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The present work aimed to evaluate the prognostic value of overall survival (OS)-related
genes in clear cell renal cell carcinoma (ccRCC) and to develop a nomogram for clinical
use. Transcriptome data from The Cancer Genome Atlas (TCGA) were collected to screen
differentially expressed genes (DEGs) between ccRCC patients with OS > 5 years (149 pa-
tients) and those with <1 year (52 patients). In TCGA training set (265 patients), seven DEGs
(cytochrome P450 family 3 subfamily A member 7 (CYP3A7), contactin-associated protein
family member 5 (CNTNAP5), adenylate cyclase 2 (ADCY2), TOX high mobility group box
family member 3 (TOX3), plasminogen (PLG), enamelin (ENAM), and collagen type VII α 1
chain (COL7A1)) were further selected to build a prognostic risk signature by the least abso-
lute shrinkage and selection operator (LASSO) Cox regression model. Survival analysis con-
firmed that the OS in the high-risk group was dramatically shorter than their low-risk counter-
parts. Next, univariate and multivariate Cox regression revealed the seven genes-based risk
score, age, and Tumor, lymph Node, and Metastasis staging system (TNM) stage were inde-
pendent prognostic factors to OS, based on which a novel nomogram was constructed and
validated in both TCGA validation set (265 patients) and the International Cancer Genome
Consortium cohort (ICGC, 84 patients). A decent predictive performance of the nomogram
was observed, the C-indices and corresponding 95% confidence intervals of TCGA train-
ing set, validation set, and ICGC cohort were 0.78 (0.74–0.82), 0.75 (0.70–0.80), and 0.70
(0.60–0.80), respectively. Moreover, the calibration plots of 3- and 5 years survival probabil-
ity indicated favorable curve-fitting performance in the above three groups. In conclusion,
the proposed seven genes signature-based nomogram is a promising and robust tool for
predicting the OS of ccRCC, which may help tailor individualized therapeutic strategies.

Introduction
As one of the most common urinary malignancies, renal cell carcinoma (RCC) poses a hidden threat to
public health and accounts for approximately 2–3% of adult tumors [1]. The main histologic subtype of
RCC is clear cell RCC (ccRCC), which constitutes 75–80% of primary renal malignancies [2]. Reportedly,
ccRCC generated 65340 newly diagnosed cases and 14970 deaths in America in 2018 [3].

Compared with other tumors, the prognosis of ccRCC patients remains generally preferable as
indicated by the 5-year overall survival (OS) of localized (stage I–III) ccRCC had reached up to
70–90% [4]. Despite this, individual variations should be recognized as patients with similar Tumor,
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lymph Node, and Metastasis staging system (TNM) stages at diagnosis could end up with significantly different
OS. For example, 25–33% of localized ccRCC patients could still progress into recurrence and metastasis even after
curative resection and associated with a significantly worse prognosis than other patients with localized ccRCC [5,6].
Besides, the morphologic and genetic heterogeneity of ccRCC was discussed in numerous previous studies [7,8]. Such
reports suggested that the prevalent prognostic tools for ccRCC, which were based mainly on pathological and clinical
features, had unsatisfactory predictive power. Typical tools of this kind included the TNM staging system, necrosis
score, and the University of California Integrated Staging System (UISS) [9–11].

Today, with the development of high-throughput sequencing technology, urologists have turned to identify molec-
ular biomarkers for risk stratification and prognosis prediction. In this regard, prognostic tools from a single gene
[12–14], to risk signatures consist of a panel of genes [15–17], and to models integrating gene profiling and clinical
features [18–20], have been widely reported. However, there has been no study yet in this field to investigate genes cor-
related directly to ccRCC patients’ OS and to explore their prognostic values in medical practice, and we believe that
data mining in this topic could provide new insight into ccRCC progression and help improve therapeutic strategies
to a great extent.

Materials and methods
Data acquisition
The transcriptome profiling data and clinical information of ccRCC were obtained from The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/) in December 2019. Expression data as Fragments Per Kilobase per Million
(FPKM) files were available for 539 tumor samples, 9 of which lacked survival information. The 530 samples with
full expression and clinical data were randomly and evenly assigned to a training set and a validation set via the
‘Classification and Regression Training (caret)’ package (http://topepo.github.io/caret/) in R (Ver. 3.6.0) for further
analysis. Besides, 84 ccRCC patients with full data from the International Cancer Genome Consortium (ICGC, https:
//icgc.org/) were used as external validation. The OS (or time to death), defined as the time from the start of follow-up
(surgery) to death of any cause, was regarded as the target event.

Screening for survival-related genes
In TCGA, 52 patients with OS < 1 year and 149 patients with OS > 5 years were enrolled in the differential expression
analysis via the limma package in R to screen out survival-related differentially expressed genes (DEGs) and acquire
corresponding fold changes (FCs). Specifically, DEGs with |log2FC| > 0.60 and false discovery rate (FDR) < 0.05
were considered to be the hub DEGs. Outcomes were visualized as volcano plot and heatmap using ‘ggplot2’ and
‘pheatmap’ packages in R, respectively.

Functional enrichment analysis
After ruling out the non-coding RNAs, the rest DEGs with protein-coding functions were analyzed by the Database for
Annotation Visualization and Integrated Discovery (DAVID; https://david.ncifcrf.gov/) online tools to obtain their
Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment information.
The criteria were set as P<0.05 and gene count ≥3.

Prognostic risk signature development
The hub DEGs with protein-coding functions were selected as candidates for the analysis of this section. In the train-
ing set, the univariable Cox regression analysis using ‘survival’ package in R was primarily performed to filter in-
significant candidates (P>0.05). Next, the least absolute shrinkage and selection operator (LASSO) Cox regression
method [21] using ‘glmnet’ and ‘survival’ packages was performed to select the optimal panel of genes included in the
risk score formula. Last, the multivariate Cox regression analysis was used to obtain the coefficients of each included
gene. The risk score of each patient was equal to the sum of the products of each gene’s expression value (Expi) and the
corresponding coefficients. Using the median score as the cut-off point, ccRCC patients were divided into a low-risk
group and high-risk group. The Kaplan–Meier survival analysis with a log-rank test, and the area under the curve
(AUC) of the receiver operating characteristic (ROC) curve were used as an initial evaluation of the risk signature.

Construction and validation of nomogram for OS prediction
To identify independent prognostic factors to OS, parameters including age, gender, TNM stage, history of prior ma-
lignancy, and the aforesaid risk score were included in univariate and multivariate Cox regression analyses in the train-
ing set. Using the ‘rms’ package in R, a nomogram incorporating all the significant factors (P<0.05) was constructed
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Figure 1. Flow chart of study design

Abbreviation: KIRC, kidney renal clear cell carcinoma.

to predict the 3- and 5-years OS. For predictive performance assessment, Harrell’s concordance index (C-index) and
calibration plot were obtained in training and validation sets. Similar to the AUC of ROC curve, C-index using a
bootstrap method with 1000 resamplings was calculated to assess the discriminatory ability of nomogram [22,23].
The calibration plot compared the observed and predicted probabilities, and the 45-degree line represents the highest
predictive ability.

Results
Patient characteristics
Figure 1 displayed the flow chart of this work. In all, 530 and 84 patients with full expression and clinical data were
collected from TCGA and ICGC, respectively. The baseline characteristics of patients in the training set, validation
set, and ICGC cohort are collected in Table 1.

DEGs screening and functional enrichment analysis
By comparing 149 samples with OS > 5 years with 52 samples with OS < 1 year, 614 DEGs with criteria set as FDR
< 0.05 were identified. GO and KEGG pathway enrichment analyses revealed the functions of these genes. The top
15 significantly enriched GO terms were gathered in Figure 2A and Supplementary Table S1, indicating that DEGs
associated with pivotal terms such as the ‘oxidation-reduction process’ (GO category: biological process), ‘cytoplasm’
(GO category: cellular component), and ‘protein binding’ (GO category: molecular function). The top 15 significantly
enriched pathways from the KEGG analysis were collected in Figure 2B and Supplementary Table S2, showing that
DEGs participated mainly in pathways such as ‘valine, leucine and isoleucine degradation’, ‘fatty acid metabolism’,
‘PPAR signaling pathway’, ‘glycolysis/gluconeogenesis’, and ‘tryptophan metabolism’.

To narrow down the range, 42 hub DEGs with criteria set as FDR < 0.05 and |log2FC| > 0.60 were selected. As pre-
sented in Supplementary Table S3, ccRCC patients with longer OS were associated with 15 down- and 27 up-regulated
hub DEGs. Furthermore, 9 non-coding genes were excluded, leaving 33 candidates for further analysis (volcano plot
and heatmap were presented in Figure 2C,D, respectively).
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Table 1 Clinical characteristics of ccRCC patients in the TCGA and ICGC datasets

Variables TCGA cohort (n=530) ICGC cohort (n=84) N (%)
Training set (n=265) N (%) Validation set (n=265) N (%)

Status

Alive 175 (66.04) 182 (68.68) 56 (66.67)

Dead 90 (33.96) 83 (31.32) 28 (33.33)

Age (years) 60.72 +− 12.84 60.40 +− 11.41 60.86 +− 9.68

Gender

Male 166 (62.64) 178 (67.17) 45 (53.57)

Female 99 (37.36) 87 (32.83) 39 (46.43)

Stage

I 133 (50.19) 132 (49.81) 48 (57.14)

II 28 (10.57) 29 (10.94) 12 (14.29)

III 61 (23.02) 62 (23.40) 15 (17.86)

IV 43 (16.22) 39 (14.72) 9 (10.71)

NA 0 (0.00) 3 (1.13) 0 (0.00)

Prior Malignancy

Yes 37 (13.96) 35 (13.21) NA

No 228 (86.04) 230 (86.79) NA

Abbreviation: NA, not available.

Table 2 Outcomes of the multivariate Cox regression analysis of the seven genes identified by the LASSO-penalized model

Genes Coefficient HR (95% CI) P-value

CYP3A7 −0.52 0.60 (0.38–0.94) 0.03

CNTNAP5 −0.47 0.62 (0.42–0.92) 0.02

ADCY2 −0.31 0.73 (0.51–1.05) 0.09

TOX3 −0.25 0.78 (0.62–0.98) 0.03

PLG −0.16 0.85 (0.71–1.02) 0.08

ENAM 0.35 1.42 (1.06–1.91) 0.02

COL7A1 0.61 1.84 (1.46–2.33) 2.65E-07

Abbreviations: CI, confidence interval; HR, hazard ratio.

Seven-gene signature development
Based on univariate analysis, all 33 hub DEGs were significantly associated with ccRCC patients’ OS in the training
set (P<0.05, Supplementary Table S4). Nine genes, including collagen type VII α 1 chain (COL7A1), plasminogen
(PLG), inositol-trisphosphate 3-kinase A (ITPKA), adenylate cyclase 2 (ADCY2), solute carrier family 16 member
12 (SLC16A12), cytochrome P450 family 3 subfamily A member 7 (CYP3A7), TOX high mobility group box fam-
ily member 3 (TOX3), contactin-associated protein family member 5 (CNTNAP5), and enamelin (ENAM), were
identified as the most effective combination with the least components by LASSO-penalized Cox analysis (Figure
3A,B). Two genes (ITPKA and SLC16A12) were excluded based on the multivariate Cox regression model, and thus,
a seven-gene prognostic signature was finally established (Figure 3C and Table 2). The risk score was calculated as
follows:

Risk score = − 0.52 × Exp(CYP3A7) − 0.47 × Exp(CNTNAP5) − 0.31 × Exp(ADCY2)

− 0.25 × Exp(TOX3) − 0.16 × Exp(PLG) + 0.35 × Exp(ENAM) + 0.61 × Exp(COL7A1)

A higher risk score predicted worse survival. The distribution of risk scores and survival status of patients in the
training set was exhibited in Figure 4A,B, respectively. Using the median score as the cut-off value, patients were classi-
fied into low-risk and high-risk groups. The Kaplan–Meier curves confirmed significantly better survival for low-risk
groups than their high-risk counterparts (log-rank tests P<0.05, Figure 4C). Moreover, this advantage remained sta-
ble in both stage I/II and III/IV subgroups (Figure 4D,E). The ROC curves were plotted to assess the prognostic value
of the seven-gene signature. The AUCs for 3- and 5-year OS predictions in the training set were 0.76 and 0.81 (Figure
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Figure 2. Identification and function enrichment analyses of the survival-related DEGs in the TCGA ccRCC cohort

(A) Top 15 enriched GO terms of DEGs. (B) Top 15 enriched KEGG pathways of DEGs. (C) Volcano plot of DEGs: the abscissa

represents |log2FC| and the ordinate represents −log10(FDR). The blue and red spots represent significantly down-regulated and

up-regulated hub DEGs, respectively. (D) Cluster heatmap of the 33 hub DEGs.

4F,G). At the discovery stage, the preliminary result indicated the seven-gene signature achieved good performance
in predicting OS using training set data.

Construction and validation of the nomogram
In the training set, the univariate analysis indicated that age, TNM stage, and the seven-gene risk score impacted
significantly on OS, whereas the gender and history of prior malignancy were found to be insignificant parameters
(Table 3). The following multivariate analysis confirmed they were independent risk factors to OS of ccRCC patients
(P-value for age, stage, and risk score were 1.91E-04, 1.49E-07, and 8.01E-08, respectively). The hazard ratios with
95% confidence intervals of age (elder versus young), stage (III/IV versus I/II), and risk score (high versus low) were
1.04 (1.02–1.06), 3.46 (2.18–5.49), and 1.15 (1.09–1.21), respectively. Subsequently, a nomogram predicting 3- and 5
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Figure 3. Risk score formula construction based on a seven-gene signature

(A) The LASSO coefficient profiles of the 33 hub DEGs selected by Univariate Cox regression analysis. (B) Partial likelihood deviance

for the LASSO coefficient profiles. (C) Forest plot based on Multivariate Cox regression results displays the HRs with corresponding

95% CIs of the seven genes selected by the LASSO model.

Table 3 Univariate and multivariate analyses of OS in the training set

Variables Univariate analysis Multivariate analysis
HR (95% CI) P-value HR (95% CI) P-value

Age (years) 1.03 (1.02–1.05) 1.44E-04 1.04 (1.02–1.06) 1.91E-04

Gender

Female 1

Male 0.87 (0.57–1.33) 0.52 0.80 (0.52–1.24) 0.32

Stage

I/II 1

III/IV 3.72 (2.41–5.75) 3.46E-09 3.46 (2.18–5.49) 1.49E-07

Prior malignancy

No 1

Yes 0.85 (0.46–1.55) 0.59 1.01 (0.54–1.90) 0.98

Risk score 1.21 (1.15–1.26) 3.22E-15 1.15 (1.09–1.21) 8.01E-08

Abbreviations: CI, confidence interval; HR, hazard ratio.
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Figure 4. Preliminary evaluation of the predictive ability of the seven-gene signature in the training set

(A) The seven-gene-based risk score distribution: using the median risk score as a cut-off point, patients were divided into a low-risk

group (blue spots) and high-risk group (red spots). (B) The vital status of 265 patients: yellow and black spots represent alive and

dead patients, respectively. (C–E) K–M survival curves of all patients’ OS (n=265), Stage I/II patients’ OS (n=161), Stage III/IV

patients’ OS (n=104), respectively. (F,G) ROC curves for OS prediction based on the seven-gene signature within 3- and 5-years,

respectively.

years OS of ccRCC patients was constructed according to the multivariate analysis results of the training set (Figure
5A). The C-index for OS prediction of the nomogram was 0.78 (95% CI: 0.74–0.82). Internal validation using data
from validation set revealed that a C-index of 0.75 (95% CI: 0.70–0.80). For external validation, C-index calculated
using ICGC data was 0.70 (95% CI: 0.60–0.80). Besides, the calibration plots displaying the probability of 3- and 5
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Figure 5. The establishment and assessment of a novel nomogram

(A) A nomogram integrating clinical features with a seven-gene risk score for predicting of 3- and 5- years OS in patients with ccRCC.

Calibration plots of the nomogram for 3- and 5- years OS prediction in the training set (B,C), internal validation set (D,E), and ICGC

cohort (F,G), respectively. The abscissa represents the nomogram-predicted survival probability and the ordinate represents the

actual survival.

years survival indicated favorable curve-fitting between the nomogram-predicted outcomes and actual observation
in the training set, validation set, and ICGC cohort, respectively (Figure 5B–G).
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Table 4 Comparison of predicting performance with other reported prognostic tools

Study Source Stage Size Gene signature
Clinical feature in
nomogram C-index (95% CI)

Xiong et al., 2020 Hospital All 101 IGPI consisting 17 gene pairs Histologic grade, TNM
stage

0.76

- UISS risk model only 0.72

Wu et al., 2019 TCGA III 122 ATP6V1C2, PCSK1N,
PREX1, ANK3, HLA-DRA,
SELENBP1, TYRP1,
GABRA2, SERPINA5

Age, ISUP grade, pN stage 0.79 (0.75–0.84)

Qu et al., 2018 TCGA I–III 444 ENSG00000255774,
ENSG00000248323,
ENSG00000260911,
ENSG00000231666

TNM stage 0.73 (0.65–0.81)

Develasco et al., 2017 TCGA IV 54 ClearCode34 - 0.63 (0.51–0.75)

Tang et al., 2019 Hospital All 140 - TNM stage only 0.65 (0.56–0.74)

- Fuhrman grade only 0.61 (0.52–0.70)

The present study TCGA All 530 CYP3A7, CNTNAP5, ADCY2,
TOX3, PLG, ENAM, COL7A1

Age, TNM stage 0.78 (0.74–0.82)

Abbreviations: ClearCode34, a 34-gene signature model; IGPI, immune-related gene pair index.

Comparison with previously reported prognostic tools
The predictive performance of our nomogram was compared with several reported prognostic tools, which were
retrieved from PubMed database using ‘(overall survival) AND (((c-index) AND signature) AND ((((clear cell
renal cell carcinoma) OR renal clear cell carcinoma) OR clear cell carcinoma) OR KIRC))’ as search terms. As
presented in Table 4, clinical features such as TNM stage [12], Fuhrman grade [12], and the UISS risk model [24] alone
seemed to be less competitive in terms of discrimination (c-indices were 0.65, 0.61, and 0.72, respectively). Similarly,
using only gene signature such as the ClearCode34, a 34-gene signature model, was hardly satisfying when predicting
OS in stage IV ccRCC patients [25]. The c-index of our nomogram was 0.78, second only to a 9-gene-signature-based
nomogram reported by Wu et al. [26], which focused solely on stage III ccRCC (c-index: 0.79). Xiong et al. [24]
reported a tool combining IGPI (immune-related 17 gene pairs index) with histologic grade and TNM stage for all
ccRCC patients, with a c-index of 0.76. For localized ccRCC (stage I–III), Qu et al. [27] reported a tool combining four
lncRNAs with the TNM stage, with a c-index of 0.73. In summary, by comprising only seven genes and two clinical
features, our nomogram was economic and applicable to all stages of ccRCC without compromising the prognostic
ability.

Discussion
In this work, we developed an OS-related seven-gene signature in ccRCC, namely CYP3A7, CNTNAP5, ADCY2,
TOX3, PLG, ENAM, and COL7A1, from TCGA training set. The ensuing univariate and multivariate Cox regression
indicated that the patient’s age, TNM stage, and the seven-gene risk score were independent prognostic factors to
OS and a nomogram was then constructed. Subsequently, C-indices and the curve-fitting calibration plots of the
training set, internal validation set, and ICGC ccRCC cohort demonstrated the decent predictive performance of the
nomogram.

To the best of our knowledge, this is the first study that revealed the putative protective role of CYP3A7 in the
prognosis of ccRCC. Members of the cytochrome P450 superfamily are a group of metalloproteins that involve in
metabolic biotransformation of endogenous and exogenous substrates, including carcinogens [28]. Conversely, over-
expression of CYP3A7 was witnessed in hepatocellular carcinoma [29,30], suggesting that it might exert varied func-
tions among different types or stages of tumor. Belonging to the neurexin family, the product of CNTNAP5 functioned
as cell adhesion molecules in the nervous system and participated in diseases such as autism, Alzheimer’s disease, and
schizophrenia [31–33]. The expression level of CNTNAP5 in the kidney is relatively low but still detectable, and only
one study reported a SH3KBP1–CNTNAP5 fusion in upper tract urothelial carcinoma [34]. A higher level of ADCY2
was shown to connect to longer OS in our study, but few studies reported on its role in tumor progression. Reportedly,
ADCY suppressed migration and invasion of pancreatic tumor cells by increasing the level of second messenger cyclic
adenosine monophosphate (cAMP), however, ADCY2 was found to be down-regulated in pancreatic tumor tissues
[35]. TOX3 has been newly identified as a ccRCC suppressor gene as it inhibited tumor cell migration and invasion
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by repressing the SNAIL members SNAI1 and SNAI2 at the transcriptional level [36]. This was consistent with our
results that TOX3 exerted protective influence in ccRCC. A lower level of PLG in ccRCC patients with shorter sur-
vival, higher stages and grades were described in several studies [37–39], consistent with our finding that PLG served
as a protective factor. Our outcomes illustrated that patients with OS > 5 years had significantly up-regulated ENAM
when compared with those with OS < 1 year. Similarly, Bhalla et al. [40] reported a lower expression of ENAM in
late-stage ccRCC when compared with those in the early stage. When extending to patients with all lengths of OS in
the training set, however, multivariate Cox regression yielded the opposite conclusion that ENAM was a risk factor
to the OS of ccRCC. Thus, ENAM may have a more complex role in the progression of ccRCC. Coding for type IV
collagen, COL7A1 was also a risk factor to ccRCC survival according to our results, supported by a previous study
revealing high expression of COL7A1 was associated with tumor invasion and shorter survival in several types of
squamous cell cancer [41–43].

Prevalence of targeted and individualized therapy calls for novel prognostic tools integrating genetic signatures
with clinical features to improve risk assessment and stratification. The comparison of c-indices revealed that the
present nomogram based on an OS-related seven-gene risk score, age, and TNM stage has better predictive accuracy
than the traditional prognostic tools such as the TNM staging system, Fuhrman grading system, UISS risk model,
ClearCode34. Furthermore, the present nomogram had undergone both internal and external validation and showed
good reproducibility. In terms of clinical significance, the present work suggested that patients with higher points
calculated according to our nomogram might benefit from more active surveillance as well as adjuvant treatments
such as tyrosine kinase inhibitors [44] and immunotherapy [45].

Limitations of the present work should be notified. The first is the retrospective design of the present study. Second,
the seven genes were less reported in ccRCC. Third, the external validation cohort in the present study comprising
merely 84 samples. Hence, further experiments are warranted to elucidate the roles of the seven genes in ccRCC
development and progression and to validate the predictive ability of the nomogram in prospective studies with a
larger population.

Conclusions
In the present study, we excavated seven novel OS-related genes (CYP3A7, CNTNAP5, ADCY2, TOX3, PLG, ENAM,
and COL7A1) from TCGA and used them to build a formula for risk score calculation. Besides, by integrating the
seven-gene signature and clinical features (age and TNM stage), we proposed and validated a nomogram for OS
prediction in ccRCC which might have promising application prospects.
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Category Term Count p-value 

BP oxidation-reduction process 88 2.78E-04 

BP protein transport 56 0.01 

BP transport 53 3.08E-03 

BP protein ubiquitination 49 0.03 

BP transmembrane transport 46 5.93E-05 

CC cytoplasm 561 0.01 

CC cytosol 403 3.28E-06 

CC extracellular exosome 400 2.91E-15 

CC integral component of plasma membrane 176 1.18E-03 

CC mitochondrion 175 7.89E-05 

MF protein binding 947 5.11E-03 

MF ATP binding 175 0.03 



 

Table S1. Top 15 enriched GO terms of the DEGs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

MF protein homodimerization activity 95 0.01 

MF receptor binding 52 6.65E-03 

MF enzyme binding 47 0.02 



 

 

 

 

 

GO: gene ontology; DEG: differentially expressed gene; BP: biological process; CC: cellular component; MF: molecular function. 

 



Table S2.  Top 15 enriched KEGG pathways of the DEGs. 

Pathway 

ID 

Name Count p-value Genes 

hsa00280 
Valine, leucine and isoleucine 

degradation 
24 1.03E-11 

BCKDHA, ACAA2, ALDH6A1, ACADSB, ACADM, EHHADH, BCKDHB, 

ACAT1, HIBADH, ALDH3A2, HADHA, HADHB, AUH, MCCC2, DBT, 

ALDH7A1, MUT, HMGCS2, AOX1, ALDH2, ABAT, HIBCH, HADH, PCCA 

hsa00071 Fatty acid metabolism 21 6.78E-10 

ACAA2, ACOX1, ACADSB, ACADM, CPT2, CHKB, EHHADH, ADH5, ADH6, 

ADH5P4, ACADL, ACAT1, ALDH3A2, HADHA, CPT1A, HADHB, CYP4A11, 

ALDH7A1, CYP4A22, ACSL1, ALDH2, HADH 

hsa03320 PPAR signaling pathway 19 2.96E-04 

ACOX1, PPARA, ACADM, CPT2, CHKB, EHHADH, PPARG, ACADL, CPT1A, 

PCK1, CYP4A11, ACSL1, CYP4A22, HMGCS2, FABP1, SCD5, SLC27A2, SCP2, 

PLTP 

hsa00010 Glycolysis / Gluconeogenesis 15 4.22E-03 
ALDOB, ADH5, FBP1, ADH6, BPGM, DLAT, ADH5P4, ALDH3A2, PCK1, 

ALDH7A1, GALM, G6PC, HK3, PKLR, ALDH2, ENO3 

hsa00380 Tryptophan metabolism 15 4.43E-05 
DDC, EHHADH, OGDHL, ACMSD, WARS2, OGDH, ACAT1, ALDH3A2, 

HADHA, ALDH7A1, AOX1, HAAO, ALDH2, CAT, HADH 

hsa00640 Propanoate metabolism 14 1.30E-05 ALDH6A1, ACADM, EHHADH, ACSS3, ACAT1, ALDH3A2, HADHA, 



ALDH7A1, MUT, ALDH2, ABAT, HIBCH, SUCLA2, PCCA 

hsa00982 Drug metabolism 13 0.03 
FMO4, CYP3A4, GSTA1, UGT1A9, CYP3A7, FMO1, FMO2, AOX1, ADH5, 

ADH6, UGT2A3, ADH5P4, UGT2B7, MGST2 

hsa00983 Drug metabolism 13 1.59E-03 
CYP3A4, CES2, CYP3A7, NAT1, UPB1, UPP1, TPMT, UGT1A9, ITPA, UCK2, 

UGT2A3, IMPDH1, UGT2B7 

hsa00830 Retinol metabolism 12 0.03 
CYP3A4, RDH12, CYP4A11, UGT1A9, CYP3A7, CYP4A22, ADH5, ADH6, 

UGT2A3, PNPLA4, ADH5P4, UGT2B7, RETSAT 

hsa00650 Butanoate metabolism 12 6.37E-04 
ACSM3, ALDH7A1, HMGCS2, ALDH5A1, EHHADH, ALDH2, ABAT, BDH2, 

HADH, ACAT1, ALDH3A2, HADHA 

hsa00250 
Alanine, aspartate and 

glutamate metabolism 
11 1.15E-03 

GOT1, GLUD2, ACY3, ALDH5A1, GLUD1, GFPT2, ABAT, AGXT2, ASNS, 

AGXT, DDO 

hsa00310 Lysine degradation 10 0.04 
ALDH7A1, EHHADH, OGDHL, ALDH2, OGDH, HADH, ACAT1, ALDH3A2, 

HADHA, BBOX1 

hsa00500 Starch and sucrose metabolism 10 0.03 GBA3, G6PC, UGT1A9, ENPP3, HK3, MGAM, TREH, UGT2A3, AGL, UGT2B7 

hsa04960 
Aldosterone-regulated sodium 

reabsorption 
10 0.03 

ATP1B1, SGK1, PIK3CB, NR3C2, ATP1A1, NEDD4L, PIK3R3, INSR, SLC9A3R2, 

PIK3R1 

hsa00410 beta-Alanine metabolism 10 2.73E-04 ALDH7A1, ACADM, SRM, UPB1, EHHADH, ALDH2, ABAT, HIBCH, 



ALDH3A2, HADHA 

KEGG: Kyoto encyclopedia of genes and genomes; DEG: differentially expressed gene. 



Table S3. The 42 hub DEGs.  

Gene symbol Log2FC FDR Regulation 

COL7A1 -0.85 0.00 Down 

IGFN1 -0.84 0.02 Down 

PAEP -0.79 0.03 Down 

ANGPTL8 -0.76 0.05 Down 

TNNT1 -0.73 0.02 Down 

SAA2 -0.73 0.01 Down 

SAA2-SAA4 -0.70 0.04 Down 

SAA1 -0.69 0.00 Down 

ADAMTS14 -0.69 0.00 Down 

GYG2 -0.68 0.02 Down 

†AL357992.1 -0.65 0.01 Down 

PTPRH -0.63 0.04 Down 

ITPKA -0.62 0.00 Down 

†AC116614.1 -0.60 0.03 Down 



†LINC01914 -0.60 0.04 Down 

ADCY2 0.61 0.01 Up 

SLC16A12 0.61 0.00 Up 

OPCML 0.61 0.05 Up 

†AP000439.2 0.61 0.00 Up 

CYP3A7 0.62 0.00 Up 

FUT3 0.62 0.00 Up 

SOWAHB 0.63 0.00 Up 

TOX3 0.64 0.01 Up 

HMGCS2 0.64 0.00 Up 

†AC026462.3 0.64 0.00 Up 

CYP4A22 0.64 0.03 Up 

SEMA3D 0.65 0.01 Up 

CD5L 0.65 0.03 Up 

†AC124854.1 0.66 0.00 Up 

CNTNAP5 0.68 0.02 Up 



†ENPP7P8 0.68 0.00 Up 

VIL1 0.69 0.00 Up 

SLC13A1 0.69 0.00 Up 

ENAM 0.69 0.00 Up 

TMEM174 0.70 0.00 Up 

†LINC00113 0.71 0.00 Up 

SLC6A18 0.79 0.02 Up 

†RNA5SP107 0.81 0.01 Up 

SLC10A2 0.88 0.00 Up 

SLC6A19 0.89 0.01 Up 

G6PC 1.08 0.00 Up 

PLG 1.12 0.01 Up 

DEG: differentially expressed gene; FC: Fold change; FDR: False discovery rate. Bold fonts indicated genes with protein-coding 

function. † Genes without protein-coding function. 

 



Table S4. Results of univariate Cox regression analysis of the 33 hub DEGs. 

Id HR HR.95L HR.95H p value 

COL7A1 1.76  1.39  2.24  0.00  

IGFN1 1.34  1.09  1.64  0.01  

PAEP 1.15  1.03  1.28  0.01  

ANGPTL8 1.16  1.03  1.30  0.02  

TNNT1 1.19  1.03  1.37  0.02  

SAA2 1.10  1.01  1.21  0.03  

SLC6A18 0.88  0.79  0.99  0.03  

SLC10A2 0.80  0.71  0.90  0.00  

SLC6A19 0.84  0.76  0.93  0.00  

G6PC2 0.46  0.26  0.81  0.01  

PLG 0.72  0.61  0.85  0.00  

SAA1 1.09  1.03  1.16  0.00  



ADAMTS14 1.43  1.13  1.81  0.00  

GYG2 1.32  1.05  1.65  0.02  

PTPRH 1.21  1.03  1.42  0.02  

ITPKA 1.39  1.18  1.64  0.00  

ADCY2 0.53  0.38  0.74  0.00  

SLC16A12 0.77  0.70  0.85  0.00  

OPCML 0.77  0.64  0.92  0.00  

CYP3A7 0.38  0.27  0.53  0.00  

FUT3 0.68  0.52  0.89  0.00  

SOWAHB 0.64  0.54  0.75  0.00  

TOX3 0.65  0.53  0.79  0.00  

HMGCS2 0.87  0.80  0.96  0.00  

CYP4A22 0.86  0.75  0.98  0.03  

SEMA3D 0.77  0.63  0.93  0.01  



CD5L 0.80  0.67  0.96  0.02  

CNTNAP5 0.45  0.32  0.65  0.00  

VIL1 0.87  0.77  0.99  0.03  

SLC13A1 0.88  0.79  0.97  0.01  

ENAM 0.64  0.52  0.79  0.00  

TMEM174 0.88  0.80  0.97  0.01  

SAA2-SAA4 1.12  1.01  1.23  0.03  

 


