To date, a few insomnia-related linkages and candidate genetic association studies with relatively
small sample sizes have been carried out. With the development of high-throughput genotyping technologies and
the increase in sample size, numerous highly significant genetic variants among more than 200 genomic loci have
been identified to be associated with insomnia by using the GWAS approach [13–17]. However, it remains equivocal
how these identified genetic variants convey susceptibility to insomnia. In view of suffering the influence of linkage
disequilibrium, the vast majority of reported susceptibility loci contain many highly linked genetic variants with
similar significant association signals, enhancing the difficulty to find the authentic causal variants. As we all know,
most of the GWAS-identified genetic variants are mapped into non-coding regions of the genome [62,63]. Thus,
there is a tough conundrum from GWAS left which is how a genetic variant change in the non-coding region could

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 5. The differential expression patterns in the brain between insomnic patients and controls

(A) Co-expression patterns of five susceptible genes in all samples based on the Pearson correlation analysis. (B) Co-expression

patterns of five susceptible genes in insomnic patients based on the Pearson correlation analysis. (C and D) Boxplots show differ-

ential expression signatures of identified genes in the brain between insomnic patients and controls. (C) for DALRD3, (D) for LDHA,

and (E) for HEBP2.

contribute to increased risk to a specific phenotype, such as insomnia. One possible explanation is that these identified
genetic variants in non-coding regions are more likely to result in alterations of gene expression levels rather than in
alterations of protein functions [34,64].

To address this issue, many researchers have developed various bioinformatics statistical approaches for data in-
tegration of the genetic variants information from GWAS summary statistics and eQTL datasets [22,64,65]. In the
present study, we performed a Sherlock Bayesian-based integrative analysis of two independent brain eQTL datasets
(N=329) and GWAS summary data on insomnia (N=386,533) to identify candidate gene conferring susceptibility
to insomnia. The approach of GWAS scanning tens of millions of genetic variants is extensively applied to identify
genomic regions harboring common SNPs that are significantly associated with traits of interest, including insom-
nia. Nevertheless, the burden of correction for multiple-testing from millions of SNPs remarkably limits the power of
GWAS to confirm the associated risk SNPs. Many SNPs with small-to-modest effects that do not reach a genome-wide
significance but is still pivotal to insomnia may be ignored by GWAS. In addition, GWAS alone could not infer whether

10 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 6. The temporal changes in the expression of five identified risk genes in the brain between behavioral states of

sleep and sleep deprivation

(A) for DALRD3, (B) for LDHA, (C) for HEBP2, (D) for FGFR3, (E) for TEX264.

these identified disease-associated SNPs have functional consequences. Thus, Sherlock Bayesian analysis used in the
current investigation is an effective approach for identifying novel risk genes based on genetic and expression infor-
mation, and has been widely employed in numerous diseases [22,26–29].

In the discovery stage, we observed 499 genes whose alterations in expression may be implicated in the etiol-
ogy of insomnia by using Sherlock analysis. Numerous identified genes have been demonstrated to be associated
with sleep-related traits or insomnia in previous studies. For example, the genes of FOXF2 [52], PLLP [66], and
WWC1 [52]. More interestingly, these identified genes were over-represented in six biological pathways, which
have been widely implicated in the etiology of neuropsychiatric or neurological disorders [53–59,67], including
insomnia-related disease [68,69]. Of these pathways, three pathways of Huntington’s disease, Alzheimer’s disease, and
Parkinson’s disease were derived from neurodegenerative disorders, which is the umbrella term for the progressive
loss of structure or function of neurons. For example, Huntington’s disease is a neurodegenerative genetic disorder
that leads to mental decline and behavioral symptoms [70]. Also, the other three significantly enriched pathways of
spliceosome, oxidative phosphorylation, and wnt signaling pathway have been extensively reported to be involved
in neurodegenerative disorders, such as autism [71–73], Alzheimer’s disease [74,75], Parkinson’s disease [76–78],
and Huntington’s disease [79,80]. Consistently, previous studies [60] have reported that there existed shared genet-
ics between sleep disturbance traits and neuropsychiatric disorders. Consistently, our phenotype-focused enrichment
analysis also found these Sherlock-identified genes were significantly enriched in several phenotypes relevant to neu-
rodevelopment or brain morphological abnormality, including abnormality of the cerebrum, abnormality of forebrain
morphology, and morphological abnormality of the central nervous system. Thus, our results provided supportive
evidence that insomnia has an impact on the quality of life in patients and may involve in the pathogenesis of various
neurodegenerative disorders.

To validate and prioritize these identified genes, we reconducted the Sherlock Bayesian analysis with the use of
an independent brain eQTL dataset. There were five promising genes of DALRD3, LDHA, HEBP2, TEX264, and
FGFR3 replicated. Meanwhile, we detected that the Sherlock-identified genes from both discovery and replication
stage were prominently higher overlapped with MAGMA-discovered genes from GWAS on insomnia than that from
GWAS on Null phenotype, indicating that these Sherlock-identified genes associated insomnia risk are probably due
to genetic components rather than random chances. Through conducting the PPI network analysis, we noticed that
these five genes collectively interacted with each other. The insomnia-associated gene of HEBP2 has shared pro-
tein domains with the insomnia-associated gene of TEX264 [81], and TEX264 show evidence of co-expression with
DALRD3 [82]. The insomnia-associated gene of LDHA has co-expression links with predicted genes of PGK1 and
RARS [83]. By using co-expression analysis, we found that the gene–gene co-expression patterns were significantly
different between insomnic patients and controls. Furthermore, we observed DALRD3, LDHA, and HEBP2 are sig-
nificantly lower expressed in insomnic patients than those in controls. Consistently, these five identified genes showed
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differential expression patterns between sleeping duration and sleep deprivation at different time points. Together,
these findings provided consistent evidence to support that these newly identified genes have roles in the etiology of
insomnia risk and may represent therapeutic targets for treating insomnia.

In the current investigation, by using numerous bioinformatics analyses including Sherlock Bayesian anal-
ysis, MAGMA gene enrichment analysis, pathway enrichment analysis, drug-based enrichment analysis, PPI
network-based analysis, co-expression analysis, DGE-based analysis, and differential time point-based expression
analysis based on multilayer data from various sources, we identified five novel susceptible genes associated with
insomnia risk. With regard to five identified genes, there existed a bulk of evidence to demonstrate their molecu-
lar functions. The protein, encoded by LDHA gene, catalyzes the conversion of L-lactate and NAD to pyruvate and
NADH in the final step of anaerobic glycolysis. The LDHA gene has been reported to be implicated in various neu-
rodegenerative disorders [84,85]. For example, Newington and co-workers [84] have shown that the overexpression
of LDHA in a rat B12 cell line conveys resistance to amyloid β and other neurotoxins, which may elucidate why some
people tolerate high levels of amyloid β deposition without the development of Alzheimer’s disease. Furthermore,
a single conserved exon 5 haplotype in LDHA is remarkably associated with the risk of panic disorder, which is a
type of anxiety disorder [86]. The mRNA expression levels of LDHA gene increased in major depressive disorder
patients in both depressive state and remissive state in comparison with healthy control subjects [87]. For the gene of
DALRD3, it encodes a protein with a DALR anticodon binding domain similar to that of class la aminoacyl tRNA
synthetases. The abnormal expression of DALRD3 has been reported to be significantly associated with sleep-related
phenotypes (P=0.033) [88]. The FGFR3 gene, encoding a member of the fibroblast growth factor receptor family,
has been reported to be exclusively expressed in the locus coeruleus in patients with major depressive disorder [89].
Previous studies have demonstrated that skeletal dysplasia patients with Asn540Lys mutation in the FGFR3 gene have
been documented to accompany with medial temporal lobe dysgenesis and epilepsy [90–92].

In conclusion, the current comprehensive study provides multiple lines of evidence for supporting DALRD3,
LDHA, HEBP2, TEX264, and FGFR3 as insomnia-associated genes whose abnormal expression level may convey
risk to insomnia. Our findings indicate that individuals suffering from insomnia may be more vulnerable to various
neurodegenerative disorders. Furthermore, we link insomnia risk variants to susceptible genes and biological path-
ways, offering a possible explanation of biological mechanism between genetic variation and insomnia risk. Further
molecular experiments are warranted to investigate the molecular functions of identified genes and risk variants.
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Supplemental Tables 

 

Supplemental Table S1. Sherlock integrative analysis identifies 449 genes as insomnia risk genes in discovery 

samples 

Gene LBF Sherlock-based GWAS Catalog 

FOXF2 -0.046 8.89E-06 Reported gene 

FAM193A -0.047 1.22E-04 Novel gene 

PAIP1 -0.047 3.33E-04 Novel gene 

MPG -0.048 3.67E-04 Novel gene 

INO80 -0.048 5.00E-04 Novel gene 

VPS13B -0.048 5.98E-04 Novel gene 

TGFB3 -0.048 7.78E-04 Novel gene 

LOC283537 -0.048 8.00E-04 Novel gene 

LOC155340 -0.048 9.16E-04 Novel gene 

GLUL -0.048 1.05E-03 Novel gene 

RPS17 -0.049 1.22E-03 Novel gene 

ZNF621 -0.049 1.33E-03 Novel gene 

SMYD5 -0.049 1.34E-03 Novel gene 

PLLP -0.049 1.46E-03 Reported gene 

RWDD2B -0.049 1.60E-03 Novel gene 

CAT -0.049 1.74E-03 Novel gene 

SMEK1 -0.049 1.89E-03 Reported gene 

NDUFS6 -0.049 1.90E-03 Novel gene 

LYL1 -0.049 2.00E-03 Novel gene 

FAF1 -0.049 2.11E-03 Novel gene 

TNFSF13 -0.049 2.29E-03 Novel gene 

HNRNPC -0.050 2.35E-03 Novel gene 

GRSF1 -0.050 2.52E-03 Novel gene 

BCAS1 -0.050 2.58E-03 Novel gene 

WWC1 -0.050 2.73E-03 Reported gene 

VPS52 -0.050 2.85E-03 Novel gene 

SLC26A11 -0.050 3.00E-03 Novel gene 

PLCB1 -0.050 3.11E-03 Reported gene 

C15orf41 -0.050 3.19E-03 Novel gene 

PCBD1 -0.050 0.003 Novel gene 

RPS21 -0.050 0.003 Novel gene 

CCT8 -0.050 0.003 Novel gene 

KPTN -0.050 0.004 Novel gene 

SPOCK2 -0.050 0.004 Novel gene 

SLC35A1 -0.051 0.004 Novel gene 

CDC27 -0.051 0.004 Novel gene 

DAPK1 -0.051 0.004 Reported gene 

AMT -0.051 0.004 Reported gene 

MYO5C -0.051 0.004 Novel gene 

PDE4C -0.051 0.004 Novel gene 

FBXO28 -0.051 0.005 Novel gene 

HPCL2 -0.051 0.005 Novel gene 

GRAMD1A -0.052 0.005 Novel gene 

CYB561D1 -0.052 0.005 Novel gene 

S1PR5 -0.052 0.005 Novel gene 

IL18 -0.052 0.005 Novel gene 



ZCRB1 -0.052 0.005 Novel gene 

NUBPL -0.052 0.005 Novel gene 

NASP -0.052 0.005 Novel gene 

LOC400810 -0.052 0.006 Novel gene 

B3GAT1 -0.052 0.006 Novel gene 

PIK3IP1 -0.052 0.006 Novel gene 

GRAMD3 -0.052 0.006 Novel gene 

PIEZO2 -0.053 0.006 Novel gene 

PSEN1 -0.053 0.006 Novel gene 

TNS3 -0.053 0.006 Novel gene 

RBBP7 -0.053 0.006 Novel gene 

LOC170371 -0.053 0.006 Novel gene 

LIPE -0.053 0.007 Novel gene 

TRAPPC10 -0.053 0.007 Novel gene 

C7orf63 -0.053 0.007 Novel gene 

CHD8 -0.053 0.007 Novel gene 

MFSD5 -0.053 0.007 Novel gene 

BRODL -0.053 0.007 Novel gene 

C14orf43 -0.053 0.007 Novel gene 

CCDC106 -0.053 0.007 Novel gene 

FA2H -0.053 0.007 Novel gene 

LOC143425 -0.053 0.008 Novel gene 

C19orf10 -0.054 0.008 Novel gene 

TNFAIP2 -0.054 0.008 Novel gene 

LOC285148 -0.054 0.008 Novel gene 

MFF -0.054 0.008 Novel gene 

SLC25A38 -0.054 0.008 Novel gene 

KCNMA1 -0.054 0.008 Novel gene 

ANKRD37 -0.054 0.008 Novel gene 

LOC348094 -0.054 0.008 Novel gene 

CARHSP1 -0.054 0.009 Novel gene 

RAB33A -0.054 0.009 Novel gene 

SEZ6L2 -0.054 0.009 Novel gene 

NPLOC4 -0.054 0.009 Novel gene 

SNX27 -0.055 0.009 Novel gene 

LDHA -0.055 0.009 Novel gene 

PFN2 -0.055 0.009 Novel gene 

TMEM209 -0.055 0.009 Novel gene 

ZNF668 -0.055 0.009 Novel gene 

SMARCA4 -0.056 0.010 Novel gene 

TST -0.056 0.010 Novel gene 

GPHN -0.056 0.010 Novel gene 

LOC399917 -0.056 0.010 Novel gene 

ZADH2 -0.056 0.010 Novel gene 

DARC -0.056 0.010 Novel gene 

SESN1 -0.056 0.010 Novel gene 

SAMD4B -0.056 0.010 Novel gene 

BCORL1 -0.056 0.010 Novel gene 

DENND1B -0.056 0.011 Novel gene 

EFCAB6 -0.056 0.011 Novel gene 

LOC284347 -0.056 0.011 Novel gene 

FRMD6 -0.056 0.011 Novel gene 

VSIG1 -0.057 0.011 Novel gene 



C19orf53 -0.057 0.011 Novel gene 

ATP5G1 -0.057 0.011 Novel gene 

DALRD3 -0.057 0.011 Novel gene 

ZNF518B -0.057 0.011 Novel gene 

SPP1 -0.057 0.012 Novel gene 

PTPLB -0.057 0.012 Novel gene 

LOC401155 -0.057 0.012 Novel gene 

TAF4 -0.057 0.012 Novel gene 

EMX2 -0.057 0.012 Novel gene 

LOC401260 -0.057 0.012 Novel gene 

C4orf29 -0.058 0.012 Novel gene 

EIF3FP2 -0.058 0.012 Novel gene 

ZNF22 -0.058 0.012 Novel gene 

HSPA12A -0.058 0.013 Novel gene 

CYB5R2 -0.058 0.013 Novel gene 

DLX6-AS1 -0.058 0.013 Novel gene 

NMT2 -0.058 0.013 Novel gene 

STS -0.058 0.013 Novel gene 

LOC401528 -0.058 0.013 Novel gene 

FKBP8 -0.059 0.013 Novel gene 

NFXL1 -0.059 0.013 Novel gene 

CLDN5 -0.059 0.013 Novel gene 

SEC62 -0.059 0.014 Novel gene 

ABL1 -0.059 0.014 Novel gene 

LZIC -0.059 0.014 Novel gene 

RAB40C -0.059 0.014 Novel gene 

SIPA1L2 -0.059 0.014 Novel gene 

PRSS23 -0.060 0.014 Novel gene 

RPAP1 -0.060 0.014 Novel gene 

RHBDD2 -0.060 0.014 Novel gene 

PTPN4 -0.060 0.014 Novel gene 

COX4I1 -0.060 0.015 Novel gene 

PIEZO1 -0.060 0.015 Novel gene 

FABP6 -0.060 0.015 Novel gene 

SDCBP2 -0.060 0.015 Novel gene 

THY1 -0.060 0.015 Novel gene 

SGK1 -0.060 0.015 Novel gene 

ZNF554 -0.060 0.015 Novel gene 

SLC20A2 -0.060 0.015 Novel gene 

CNRIP1 -0.060 0.015 Novel gene 

FUCA1 -0.060 0.016 Novel gene 

HNRNPR -0.060 0.016 Novel gene 

GTPBP4 -0.060 0.016 Novel gene 

SNX11 -0.061 0.016 Novel gene 

BRPF3 -0.061 0.016 Novel gene 

NDST2 -0.061 0.016 Novel gene 

CHCHD3 -0.061 0.016 Reported gene 

SLC4A8 -0.061 0.016 Novel gene 

CDK18 -0.061 0.016 Novel gene 

CPNE8 -0.061 0.017 Novel gene 

LOC342808 -0.061 0.017 Novel gene 

KRTCAP2 -0.061 0.017 Novel gene 

IFIH1 -0.061 0.017 Novel gene 



TUBG1 -0.061 0.017 Novel gene 

VAC14 -0.061 0.017 Novel gene 

POPDC3 -0.062 0.017 Novel gene 

TXN2 -0.062 0.017 Novel gene 

EFEMP1 -0.062 0.017 Novel gene 

SSR4 -0.062 0.018 Novel gene 

NOC3L -0.062 0.018 Novel gene 

ALDH9A1 -0.062 0.018 Novel gene 

NUP107 -0.062 0.018 Novel gene 

FOXQ1 -0.062 0.018 Reported gene 

ECSIT -0.062 0.018 Novel gene 

FXR2 -0.062 0.018 Novel gene 

ITGAX -0.062 0.018 Novel gene 

LAPTM5 -0.062 0.018 Novel gene 

ZBED1 -0.062 0.018 Novel gene 

XPO5 -0.062 0.019 Novel gene 

PCBP1 -0.062 0.019 Novel gene 

LOC222901 -0.062 0.019 Novel gene 

SERTAD2 -0.063 0.019 Novel gene 

NDUFS5 -0.063 0.019 Novel gene 

PPIL4 -0.063 0.019 Novel gene 

C9orf9 -0.063 0.019 Novel gene 

RAPGEF2 -0.063 0.019 Novel gene 

DONSON -0.063 0.020 Novel gene 

RGS14 -0.063 0.020 Novel gene 

SMG5 -0.063 0.020 Novel gene 

LOC91526 -0.063 0.020 Novel gene 

PLCB2 -0.063 0.020 Novel gene 

RIOK1 -0.063 0.020 Novel gene 

TXNRD2 -0.063 0.020 Novel gene 

LOC51248 -0.063 0.020 Novel gene 

TDG -0.063 0.020 Novel gene 

PPARD -0.063 0.021 Novel gene 

ARMCX3 -0.063 0.021 Novel gene 

UBL5 -0.063 0.021 Reported gene 

HYAL2 -0.064 0.021 Reported gene 

DPP8 -0.064 0.021 Novel gene 

XPO7 -0.064 0.021 Novel gene 

TMED4 -0.064 0.021 Novel gene 

RNMTL1 -0.064 0.021 Novel gene 

TMEM200A -0.064 0.021 Novel gene 

LOC389348 -0.064 0.022 Novel gene 

HBA1 -0.064 0.022 Novel gene 

RAB9A -0.064 0.022 Novel gene 

ZBTB38 -0.064 0.022 Novel gene 

PIH1D1 -0.064 0.022 Novel gene 

LOC157567 -0.065 0.022 Novel gene 

FAM122A -0.065 0.022 Novel gene 

C2CD2 -0.065 0.022 Novel gene 

LDLR -0.065 0.022 Novel gene 

UPRT -0.065 0.023 Novel gene 

GRINA -0.065 0.023 Novel gene 

MRP63 -0.065 0.023 Novel gene 



U2AF1L4 -0.065 0.023 Novel gene 

PBXIP1 -0.065 0.023 Novel gene 

TERF2 -0.065 0.023 Novel gene 

RNASEH1P1 -0.065 0.023 Novel gene 

TCERG1L -0.065 0.023 Novel gene 

TEX264 -0.065 0.023 Novel gene 

GPR22 -0.065 0.024 Novel gene 

BRAP -0.066 0.024 Novel gene 

SYNJ2BP -0.066 0.024 Novel gene 

PLEC -0.066 0.024 Novel gene 

CD37 -0.066 0.024 Novel gene 

ZFC3H1 -0.066 0.024 Novel gene 

FAM222B -0.066 0.024 Novel gene 

15-Sep -0.066 0.024 Novel gene 

LINC00526 -0.066 0.024 Novel gene 

BRIX1 -0.066 0.025 Novel gene 

FLJ20373 -0.066 0.025 Novel gene 

ZNF524 -0.066 0.025 Novel gene 

RRP8 -0.066 0.025 Novel gene 

PIAS3 -0.066 0.025 Novel gene 

MAP4K2 -0.066 0.025 Novel gene 

RTCA -0.066 0.025 Novel gene 

MPZL2 -0.066 0.025 Reported gene 

PPM1G -0.067 0.025 Novel gene 

DERA -0.067 0.025 Novel gene 

KLHL28 -0.067 0.026 Novel gene 

SERINC2 -0.067 0.026 Novel gene 

PTGES3 -0.067 0.026 Novel gene 

DHRS4L2 -0.067 0.026 Novel gene 

YWHAE -0.067 0.026 Novel gene 

IGF1R -0.067 0.026 Novel gene 

ZNF18 -0.067 0.026 Novel gene 

AGPAT4-IT1 -0.067 0.026 Novel gene 

TBC1D14 -0.067 0.027 Novel gene 

TBRG1 -0.067 0.027 Novel gene 

STX12 -0.067 0.027 Novel gene 

BMP1 -0.067 0.027 Novel gene 

NLE1 -0.068 0.027 Novel gene 

PPP1R3D -0.068 0.027 Novel gene 

TP53BP1 -0.068 0.027 Novel gene 

PDK2 -0.068 0.027 Novel gene 

TBL3 -0.068 0.027 Novel gene 

SLC27A5 -0.068 0.028 Novel gene 

ICT1 -0.068 0.028 Novel gene 

MPST -0.068 0.028 Novel gene 

CHEK2 -0.068 0.028 Novel gene 

DCBLD2 -0.068 0.028 Novel gene 

CUL4B -0.068 0.028 Novel gene 

RBBP9 -0.068 0.028 Novel gene 

WIPF2 -0.068 0.028 Novel gene 

NIPA2 -0.068 0.028 Novel gene 

SYT11 -0.068 0.029 Novel gene 

GOLPH3 -0.069 0.029 Novel gene 



GGCX -0.069 0.029 Novel gene 

NARG2 -0.069 0.029 Novel gene 

ELP4 -0.069 0.029 Novel gene 

LOC91942 -0.069 0.029 Novel gene 

PRPF4 -0.069 0.029 Novel gene 

LOC399865 -0.069 0.029 Novel gene 

SDHA -0.069 0.029 Novel gene 

GALNTL4 -0.069 0.030 Novel gene 

SOX13 -0.069 0.030 Novel gene 

TRIM56 -0.069 0.030 Novel gene 

MYL5 -0.069 0.030 Novel gene 

SRSF2 -0.069 0.030 Novel gene 

SLAIN1 -0.069 0.030 Novel gene 

RHOG -0.069 0.030 Novel gene 

RAI14 -0.069 0.030 Reported gene 

CTSO -0.070 0.030 Novel gene 

MRPS11 -0.070 0.030 Novel gene 

MESDC1 -0.070 0.031 Novel gene 

FABP7 -0.070 0.031 Novel gene 

ATP5B -0.070 0.031 Novel gene 

FAM129A -0.070 0.031 Novel gene 

LOC130617 -0.070 0.031 Novel gene 

LRRN1 -0.070 0.031 Novel gene 

BMI1 -0.070 0.031 Novel gene 

KIAA1033 -0.070 0.031 Novel gene 

ETHE1 -0.070 0.031 Novel gene 

C6orf130 -0.070 0.032 Novel gene 

ATP9B -0.070 0.032 Novel gene 

C10orf137 -0.070 0.032 Novel gene 

SLC35D2 -0.070 0.032 Novel gene 

SOD1 -0.070 0.032 Novel gene 

PCID2 -0.070 0.032 Novel gene 

ZNF510 -0.070 0.032 Novel gene 

PRUNE -0.070 0.032 Novel gene 

NUP88 -0.071 0.033 Novel gene 

DAAM2 -0.071 0.033 Novel gene 

C4orf27 -0.071 0.033 Novel gene 

FGFR3 -0.071 0.033 Novel gene 

WDR77 -0.071 0.033 Novel gene 

HAUS2 -0.071 0.033 Novel gene 

HLA-DPB1 -0.071 0.033 Novel gene 

DDX52 -0.071 0.033 Novel gene 

SCFD1 -0.071 0.033 Reported gene 

HS3ST6 -0.071 0.034 Novel gene 

CKS1B -0.071 0.034 Novel gene 

GEMIN4 -0.071 0.034 Novel gene 

FOXJ3 -0.071 0.034 Novel gene 

STAB1 -0.071 0.034 Novel gene 

SECISBP2L -0.071 0.034 Novel gene 

CYBRD1 -0.071 0.034 Novel gene 

TOMM40L -0.071 0.034 Novel gene 

AP3M2 -0.071 0.034 Novel gene 

LSM4 -0.071 0.035 Novel gene 



CCND1 -0.071 0.035 Novel gene 

METTL1 -0.071 0.035 Novel gene 

APC -0.072 0.035 Novel gene 

PPP1R14C -0.072 0.035 Novel gene 

CNNM2 -0.072 0.035 Novel gene 

LARP1 -0.072 0.035 Novel gene 

UQCRH -0.072 0.035 Novel gene 

DHX38 -0.072 0.035 Novel gene 

RNF43 -0.072 0.036 Novel gene 

CD99L2 -0.073 0.036 Novel gene 

SLC12A9 -0.073 0.036 Novel gene 

FXYD5 -0.073 0.036 Novel gene 

BAZ1B -0.073 0.036 Novel gene 

SLC48A1 -0.073 0.036 Novel gene 

THAP6 -0.073 0.036 Novel gene 

OXCT1 -0.073 0.036 Novel gene 

YTHDF2P1 -0.073 0.036 Novel gene 

LASP1 -0.073 0.037 Novel gene 

PIAS4 -0.073 0.037 Novel gene 

NLK -0.073 0.037 Novel gene 

MGST2 -0.073 0.037 Novel gene 

DAB2 -0.074 0.037 Novel gene 

MRPL39 -0.074 0.037 Novel gene 

UBTD1 -0.074 0.037 Novel gene 

TPPP -0.074 0.037 Novel gene 

DFFB -0.074 0.037 Novel gene 

ATP2C1 -0.074 0.038 Novel gene 

DHX8 -0.074 0.038 Novel gene 

VPS26B -0.074 0.038 Novel gene 

BCL2L13 -0.074 0.038 Novel gene 

CRY1 -0.074 0.038 Novel gene 

PDS5A -0.074 0.038 Novel gene 

ACADM -0.074 0.038 Reported gene 

PHB -0.074 0.038 Novel gene 

ATPAF2 -0.075 0.038 Novel gene 

DYNC1I2 -0.075 0.039 Novel gene 

CCDC51 -0.075 0.039 Novel gene 

FSTL3 -0.075 0.039 Novel gene 

H105E3 -0.075 0.039 Novel gene 

SDHD -0.075 0.039 Novel gene 

FLJ32205 -0.075 0.039 Novel gene 

TAF6L -0.075 0.039 Novel gene 

ATAD2 -0.075 0.039 Novel gene 

RAB18 -0.075 0.039 Novel gene 

CTSH -0.075 0.040 Novel gene 

G2E3 -0.075 0.040 Novel gene 

CTC1 -0.075 0.040 Reported gene 

LOC401033 -0.075 0.040 Novel gene 

MAPK11 -0.075 0.040 Novel gene 

NDUFB4 -0.075 0.040 Novel gene 

HSPBP1 -0.075 0.040 Novel gene 

ERRFI1 -0.076 0.040 Novel gene 

NAGA -0.076 0.040 Novel gene 



PIP5K1A -0.076 0.041 Novel gene 

TEX29 -0.076 0.041 Novel gene 

ZKSCAN5 -0.076 0.041 Novel gene 

HYI -0.076 0.041 Novel gene 

R3HDM2 -0.076 0.041 Novel gene 

ST3GAL5 -0.076 0.041 Novel gene 

CCND2 -0.076 0.041 Novel gene 

ANK2 -0.076 0.041 Novel gene 

PHF17 -0.076 0.041 Novel gene 

ABCC13 -0.076 0.042 Novel gene 

PTPRN2 -0.077 0.042 Novel gene 

CIRBP -0.077 0.042 Novel gene 

TMEM19 -0.077 0.042 Novel gene 

LOC401505 -0.077 0.042 Novel gene 

TCEB3 -0.077 0.042 Novel gene 

CTCF -0.077 0.042 Novel gene 

PEG10 -0.077 0.042 Novel gene 

TCEB1 -0.077 0.042 Novel gene 

MAP6D1 -0.077 0.043 Novel gene 

WFDC2 -0.077 0.043 Novel gene 

UQCRC2 -0.077 0.043 Novel gene 

SOCS2 -0.077 0.043 Novel gene 

IDUA -0.077 0.043 Novel gene 

LOC51693 -0.077 0.043 Novel gene 

SERPINA3 -0.077 0.043 Novel gene 

HSPA5 -0.077 0.043 Novel gene 

ANKRD24 -0.077 0.043 Novel gene 

ZMYM1 -0.078 0.044 Novel gene 

CIB2 -0.078 0.044 Novel gene 

PRO1843 -0.078 0.044 Novel gene 

RHOA -0.078 0.044 Reported gene 

ANKS1A -0.078 0.044 Novel gene 

MMP28 -0.078 0.044 Novel gene 

RPS23 -0.078 0.044 Novel gene 

LOC389792 -0.079 0.044 Novel gene 

ATP6V1E1 -0.079 0.044 Novel gene 

LOC51145 -0.079 0.045 Novel gene 

FCGR3A -0.079 0.045 Novel gene 

LRRCC1 -0.079 0.045 Novel gene 

FAM13B -0.079 0.045 Novel gene 

PDGFA -0.079 0.045 Novel gene 

RNF13 -0.079 0.045 Novel gene 

FAM174B -0.079 0.045 Reported gene 

GCA -0.080 0.045 Novel gene 

TK2 -0.080 0.045 Novel gene 

ANXA11 -0.080 0.045 Novel gene 

GTF3C6 -0.080 0.046 Novel gene 

LOC148203 -0.080 0.046 Novel gene 

RABEPK -0.080 0.046 Novel gene 

TSPAN6 -0.080 0.046 Novel gene 

LOC126208 -0.080 0.046 Novel gene 

HEBP2 -0.080 0.046 Novel gene 

TMEM140 -0.081 0.046 Novel gene 



CCDC12 -0.081 0.046 Novel gene 

MAN2A1 -0.081 0.047 Novel gene 

RAD9A -0.081 0.047 Novel gene 

ZDHHC14 -0.081 0.047 Novel gene 

LOC399979 -0.081 0.047 Novel gene 

VWA5B2 -0.081 0.047 Novel gene 

VCAM1 -0.081 0.047 Novel gene 

SEC61G -0.081 0.047 Novel gene 

ELOVL1 -0.081 0.047 Novel gene 

FLJ23529 -0.081 0.047 Novel gene 

HDDC3 -0.082 0.048 Novel gene 

ZFHX2 -0.082 0.048 Novel gene 

FNBP1L -0.082 0.048 Novel gene 

ENY2 -0.082 0.048 Reported gene 

SF3A3 -0.082 0.048 Novel gene 

TRIB3 -0.082 0.048 Novel gene 

UBA7 -0.082 0.048 Reported gene 

COG3 -0.082 0.048 Novel gene 

UBE2F -0.082 0.048 Novel gene 

EYA2 -0.083 0.049 Novel gene 

SNTA1 -0.083 0.049 Novel gene 

HNRNPU -0.083 0.049 Novel gene 

LOC114984 -0.083 0.049 Novel gene 

CPNE2 -0.083 0.049 Novel gene 

LOC388341 -0.083 0.049 Novel gene 

OGFOD2 -0.083 0.049 Novel gene 

C8orf42 -0.083 0.049 Novel gene 

LOC400586 -0.083 0.049 Novel gene 

NEO1 -0.083 0.050 Novel gene 

ZNF436 -0.083 0.050 Novel gene 

REEP6 -0.083 0.050 Novel gene 

FRG1 -0.083 0.050 Novel gene 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplemental Table S2. Significant pathways enriched by insomnia-related genes identified from 

Sherlock integrative analysis 

Pathway ID Pathway Terms 

Associated genes 

proportion P value Corrected P value 

KEGG:05016 Huntington's disease 0.073 5.58E-05 0.014  

KEGG:05010 Alzheimer's disease 0.076 6.34E-05 0.015  

KEGG:00190 

Oxidative 

phosphorylation 0.083 1.09E-04 0.026  

KEGG:03040 Spliceosome 0.082 1.17E-04 0.028  

KEGG:05012 Parkinson's disease 0.077 1.95E-04 0.045  

KEGG:04310 Wnt signaling pathway 0.077 2.07E-04 0.048  

 

 



Supplemental Table S3. Significant GO-terms enriched by insomnia-related genes identified from 

Sherlock integrative analysis 

GO ID GO Terms 

Associated genes p

roportion P value Corrected P value 

GO:0003730 

mRNA 3'-UTR 

binding 0.12 7.39E-05 0.018  

GO:0003729 mRNA binding 0.069 1.01E-04 0.024  

GO:0030529 

Intracellular 

ribonucleoprotein 

complex 0.045 1.10E-05 0.003  

GO:0044429 Mitochondrial part 0.041 3.22E-05 0.008  

GO:0098798 

Mitochondrial protein 

complex 0.082 6.08E-05 0.015  

GO:0044455 

Mitochondrial 

membrane part 0.069 1.01E-04 0.024  

GO:0098803 

Respiratory chain 

complex 0.11 1.82E-04 0.042  

GO:0006275 

Regulation of DNA 

replication 0.085 8.28E-05 0.020  

GO:0006611 

Protein export from 

nucleus 0.069 1.65E-04 0.039  

GO:0051169 Nuclear transport 0.048 1.82E-04 0.042  

 

 



Supplemental Table S4. Phenotype-related gene sets in WebGeslat resource significantly enriched by 

insomnia-associated genes identified from Sherlock integrative analysis 

 

Gene Set Description Size Expect Ratio P Value 

HP:0002060 Abnormality of the cerebrum 1313 29.10 1.62 4.88E-05 

HP:0100547 Abnormality of forebrain morphology 1334 29.56 1.59 7.66E-05 

HP:0002011 
Morphological abnormality of the central nervous 

system 
1909 42.30 1.37 4.17E-04 

HP:0012758 Neurodevelopmental delay 1474 32.66 1.47 5.19E-04 

HP:0011804 Abnormality of muscle physiology 1758 38.96 1.39 7.28E-04 

HP:0012443 Abnormality of brain morphology 1741 38.58 1.37 1.16E-03 

HP:0008972 
Decreased activity of mitochondrial respiratory 

chain 
55 1.22 4.92 1.21E-03 

HP:0001252 Muscular hypotonia 1187 26.30 1.52 1.23E-03 

HP:0011922 
Abnormal activity of mitochondrial respiratory 

chain 
56 1.24 4.84 1.33E-03 

HP:0001263 Global developmental delay 1238 27.43 1.49 1.47E-03 

HP:0003110 Abnormality of urine homeostasis 455 10.08 1.98 1.74E-03 

HP:0003808 Abnormal muscle tone 1467 32.51 1.42 2.00E-03 

HP:0002536 Abnormal cortical gyration 211 4.68 2.57 2.09E-03 

HP:0002269 Abnormality of neuronal migration 274 6.07 2.31 2.44E-03 

HP:0012759 Neurodevelopmental abnormality 1975 43.76 1.30 2.55E-03 

HP:0001640 Cardiomegaly 65 1.44 4.17 2.88E-03 

HP:0001250 Seizures 1321 29.27 1.43 2.94E-03 

HP:0002977 
Aplasia/Hypoplasia involving the central nervous 

system 
1157 25.64 1.48 3.01E-03 

HP:0100833 Neoplasm of the small intestine 14 0.31 9.67 3.21E-03 

HP:0001166 Arachnodactyly 89 1.97 3.55 3.25E-03 

HP:0002538 Abnormality of the cerebral cortex 226 5.01 2.40 3.72E-03 

HP:0003287 Abnormality of mitochondrial metabolism 116 2.57 3.11 3.79E-03 

HP:0009125 Lipodystrophy 93 2.06 3.40 4.16E-03 

HP:0000298 Mask-like facies 49 1.09 4.60 4.21E-03 

HP:0001098 Abnormal fundus morphology 939 20.81 1.54 4.42E-03 

HP:0002416 Subependymal cysts 5 0.11 18.05 4.65E-03 

HP:0009659 Partial absence of thumb 5 0.11 18.05 4.65E-03 

HP:0004329 
Abnormal morphology of the posterior segment of 

the globe 
942 20.87 1.53 4.66E-03 

HP:0008316 Abnormal mitochondria in muscle tissue 32 0.71 5.64 5.03E-03 

HP:0010993 Abnormality of the cerebral subcortex 643 14.25 1.68 5.21E-03 

HP:0001290 Generalized hypotonia 718 15.91 1.63 5.28E-03 

HP:0003355 Aminoaciduria 123 2.73 2.94 5.42E-03 

HP:0002938 Lumbar hyperlordosis 52 1.15 4.34 5.45E-03 

HP:0000079 Abnormality of the urinary system 1321 29.27 1.40 5.64E-03 

HP:0002352 Leukoencephalopathy 124 2.75 2.91 5.69E-03 

HP:0001238 Slender finger 100 2.22 3.16 6.21E-03 

HP:0007364 Aplasia/Hypoplasia of the cerebrum 961 21.30 1.50 6.42E-03 

HP:0003546 Exercise intolerance 77 1.71 3.52 6.69E-03 

HP:0001920 Renal artery stenosis 18 0.40 7.52 6.74E-03 



HP:0008776 Abnormal renal artery morphology 18 0.40 7.52 6.74E-03 

HP:0001014 Angiokeratoma 6 0.13 15.04 6.87E-03 

HP:0012103 Abnormality of the mitochondrion 128 2.84 2.82 6.88E-03 

HP:0003367 Abnormality of the femoral neck 102 2.26 3.10 6.91E-03 

HP:0031650 Abnormal atrioventricular valve physiology 102 2.26 3.10 6.91E-03 

HP:0100631 Neoplasm of the adrenal gland 35 0.78 5.16 6.97E-03 

HP:0011276 Vascular skin abnormality 409 9.06 1.88 7.22E-03 

HP:0002376 Developmental regression 216 4.79 2.30 7.48E-03 

HP:0200037 Skin vesicle 19 0.42 7.13 7.88E-03 

HP:0002673 Coxa valga 57 1.26 3.96 8.05E-03 

HP:0000980 Pallor 105 2.33 3.01 8.07E-03 

HP:0001347 Hyperreflexia 556 12.32 1.70 8.24E-03 

HP:0009124 Abnormal adipose tissue morphology 160 3.55 2.54 8.28E-03 

HP:0000544 External ophthalmoplegia 37 0.82 4.88 8.50E-03 

HP:0002808 Kyphosis 315 6.98 2.01 8.52E-03 

HP:0001257 Spasticity 559 12.39 1.70 8.76E-03 

HP:0007367 
Atrophy/Degeneration affecting the central 

nervous system 
523 11.59 1.73 8.78E-03 

HP:0002815 Abnormality of the knee 253 5.61 2.14 9.10E-03 

HP:0003207 Arterial calcification 20 0.44 6.77 9.12E-03 

HP:0001373 Joint dislocation 285 6.32 2.06 9.13E-03 

HP:0012372 Abnormal eye morphology 1747 38.71 1.29 9.17E-03 

HP:0001582 Redundant skin 59 1.31 3.82 9.30E-03 

HP:0002577 Abnormality of the stomach 352 7.80 1.92 9.42E-03 

HP:0006980 Progressive leukoencephalopathy 7 0.16 12.89 9.48E-03 

HP:0000587 Abnormality of the optic nerve 600 13.30 1.65 9.55E-03 

HP:0012072 Aciduria 164 3.63 2.48 9.68E-03 

HP:0011121 Abnormality of skin morphology 1447 32.06 1.34 1.01E-02 

HP:0031605 Abnormality of fundus pigmentation 21 0.47 6.45 1.05E-02 

HP:0100834 Neoplasm of the large intestine 61 1.35 3.70 1.07E-02 

HP:0000670 Carious teeth 139 3.08 2.60 1.11E-02 

HP:0000240 Abnormality of skull size 996 22.07 1.45 1.12E-02 

HP:0001339 Lissencephaly 114 2.53 2.77 1.24E-02 

HP:0040223 Pulmonary hemorrhage 8 0.18 11.28 1.25E-02 

HP:0000951 Abnormality of the skin 1551 34.37 1.31 1.27E-02 

HP:0001939 Abnormality of metabolism/homeostasis 1819 40.31 1.27 1.30E-02 

HP:0002974 Radioulnar synostosis 63 1.40 3.58 1.22E-02 

HP:0011277 Abnormality of the urinary system physiology 730 16.18 1.55 1.30E-02 

HP:0100749 Chest pain 64 1.42 3.53 1.30E-02 

HP:0004934 Vascular calcification 23 0.51 5.89 1.35E-02 

HP:0000252 Microcephaly 771 17.09 1.52 1.35E-02 

HP:0001276 Hypertonia 696 15.42 1.56 1.40E-02 

HP:0040195 Decreased head circumference 773 17.13 1.52 1.40E-02 

HP:0003072 Hypercalcemia 43 0.95 4.20 1.44E-02 

HP:0100539 Periorbital edema 43 0.95 4.20 1.44E-02 

HP:0001681 Angina pectoris 25 0.55 5.42 1.70E-02 

HP:0002036 Hiatus hernia 24 0.53 5.64 1.52E-02 



HP:0001279 Syncope 44 0.98 4.10 1.55E-02 

HP:0001836 Camptodactyly of toe 9 0.20 10.03 1.58E-02 

HP:0025031 Abnormality of the digestive system 1926 42.68 1.24 1.58E-02 

HP:0008046 Abnormality of the retinal vasculature 178 3.94 2.28 1.60E-02 

HP:0000969 Edema 340 7.53 1.86 1.61E-02 

HP:0003366 Abnormality of the femoral neck or head region 121 2.68 2.61 1.69E-02 

HP:0010876 Abnormality of circulating protein level 338 7.49 1.87 1.53E-02 

HP:0011915 Cardiovascular calcification 25 0.55 5.42 1.70E-02 

HP:0100634 Neuroendocrine neoplasm 25 0.55 5.42 1.70E-02 

HP:0200034 Papule 69 1.53 3.27 1.76E-02 

HP:0003712 Skeletal muscle hypertrophy 151 3.35 2.39 1.77E-02 

HP:0002167 Neurological speech impairment 789 17.48 1.49 1.81E-02 

HP:0000282 Facial edema 46 1.02 3.92 1.81E-02 

HP:0001138 Optic neuropathy 46 1.02 3.92 1.81E-02 

HP:0000602 Ophthalmoplegia 213 4.72 2.12 1.82E-02 

 

 



Supplemental Table S5. Drug-related gene sets in GLAD4U resource significantly enriched by 

insomnia-associated genes identified from Sherlock integrative analysis 

Gene Set Description Size Expect Ratio P Value 

PA162364313 bezafibrate 20 0.40 9.91 6.09E-04 

PA450536 molybdenum 24 0.48 8.26 1.25E-03 

PA449942 hydroxyurea 86 1.74 4.03 1.74E-03 

PA451673 l-threonine 848 17.12 1.75 1.90E-03 

PA164712853 Iron Preparations 212 4.28 2.57 3.88E-03 

PA450087 iron 212 4.28 2.57 3.88E-03 

PA450744 oxygen 318 6.42 2.18 5.25E-03 

PA449789 glycine 223 4.50 2.44 5.65E-03 

PA164776929 lipoic acid 59 1.19 4.20 6.65E-03 

PA448784 carbachol 61 1.23 4.06 7.64E-03 

PA164712614 Colchicine derivatives 7 0.14 14.15 7.97E-03 

PA164713367 Tumour Detection 206 4.16 2.40 9.08E-03 

PA451704 tobramycin 116 2.34 2.99 9.10E-03 

PA164746343 sulodexide 8 0.16 12.39 1.05E-02 

PA164713204 Protein kinase inhibitors 490 9.89 1.82 1.06E-02 

PA451565 sulindac 23 0.46 6.46 1.07E-02 

PA452612 vinyl chloride 23 0.46 6.46 1.07E-02 

PA166122986 radiotherapy 121 2.44 2.87 1.13E-02 

PA449917 hydrogen peroxide 152 3.07 2.61 1.20E-02 

PA164712734 Enzymes 1996 40.29 1.34 1.32E-02 

PA164712467 

Antiinflammatory/antirheumatic 

agents in combination with 

corticosteroids 

9 0.18 11.01 1.33E-02 

PA164745443 dydrogesterone 9 0.18 11.01 1.33E-02 

PA10364 memantine 25 0.50 5.94 1.35E-02 

PA164712693 Diphtheria vaccines 25 0.50 5.94 1.35E-02 

PA451644 thalidomide 46 0.93 4.31 1.36E-02 

PA166163262 sodium ascorbate 46 0.93 4.31 1.36E-02 

PA164712750 Ethers 99 2.00 3.00 1.50E-02 

PA164752658 porfimer 10 0.20 9.91 1.64E-02 

PA164712314 Actinomycines 193 3.90 2.31 1.65E-02 

PA151917012 dactinomycin 193 3.90 2.31 1.65E-02 

PA450954 phosphorus 51 1.03 3.89 1.93E-02 

PA153590860 camptothecin 105 2.12 2.83 1.95E-02 

PA166131608 dovitinib 11 0.22 9.01 1.98E-02 

PA450644 nitroglycerin 11 0.22 9.01 1.98E-02 

PA1102 qt-prolonging drugs 29 0.59 5.12 2.02E-02 

PA151958596 curcumin 53 1.07 3.74 2.19E-02 

PA164712582 calcium 811 16.37 1.53 2.28E-02 

PA134687907 formoterol 12 0.24 8.26 2.34E-02 

PA10816 ezetimibe 12 0.24 8.26 2.34E-02 

PA451898 vitamin c 55 1.11 3.60 2.48E-02 

PA449776 l-glutamic acid 174 3.51 2.28 2.49E-02 

PA449376 disulfiram 13 0.26 7.62 2.73E-02 



PA165946121 fasudil 13 0.26 7.62 2.73E-02 

PA449563 exemestane 13 0.26 7.62 2.73E-02 

PA450280 l-lysine 874 17.64 1.47 3.01E-02 

PA452611 epipodophyllotoxin 117 2.36 2.54 3.12E-02 

PA450993 podofilox 117 2.36 2.54 3.12E-02 

PA164754912 fluocinolone acetonide 14 0.28 7.08 3.15E-02 

PA451843 l-valine 88 1.78 2.81 3.26E-02 

PA164754913 netilmicin 90 1.82 2.75 3.54E-02 

PA164712466 
Antiinflammatory/antirheumatic 

Agents In Combination 
36 0.73 4.13 3.56E-02 

PA164713246 Salt solutions 36 0.73 4.13 3.56E-02 

PA450196 letrozole 15 0.30 6.61 3.58E-02 

PA450203 leuprolide 15 0.30 6.61 3.58E-02 

PA164713003 Other alkylating agents 62 1.25 3.20 3.64E-02 

PA449021 citric acid 92 1.86 2.69 3.84E-02 

PA166114906 bosutinib 16 0.32 6.19 4.04E-02 

PA452620 tegafur 16 0.32 6.19 4.04E-02 

PA164712585 Calcium Homeostasis 193 3.90 2.05 4.22E-02 

PA166160055 cholic acid 39 0.79 3.81 4.36E-02 

PA165860812 berberine 17 0.34 5.83 4.52E-02 

PA448873 cellulose 40 0.81 3.72 4.64E-02 

PA154081778 4-methylumbelliferone 41 0.83 3.62 4.94E-02 

PA451261 rituximab 41 0.83 3.62 4.94E-02 

PA10489 selenium supplements 18 0.36 5.50 5.00E-02 

PA164712917 Muscle Relaxants 18 0.36 5.50 5.00E-02 

 



Supplemental Table S6. Drug-related gene sets in DrugBank resource significantly enriched by 

insomnia-associated genes identified from Sherlock integrative analysis 

Gene Set Description Size Expect Ratio P Value 

DB04141 
2-Hexyloxy-6-Hydroxymethyl-Tetrahydro-P

yran-3,4,5-Triol 
15 0.33  12.20  2.36E-04 

DB09270 Ubidecarenone 6 0.13  15.26  6.66E-03 

DB13257 Ferrous sulfate 20 0.44  6.86  8.70E-03 

DB01119 Diazoxide 7 0.15  13.08  9.20E-03 

DB07763 

(5S)-3-ANILINO-5-(2,4-DIFLUOROPHEN

YL)-5-METHYL-1,3-OXAZOLIDINE-2,4-

DIONE 

10 0.22  9.15  1.89E-02 

DB08330 

METHYL 

(2Z)-3-METHOXY-2-{2-[(E)-2-PHENYLVI

NYL]PHENYL}ACRYLATE 

10 0.22  9.15  1.89E-02 

DB08453 
2-NONYL-4-HYDROXYQUINOLINE 

N-OXIDE 
10 0.22  9.15  1.89E-02 

DB08690 UBIQUINONE-2 10 0.22  9.15  1.89E-02 

DB04799 
5-n-undecyl-6-hydroxy-4,7-dioxobenzothiaz

ole 
10 0.22  9.15  1.89E-02 

DB07778 FAMOXADONE 10 0.22  9.15  1.89E-02 

DB07401 

METHYL 

(2Z)-2-(2-{[6-(2-CYANOPHENOXY)PYRI

MIDIN-4-YL]OXY}PHENYL)-3-METHOX

YACRYLATE 

10 0.22  9.15  1.89E-02 

DB00139 Succinic acid 27 0.59  5.09  2.00E-02 

DB00132 Alpha-Linolenic Acid 11 0.24  8.32  2.28E-02 

DB04224 Oleic Acid 12 0.26  7.63  2.69E-02 

DB00159 Icosapent 13 0.28  7.04  3.14E-02 

DB09462 Glycerin 15 0.33  6.10  4.11E-02 

DB12267 Brigatinib 16 0.35  5.72  4.63E-02 

 

 



Supplemental Table S7. Sherlock integrative analysis identifies 184 genes as insomnia risk genes in validation 

samples (GTEx brain cortex samples) 

Gene LBF Sherlock-based P value GWAS catalog 

FAM86DP -0.376 2.303E-04 Novel gene 

AP1G2 -0.380 5.155E-04 Novel gene 

C10orf111 -0.396 5.758E-04 Novel gene 

BTG1 -0.404 9.378E-04 Novel gene 

TAF8 -0.413 1.311E-03 Novel gene 

TXN -0.423 1.579E-03 Novel gene 

CSAD -0.426 1.727E-03 Novel gene 

ENSG00000270021 -0.430 1.925E-03 Novel gene 

ZBTB26 -0.431 2.468E-03 Novel gene 

HSD17B7P2 -0.437 2.660E-03 Novel gene 

ENSG00000227540 -0.441 2.863E-03 Novel gene 

DIS3L -0.443 3.016E-03 Novel gene 

ENSG00000214198 -0.447 3.016E-03 Novel gene 

MXRA8 -0.449 3.526E-03 Novel gene 

SATB2-AS1 -0.451 3.718E-03 Novel gene 

UQCRFS1 -0.454 3.987E-03 Novel gene 

AMOTL1 -0.455 4.135E-03 Novel gene 

MAPK14 -0.459 4.491E-03 Novel gene 

VWA3B -0.472 4.672E-03 Novel gene 

GART -0.478 4.996E-03 Novel gene 

NPY5R -0.480 5.473E-03 Novel gene 

MYOZ3 -0.488 5.643E-03 Novel gene 

URB1 -0.493 6.032E-03 Novel gene 

RYR1 -0.494 6.038E-03 Novel gene 

HLA-DMB -0.497 6.367E-03 Novel gene 

PSD2 -0.498 6.855E-03 Novel gene 

ENSG00000226237 -0.498 7.074E-03 Novel gene 

ENSG00000239415 -0.499 7.206E-03 Novel gene 

ANKRD13B -0.501 7.403E-03 Novel gene 

SCNN1D -0.507 7.880E-03 Novel gene 

DNAJC12 -0.514 7.952E-03 Novel gene 

SP110 -0.514 8.451E-03 Novel gene 

GTSF1 -0.514 8.599E-03 Novel gene 

LEFTY1 -0.518 8.900E-03 Novel gene 

EXOC4 -0.521 9.235E-03 Novel gene 

ZNF678 -0.522 0.010 Novel gene 

MC1R -0.523 0.010 Novel gene 

ITGA11 -0.527 0.010 Novel gene 

GPR98 -0.529 0.010 Novel gene 

DHRS4 -0.536 0.011 Novel gene 

C1orf194 -0.537 0.011 Novel gene 

OR7E29P -0.538 0.011 Novel gene 

VWA8 -0.539 0.011 Novel gene 

CHEK1 -0.540 0.012 Novel gene 

MEGF8 -0.541 0.012 Novel gene 

C6orf201 -0.542 0.012 Reported gene 

TSC1 -0.546 0.012 Novel gene 

STARD6 -0.546 0.013 Novel gene 

C8orf31 -0.553 0.013 Novel gene 



KCNJ16 -0.554 0.013 Novel gene 

ENSG00000213839 -0.554 0.014 Novel gene 

ENSG00000236915 -0.557 0.014 Novel gene 

ENSG00000216921 -0.559 0.014 Novel gene 

DHX36 -0.559 0.014 Novel gene 

ENSG00000273075 -0.561 0.015 Novel gene 

HEBP2 -0.563 0.015 Novel gene 

CST3 -0.564 0.015 Novel gene 

CYB5R3 -0.565 0.016 Novel gene 

WDR36 -0.566 0.016 Novel gene 

TIPIN -0.567 0.016 Novel gene 

ENSG00000272221 -0.567 0.016 Novel gene 

RAB37 -0.568 0.016 Novel gene 

ENSG00000253326 -0.568 0.017 Novel gene 

DYDC2 -0.568 0.017 Novel gene 

TCTN2 -0.570 0.017 Novel gene 

FGL1 -0.572 0.017 Novel gene 

LDHA -0.572 0.018 Novel gene 

ENSG00000236155 -0.573 0.018 Novel gene 

BDKRB1 -0.573 0.018 Novel gene 

RELL2 -0.574 0.019 Novel gene 

CRYZ -0.577 0.019 Novel gene 

YARS -0.578 0.019 Novel gene 

TRAF3IP2-AS1 -0.582 0.019 Novel gene 

PINLYP -0.584 0.020 Novel gene 

IL20RA -0.584 0.020 Novel gene 

UBE2G2 -0.584 0.020 Novel gene 

TEX264 -0.585 0.020 Novel gene 

ZC3HC1 -0.585 0.021 Novel gene 

GCOM2 -0.587 0.021 Novel gene 

ENSG00000271643 -0.588 0.021 Novel gene 

ENSG00000222020 -0.589 0.021 Novel gene 

LINC00115 -0.590 0.022 Novel gene 

NMUR2 -0.592 0.022 Novel gene 

DNAH1 -0.593 0.022 Novel gene 

ENSG00000214135 -0.593 0.023 Novel gene 

ENSG00000262528 -0.594 0.023 Novel gene 

FGFR3 -0.594 0.023 Novel gene 

LINC00562 -0.595 0.023 Novel gene 

KIAA0391 -0.595 0.024 Novel gene 

XRCC3 -0.596 0.024 Novel gene 

ENSG00000232063 -0.596 0.024 Novel gene 

SCN4B -0.597 0.025 Novel gene 

ENSG00000248673 -0.597 0.025 Novel gene 

SIGLEC10 -0.598 0.025 Novel gene 

CDCA5 -0.598 0.025 Novel gene 

NKTR -0.598 0.026 Novel gene 

ENSG00000272505 -0.598 0.026 Novel gene 

ENSG00000256594 -0.599 0.026 Novel gene 

ACY3 -0.599 0.027 Novel gene 

RUVBL2 -0.599 0.027 Novel gene 

ENSG00000240685 -0.601 0.027 Novel gene 

CAMK1G -0.602 0.027 Novel gene 



REV3L -0.602 0.028 Novel gene 

ENSG00000258959 -0.602 0.028 Novel gene 

ENSG00000231105 -0.603 0.028 Novel gene 

DUS2 -0.603 0.028 Novel gene 

DALRD3 -0.605 0.029 Novel gene 

LOH12CR1 -0.606 0.029 Novel gene 

ENSG00000271868 -0.606 0.029 Novel gene 

JRK -0.606 0.030 Novel gene 

TMEM219 -0.606 0.030 Novel gene 

RECQL -0.606 0.030 Novel gene 

KIF7 -0.607 0.030 Novel gene 

TOX4 -0.608 0.031 Novel gene 

ZNF782 -0.608 0.031 Novel gene 

WASF3 -0.609 0.031 Novel gene 

TPBGL -0.610 0.031 Novel gene 

CDC42SE2 -0.610 0.032 Novel gene 

ENSG00000257086 -0.610 0.032 Novel gene 

7-Sep -0.611 0.032 Novel gene 

SKA2 -0.612 0.033 Novel gene 

AK5 -0.612 0.033 Reported gene 

GPR155 -0.612 0.033 Novel gene 

ENDOG -0.613 0.033 Novel gene 

ALPK3 -0.613 0.034 Novel gene 

FAM178B -0.614 0.034 Novel gene 

ARL9 -0.614 0.034 Novel gene 

PFAS -0.614 0.034 Novel gene 

RSPO2 -0.614 0.035 Novel gene 

ZNF764 -0.615 0.035 Novel gene 

ENSG00000205037 -0.615 0.035 Novel gene 

ANKRD20A19P -0.615 0.035 Novel gene 

DIEXF -0.615 0.036 Novel gene 

ENSG00000218227 -0.617 0.036 Novel gene 

ENSG00000270607 -0.617 0.036 Novel gene 

RHOF -0.617 0.037 Novel gene 

NUS1 -0.617 0.037 Novel gene 

EIF6 -0.617 0.037 Novel gene 

CSRP2 -0.617 0.038 Novel gene 

ENSG00000259658 -0.618 0.038 Novel gene 

ITGAV -0.618 0.038 Novel gene 

WIPF3 -0.618 0.038 Novel gene 

GALNT2 -0.618 0.039 Novel gene 

ENSG00000183562 -0.619 0.039 Novel gene 

PARD3B -0.619 0.039 Novel gene 

ZFYVE20 -0.619 0.039 Novel gene 

LINC00662 -0.619 0.040 Novel gene 

GKN1 -0.620 0.040 Novel gene 

P4HA2 -0.620 0.040 Novel gene 

ENSG00000257433 -0.621 0.041 Novel gene 

ENSG00000269473 -0.621 0.041 Novel gene 

KHNYN -0.621 0.041 Novel gene 

SRGAP2C -0.622 0.041 Novel gene 

CCDC144B -0.622 0.041 Novel gene 

ENSG00000224376 -0.623 0.042 Novel gene 



ENSG00000235448 -0.624 0.042 Novel gene 

HCG17 -0.624 0.042 Novel gene 

ENSG00000229407 -0.625 0.043 Novel gene 

ZNF253 -0.625 0.043 Novel gene 

CCDC183-AS1 -0.627 0.043 Novel gene 

ENSG00000261037 -0.628 0.044 Novel gene 

GDF6 -0.628 0.044 Novel gene 

CHRAC1 -0.630 0.044 Novel gene 

LEPR -0.630 0.044 Novel gene 

VN1R108P -0.630 0.045 Novel gene 

ENSG00000259251 -0.630 0.045 Novel gene 

FOLH1 -0.630 0.045 Novel gene 

VAMP1 -0.631 0.045 Novel gene 

SMYD3 -0.631 0.046 Novel gene 

FER1L4 -0.631 0.046 Novel gene 

DNAL1 -0.633 0.046 Novel gene 

ROM1 -0.633 0.047 Novel gene 

CDKN2B -0.633 0.047 Novel gene 

LGALS3 -0.633 0.047 Novel gene 

A4GNT -0.634 0.047 Novel gene 

ENSG00000265519 -0.634 0.048 Novel gene 

ENSG00000258985 -0.635 0.048 Novel gene 

SWAP70 -0.635 0.048 Novel gene 

FAM69A -0.635 0.048 Novel gene 

ZNF136 -0.635 0.049 Novel gene 

PSD3 -0.636 0.049 Novel gene 

NELFCD -0.636 0.049 Novel gene 

PREX2 -0.637 0.049 Novel gene 

EPB41L5 -0.637 0.050 Novel gene 

 

 



Supplemental Table S8. Five Insomnia-associated risk genes identified by Sherlock integrative analysis between 

two eQTL datasets 

Gene name Discovery stage Validation stage Differential 

expression in 

Brain 

between 

insomnia and 

control 

Supporting 

SNP a 

eSNP-bas

ed Pvalue 
b 

GWAS-ba

sed P 

value c 

Sherlock-

based P 

value d 

Supporting 

SNP a 

eSNP-base

d Pvalue b 

GWAS-bas

ed P value 
c 

Sherlock-

based P 

value d 

LDHA rs8131143 9.73E-06 8.97E-01 9.11E-03 rs10741758 7.98E-06 7.73E-01 1.77E-02 4.40E-02 

DALRD3 rs2782892 8.43E-06 3.71E-01 1.13E-02 rs6795772 9.70E-06 2.34E-02 2.85E-02 5.00E-05 

TEX264 rs6762880 8.57E-06 4.35E-01 3.29E-02 rs6778196 8.77E-06 6.09E-01 2.04E-02 3.89E-01 

FGFR3 rs1407228 9.06E-06 1.14E-01 2.35E-02 rs2234909 8.08E-06 6.58E-01 2.31E-02 7.75E-01 

HEBP2 rs766310 6.26E-06 6.25E-01 4.62E-02 rs4896353 7.36E-06 8.75E-01 1.51E-02 3.20E-02 

Note: a SNP influences the expression level of risk gene. 

bP-value from expression quantitative trait analysis of Myers et al. 

c P-value from GWAS on insomnia of Jansen et al.  

dP–value from calculation based on theSherlock Bayesianintegrative analysis. In light ofSherlock tool uses finite times of 

permutation test to calculate the Pvalue for each gene, some of these top-ranked genes have distinct logarithm of the Bayes factor values 

but obtain the same rankings (namely, their P values are same).  

 

 



Supplemental Table S9. The co-expression analysis of the 5 identified genes based on the Pearson 

correlation method in all samples of GSE40562 

 LDHA DALRD3 TEX264 FGFR3 HEBP2 

LDHA 1.00  0.62  -0.40  -0.34  0.32  

DALRD3 0.62  1.00  -0.48  -0.09  0.54  

TEX264 -0.40  -0.48  1.00  0.55  -0.31  

FGFR3 -0.34  -0.09  0.55  1.00  0.19  

HEBP2 0.32  0.54  -0.31  0.19  1.00  

 



Supplemental Table S10. The co-expression analysis of the 5 identified genes based on the Pearson 

correlation method in insomnia patients of GSE40562 

 LDHA DALRD3 TEX264 FGFR3 HEBP2 

LDHA 1.00  0.06  -0.18  -0.34  -0.17  

DALRD3 0.06  1.00  -0.31  0.21  -0.24  

TEX264 -0.18  -0.31  1.00  0.58  -0.12  

FGFR3 -0.34  0.21  0.58  1.00  0.14  

HEBP2 -0.17  -0.24  -0.12  0.14  1.00  

 

 


