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This research was carried out to reveal specific hub genes involved in diabetic heart fail-
ure, as well as remarkable pathways that hub genes locate. The GSE26887 dataset from
the GEO website was downloaded. The gene co-expression network was generated and
central modules were analyzed to identify key genes using the WGCNA method. Functional
analyses were conducted on genes of the clinical interest modules via Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway and Gene ontology (GO) enrichment, associated
with protein–protein interaction (PPI) network construction in a sequence. Centrality param-
eters of the PPI network were determined using the CentiScape plugin in Cytoscape. Key
genes, defined as genes in the ≥95% percentile of the degree distribution of significantly
perturbed networks, were identified. Twenty gene co-expression modules were detected
by WGCNA analysis. The module marked in light yellow exhibited the most significant as-
sociation with diabetes (P=0.08). Genes involved in this module were primarily located in
immune response, plasma membrane and receptor binding, as shown by the GO analysis.
These genes were primarily assembled in endocytosis and phagosomes for KEGG pathway
enrichment. Three key genes, STK39, HLA-DPB1 and RAB5C, which may be key genes
for diabetic heart failure, were identified. To our knowledge, our study is the first to have
constructed the co-expression network involved in diabetic heart failure using the WGCNA
method. The results of the present study have provided better understanding the molecular
mechanism of diabetic heart failure.

Introduction
Heart failure (HF) is a widespread disease among persons over 65 years old. Heart failure can be manifested
as difficulty in breathing and fatigue. It lowers the quality of life of the elderly and affects longevity. It is a
chronic disease that requires lifelong management. The risk of HF is significantly high for individuals with
diabetes mellitus (DM), compared with those without diabetes. Epidemiological evidence has shown the
relationship between HF and DM. According to Nichols’s research, heart failure occurs in 30.9 per 1000
person years for diabetic patients and 12.4 per 1000 person years for non-diabetic patients [1]. Therefore,
diabetes is recognized as a powerful independent risk factor contributing to death of hospitalized HF
patients [2]. DM and HF often co-occur with each other, and moreover, intensify the risk for each other.
A Danish investigation group, DIAMOND, found that 50% of HF patients with DM died within 3 years
of follow-up. Mortality analyses showed a higher 1-year mortality (31%) in DM patients, compared with
non-DM patients [2].
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In diabetic patients, heart failure has been found to be promoted by inflammation, oxidative stress and hyper-
glycemia at the systemic level [3], while knowledge of the same is limited at the cellular and molecular levels. There-
fore, current guidelines recommend the same therapy options for patients either with or without diabetes. Some
randomized controlled trials have reported that, as a classical anti-diabetic medicine, the symptoms of HF patients
may be alleviated by taking sodium-glucose co-transporter 2 (SGLT2) inhibitor [4,5]. Research data show that in di-
abetes patients who had failure, the use of SGLT2 inhibitors reduces hospitalizations and all-cause mortality due to
heart failure compared to other hypoglycemic drugs [4,5]. However, other anti-diabetic drugs did not produce similar
effects on HF even though they may exert the same anti-diabetic effect [6,7]. The beneficial effect on HF seems to
be independent of the anti-diabetic effect caused by SGLT2 inhibition. Little is known on its molecular mechanisms.
Whether SGLT2 inhibitors can protect those heart failure patients without diabetes is still unclear. Future clinical and
basic experimental research are needed. Therefore, we aimed to identify the different core molecular mechanisms
entangled in heart failure development with or without DM.

The biological function of cells is achieved through the interaction between genes to form a complex regulatory
network. Genes with similar expression patterns may be co-regulated or functionally related. Gene network analysis
is a method to find key genes by dividing genes into different modules by the similarity of expression, which helps
us systematically understand the gene function at the molecular level. Weighted gene co-expression network analysis
(WGCNA) has generally been implemented to effectively investigate associations among genome and clinical phe-
notypes [8]. WGCNA allows for genes to be clustered as co-expression units to determine the connection between
characteristics of samples and differential gene expression. Thousands of genes can be analyzed and the correspond-
ing gene modules for the clinical characteristics are identified through WGCNA to determine disease pathway related
key genes for further validation. Systemic-level insights of the associated signaling network related to a particular phe-
notype are provided by WGCNA.

This research was implemented to reveal diabetes linked specific hub genes and pathways involved in heart failure.
The GEO database was used to obtain rich data, while construction of the gene co-expression network, selection of
important modules and identification of key genes was carried out using WGCNA. The results of this study have
provided better understanding of the molecular mechanism involved in diabetic heart failure.

Methods
Data sources and searches
The Gene Expression Omnibus (GEO) is the largest source of publicly available microarray data. High-throughput
functional genomic experiments on heart failure were searched for on GEO. For the present study, the selection crite-
ria applied were: (1) studies containing data on heart biopsy samples of diabetic heart failure and non-diabetic heart
failure patients; (2) studies on expression profiling by array; (3) raw data or processed data with public accessibility;
(4) studies conducted on Homo sapiens; and (5) a total sample size of >15. The GSE26887 dataset was selected for the
WGCNA analysis, because it was determined to be of the highest quality and has been conducted on an appropriate
sample size.

Data and statistical analysis
The GSE26887 dataset was obtained from the GEO website. Quality control, preprocessing and statistical analysis
were performed using the limma package in Rstudio. The data are normalized through Robust Multi-array Average
(RMA) method. WGCNA analysis was conducted on the entire GSE26887 dataset.

WGCNA network construction and identification of modules
The WGCNA package was adopted to build the co-expression network [8]. First, the samples were clustered to iden-
tify obvious outliers. Second, the co-expression network was constructed using the automatic network construction
function. Adjacency was calculated from the soft thresholding power β, which was derived by co-expression similar-
ity, using pick-Soft-Threshold function. Third, modules were detected through hierarchical clustering and dynamic
tree cut function. Fourth, for the modules correlated to the clinical attributes, module membership (MM) and gene
significance (GS) were calculated. Information on genes in the modules were used for further analysis. Finally, the
eigengene network was visualized.
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Functional enrichment analysis
Further functional enrichment analysis was applied on genes of the module of interest. Characteristic biological at-
tributes of the genes were identified using GO analysis [9], while functional attributes were identified using KEGG
pathway enrichment analysis [10]. A P value of < 0.05 was considered to show that a result was statistically significant.

PPI network and identification of key genes
Protein–protein interaction (PPI) networks can provide information on the functional interactions between proteins.
The construction of PPI network was based on the modules of interest by a joint of the Search Tool for the Retrieval of
Interacting Gene (STRING) [11]. The protein interaction relationship network was visualized using Cytoscape [12].

Centrality parameters of the PPI network, including degree, closeness and betweenness, were determined using the
CentiScape plugin [13] in Cytoscape. The average number of interactions relevant to each node was used as the degree
of that particular node. Key genes, defined as genes in the ≥ 95% percentile of the degree distribution of clinically
relevant networks, were identified.

Results
Microarray data acquisition and gene expression analysis
The GSE26887 dataset was further analyzed in the present study. GSE26887 contained microarray data on left ven-
tricle cardiac biopsies of 7 diabetic and 12 non-diabetic post-ischemic heart failure patients. The raw data were
downloaded on the GPL6244 platform from the GEO database of the National Center of Biotechnology Informa-
tion (NCBI). Information on the clinical characteristics of the samples were also retrieved from the GEO database.

The RMA method in the limma package was used for raw data normalization. Then, genes with the highest average
expression values ranked before 4000 were enrolled for further evaluation. All genes and samples were found to have
an adequate number of values available. Next, the samples were clustered to locate any obvious outliers. A value of 25
was set as the cut-off height and samples that did not meet this criterion were removed (Supplementary Figure S1).

Construction of the gene co-expression modules
The soft thresholding power β, a parameter derived from the co-expression similarity and aimed to determine neigh-
borhood, was first calculated for the construction of the WGCNA network. The pick-Soft-Threshold function in
WGCNA was used to analyze network topology. A value of 10 was chosen as the soft thresholding power β value for
the next analysis because the level of independence was able to reach 0.9 (Figure 1A) and average connectivity was
relatively high (Figure 1B).

Using WGCNA, the gene network was constructed and its one-step network construction function used to identify
modules. A value of 30 was chosen as the minimum module size and a value of 2 was chosen as the deepSplit value
(which indicates a medium level of sensitivity). In total, 20 gene co-expression modules (Figure 2 andTable 1) were
detected and constructed.

Exploration of the pairwise gene co-expression modules and the
eigengenes
Relationships among the established modules were dug deep and mapped (Supplementary Figure S2). The Topologi-
cal Overlap Matrix (TOM) of the 4000 genes on which the analysis was performed is shown on the heatmap. A lighter
color indicates a lower level of overlap, while the darker the color the higher the level of overlap. The results indicated
relative independence between the modules.

Key gene (eigengene) connectivity was analyzed before the key genes were clustered. Eigengenes may be used to
elucidate the association between pairwise gene co-expression modules. The results showed that the 20 modules
could be assigned to two distinct clusters. Each cluster contained 10 modules (Supplementary Figure S3A). As shown
in Supplementary Figure S3B, there were four combinations (brown and royal blue modules, black and cyan modules,
purple and yellow modules, and green and light cyan modules) that showed a high degree of interconnectivity.

Identification of the key module
The correlation between the modules and the clinical features was analyzed to determine associations with the highest
levels of significance. The results showed that the light yellow module was most significantly correlated with diabetes
(P=0.08) (Figure 3).
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Figure 1. Selection of the soft-thresholding powers based on analysis of network topology

(A) X axis represents soft-thresholding power. The Y axis represents the scale-free topology model fit index. (B) X axis represents

soft-thresholding power. The Y axis represents the mean connectivity (degree).

Figure 2. Clustering dendrogram of genes

The dendrogram of clustering is based on topological overlap. Genes with similarity is clustered in one module color.
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Table 1 Number of genes in constructed modules

Module color Number of genes

module black 159

module blue 300

module brown 290

module cyan 94

module dark green 61

module dark gray 57

module dark red 66

module dark turquoise 60

module green 166

module green yellow 242

module gray 58

module light cyan 88

module light green 69

module light yellow 67

module midnight blue 90

module pink 403

module purple 383

module royal blue 67

module tan 105

module yellow 107

Figure 3. The associations between module and trait

Each row represents to a specific module, and the column corresponds to a specific trait. The value of each cell represents the

corresponding correlation and P-value. Different colors represent the degree of correlation.

Key module functional analysis
Genes in the light yellow module, which was most significantly correlated with diabetic heart failure, were managed
with further functional analysis, including KEGG enrichment and GO analysis (Figures 4 and 5). The chief pathways,
in which genes in the key module were mainly enrolled in, were determined as endocytosis and phagosomes, through
the KEGG analysis. As for GO analysis, immune response was the most enriched biological process, the plasma mem-
brane was the most enriched cellular component, while receptor binding was the most enriched molecular function
among the genes.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

5



Bioscience Reports (2020) 40 BSR20200507
https://doi.org/10.1042/BSR20200507

Figure 4. Gene ontology analysis

Gene ontology analysis for biological process, cellular component and molecular function of genes involved in module light yellow.

Immune response was the most enriched biological process, the plasma membrane was the most enriched cellular component,

while receptor binding was the most enriched molecular function among the genes.

Table 2 Degree, closeness and betweenness of key genes in the PPI network

Gene Degree Betweenness Closeness

STK39 22 17.14 0.01

HLA-DPB1 22 1.42 0.01

RAB5C 21 2.52 0.01

Construction of PPI network
STRING was applied to create PPI network to define protein interactions (Figure 6). Using the CentiScape plugin,
the key genes were identified as STK39, HLA-DPB1 and RAB5C (Table 2).

Discussion
Heart failure and diabetes are common clinical diseases. Prognosis of diabetic heart failure patients is poor and the
life expectancy is short. Patients with diabetic heart failure often cause a greater disease burden. Therefore, it is of
great clinical significance to find molecular mechanism of diabetic heart failure, and may be the promising targets
for future treatment of diabetic heart failure.

In this research, key modules and genes involved in diabetic heart failure were observed using bioinformatics meth-
ods. Using published diabetic heart failure data, we detected and constructed co-expression modules in WGCNA and
identified the key modules. Functional analysis and protein–protein interaction networks of the key modules were
investigated. Finally, STK39, HLA-DPB1 and RAB5C were defined as key genes.

WGCNA, a systemic approach, is frequently used to explore pairwise connections among enormous genes in tran-
scriptional level [8]. Unlike other network analysis methods concentrating on unweighted networks, WGCNA is more
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Figure 5. Kyoto Encyclopedia of Genes and Genomes analysis of genes involved in module light yellow

Different node size reflects the gene count. The larger node means more gene counts. Different node color reflects P value [−
log10(P value)]. The darker the node color, the greater the P value is.

comprehensive and qualified to create correlation networks no matter weighted or unweighted [8]; therefore, the re-
sults of the analysis are reliable and significant. WGCNA groups functionally related genes into a module, therefore
biologically relevant modules can be classified for further analysis. As far as we are concerned, this was the first re-
search to explore underlying causation of diabetic heart failure by constructing the co-expression network based on
WGCNA method, and to better investigate diabetic heart failure related genes.

In the present study, through the deep and systemic reanalysis of the GSE26887 dataset, the light yellow module was
determined to be the most significant for diabetic heart failure. GO analysis demonstrated that immune response was
activated during the development of diabetic heart failure. This result is consistent with previous findings on heart
failure [14]. Studies have shown that activation of the immune response provokes adverse cardiac remodelling and
causes left ventricular dysfunction [14,15]. There are also studies that have shown that the immune response is acti-
vated during the development of diabetes [16]. The crossover of immune response may be a trigger for the progression
of diabetic heart failure, which is worthy of further study. The KEGG analysis showed that endocytosis and phago-
somes were important pathways involved in diabetic heart failure. Endocytosis and phagosomes are intimately allied
to autophagy, which is concerned to participate in the pathologic progress of many diseases, including diabetes [17].
Autophagy process disorder often results in cardiomyopathy and cardiac dysfunction [18,19]. Revealing the physio-
logical processes of endocytosis and phagosomes could highlight possible targets that potentially contributes to the
treatment of diabetic heart failure as well as the prevention.

In our research, three key genes were found to be involved in diabetic heart failure. STK39, belonging to ser-
ine/threonine kinase family, is recognized as a dominant factor in the cellular stress response pathway. Only a few
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Figure 6. PPI network

PPI network of genes involved in module light yellow generated by the Cytoscape software. STRING was applied to create PPI

network to define protein interactions.

studies have revealed the specific function of STK39 on diabetic heart failure. STK39 was recognized as a hyperten-
sion risk factor through whole-genome association studies [20,21]. Klooster’s study showed that STK39 was associ-
ated with insulin resistance in humans, which is the key pathological process of diabetes [22], while Hafver’s study
showed that STK39 could bind to NCX1, a sodium–calcium exchanger involved in end-stage human heart failure
[23]. These studies have shown that STK39 is worthy of further investigation. HLA-DPB1 encodes a major histo-
compatibility complex that present peptides derived from extracellular proteins and casts a vital function on immune
system. Previous studies have shown that HLA-DPB1 is associated with diabetes and dilated cardiomyopathy [24,25],
therefore deeper investigation of HLA-DPB1 in diabetic heart failure is required. RAB5C is a protein coding gene,
belonging to the Rab protein family. Boutchueng–Djidjou’s recent study showed that RAB5C is an endosomal sorting
marker that is associated with diabetes. However, only a finite number of investigations have revealed the potential
mechanism how RAB5C functions in the development of diabetic heart failure. Therefore, further exploration is
needed to delineate the essential biological processes through which RAB5C alters the progression of diabetic heart
failure.

8 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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The limitations of our study need to be noted. The construction of the correlation network is only a preliminary
analysis and phenotype-specific networks, such as transcription factors-gene networks, were not identified through
our study [26]. Therefore, further studies using larger sample sizes, as well as functional studies on key genes involved
in diabetic heart failure are required. Molecular biology methods should be used to validate our finding. Further in
vivo and in vitro experiments may be done to verify the results of the present study.

In conclusion, our research was the first study to explore underlying causation of diabetic heart failure by con-
structing the co-expression network based on WGCNA method. The present study identified key genes that can be
further investigated to determine the molecular mechanisms underlying diabetic heart failure.
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Sup. Figure 1 Clustering dendrogram of samples based on their Euclidean distance. 
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Sup. Figure 2 visualizing WGCNA network using a heatmap plot. The heatmap 

depicts the topological overlap matrix (TOM) among all modules in the analysis. The 

colors mean different modules. Light color represents low overlap and progressively 

darker red color represents higher overlap. 



 

Sup. Figure 3 Eigengene dendrogram and eigengene adjacency plot.  
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