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The immune infiltration of patients with gastric cancer (GC) is closely associated with clini-
cal prognosis. However, previous studies failed to explain the different subsets of immune
cells involved in immune responses and diverse functions. The present study aimed to un-
cover the differences in immunophenotypes in a tumor microenvironment (TME) between
adjacent and tumor tissues and to explore their therapeutic targets. In our study, the rela-
tive proportion of immune cells in 229 GC tumor samples and 22 paired matched tissues
was evaluated with a Cell type Identification By Estimating Relative Subsets Of known RNA
Transcripts (CIBERSORT) algorithm. The correlation between immune cell infiltration and
clinical information was analyzed. The proportion of 22 immune cell subsets was assessed
to determine the correlation between each immune cell type and clinical features. Three
molecular subtypes were identified with ‘CancerSubtypes’ R-package. Functional enrich-
ment was analyzed in each subtype. The profiles of immune infiltration in the GC cohort
from The Cancer Genome Atlas (TCGA) varied significantly between the 22 paired tissues.
TNM stage was associated with M1 macrophages and eosinophils. Follicular helper T cells
were activated at the late stage. Monocytes were associated with radiation therapy. Three
clustering processes were obtained via the ‘CancerSubtypes’ R-package. Each cancer sub-
type had a specific molecular classification and subtype-specific characterization. These
findings showed that the CIBERSOFT algorithm could be used to detect differences in the
composition of immune-infiltrating cells in GC samples, and these differences might be an
important driver of GC progression and treatment response.

Introduction
Gastric tumor remains one of the most common and heterogeneous neoplasms in the world. Neoplasms
pose an important diagnostic and therapeutic challenge in contemporary clinical gastroenterology. They
also remain among the top ten major cancer diseases worldwide [1,2]. In China, gastric cancer (GC) is
among the top three causes of incidence rates and mortality [3], and the 5-year survival rate of GC is
low [1,4]. GC is treated with surgery, radiochemotherapy, immunotherapy and targeted approaches with
anti-angiogenic monoclonal antibodies and tyrosine kinase inhibitors, if tumors harbor a specific muta-
tion. Although surgery, chemotherapy, radiotherapy and molecularly targeted drug therapy have provided
a means for GC treatment, the prognosis of patients with GC is still not optimistic, and the 5-year overall
survival (OS) rate remains low. Biotherapy has achieved certain effects on GC defined by immune cells
recruited to and activated in a tumor microenvironment (TME) [5], but the role of immune cells in a TME
remains poorly understood.

Tumor inflammatory response has played an important role in cancer occurrence and progression. Sev-
eral studies have shown that tumor-infiltrating immune cells (TIICs) can help hosts resist cancer cells and
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promote solid tumor development [6]. As immuno-sensitive tumors, numerous TIICs including T and B lymphocytes
and neutrophils are present in the tumor stroma. Cell density and type are closely related to the clinical outcomes of
tumors [7–9]. In previous studies, TIICs have been examined by immunohistochemical methods which rely on a
single marker to identify a specific TIIC subgroup [10–12]. As such, these approaches are not comprehensive and can
be misleading. When few cells are detected or closely related to the cell type, immunohistochemical effect is poor.
Consequently, few studies have elucidated the prognostic value of these TIIC subgroups.

Cell type Identification By Estimating Relative Subsets Of known RNA Transcripts (CIBERSORT) [13] has been
developed as a new system biology tool which can identify 22 types of immune cells based on transcriptome data. In
this research, the gene expression data of 407 patients were collected from The Cancer Genome Atlas (TCGA), and
22 TIIC subsets of GC immune cells were quantified using CIBERSORT for the first time. The relationship between
immune cells and clinical features was also explored. Our findings revealed the immunogenomic phenotypes of GC
subclasses and provided novel insights into GC immunotherapy and the relationship of complex GC progression,
tumor molecular subtypes and immune cell heterogeneity.

Methods
Gene expression datasets
The GC dataset including basic information, gene expression profiles and corresponding prognosis information was
downloaded from the publicly available dataset of TCGA [14]. Only patients with confirmed GC and clinicopatho-
logical and survival information were included in the study. Patients with insufficient or missing datasets such as age,
TNM stage and OS, were excluded in the subsequent treatment. RNA sequencing data were converted using the voom
(variance modeling at the observational level) method [15,16] and counted data were transformed to values closer to
microarray results.

TIIC quantification via the CIBERSOFT algorithm
The CIBERSORT algorithm was used to determine the immune-related signature from 547 marker immune genes and
quantify the relative fraction of each immune cell type. The method was employed to infer their relative proportions of
22 immune cells. Gene expression datasets were written by using standard annotation files, and data were uploaded
to the CIBERSORT web and run by using the default signature matrix with 1000 kinds of arrangement. With the
CIBERSORT algorithm, P-values were obtained for each deconvolution sample via Monte Carlo sampling, which
could make each result credible.

The total number of T cells was estimated as the sum of the fraction of CD8+ T cells, CD4+ näıve T cells, CD4+

memory resting T cells, activated CD4+ memory T cells, follicular helper T cells, regulatory T cells (Tregs) and γδ T
cells. The total macrophage fraction was calculated as the sum of the fractions of M0, M1 and M2 macrophages. The
total number of B cells was determined as the sum of memory and naı̈ve B cells.

Survival analysis
Twenty-two human immune cell phenotypes were further screened. Univariate Cox analysis and Kaplan–Meier sur-
vival analysis were performed on LM22 and overall survival (OS) by using the ‘survfit’ function of the survival pack-
age in R software. The relationship between clinical feature (TNM stage, radiotherapy, grade) and LM22 was also
explored.

Identification of molecular subtypes
A consensus clustering algorithm was applied to determine the number of clusters and further explore different pat-
terns of TIICs by using the ‘CancerSubtypes’ R-package [17]. Differentially expressed genes (DEGs) and different
immune cell types were determined with the Limma R-package to explore the differences in TIICs among each clus-
ter. When DEGs in the dataset were expressed with |log2 fold-change| ≥ 0.1 and adjusted P<0.05 was set as the
selection standard for subsequent analysis.

Functional and pathway enrichment analysis
Gene Ontology (GO) [18] and Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.ad.jp/kegg/)
[19] are the most commonly used tools to describe molecular biology information, such as gene functions, biological
functions, protein networks and genomic information. ‘ClusterProfiler’ R package was used to conduct functional
and pathway enrichment analysis and reveal the potential biological significance of DEGs among each subtype with
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Figure 1. Flowchart detailing the study design and samples at each stage of analysis

a cut-off point of |log2 fold-change| ≥ 0.2 and P<0.05. Then, gene set variation analysis (GSVA) revealed the over-
all pathway of the gene set pathway scores of each sample. Gene sets with c2-curated signatures were downloaded
from the Molecular Signature Database of Broad Institute. The obvious enrichment pathway was determined with a
threshold of |log fold-change| ≥ 0.2 and adjusted P<0.05.

Statistical analyses
Samples with P<0.05 calculated with CIBERSORT were included in the analysis. After they were initially screened,
eligible samples were divided into two groups: paired tumor group and paired adjacent tissue group. Pearson correla-
tion analysis was performed with the R software to explore the mutual relationship among three clusters. A Wilcoxon
test was conducted to examine the statistical significance between the two groups. A Kruskal–Wallis test was per-
formed to compare the differences between the two groups. A log-rank test was carried out and Kaplan–Meier curves
were obtained to examine the differences in OS between the groups.

In the univariate Cox regression analysis, variables with P<0.05 were considered as independent prognostic fac-
tors, and prognostic LM22 immune cells were further analyzed through multivariate COX regression analysis. The
area under the curve (AUC) and the confidence interval under ROC curves were calculated using the R package
‘pROC’ which was used to evaluate the diagnostic accuracy of prognostic LM22 immune cells. Statistical analy-
sis was conducted using software packages provided by the R-Language (R-project.org) and Bioconductor project
(www.bioconductor.org).

All analyses were performed using R version 3.3.0. All P-values were two-sided, and any P<0.05 was considered
statistically significant.

Results
Overview of data
The flowchart of study design and the analysis process is exhibited in Figure 1. A total of 407 samples including 32
adjacent-tumor samples and 375 tumor samples were obtained from the TCGA. After the CIBERSOFT algorithm
was used, the sample with P<0.05 including 15 paracancerous tissues and 244 tumor tissues were considered in the
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Figure 2. The performance of CIBERSOST for estimating TIICs composition in GC

(A) Relative proportions of 22 TIICs subpopulation in normal samples. (B) Relative proportions of 22 TIICs subpopulation in tumor

samples. (C) Heatmap of the 22 immune cells’ proportions.

main research contents. After the samples were matched, 22 cases of paired adjacent tumor tissues and paired tumor
tissues were selected. The expression profiles of 547 TME-related genes were extracted for further analysis.

Overview of immune infiltration in GC
The difference between paired cancer and adjacent tissues in 22 immune cells was analyzed by using the CIBER-
SORT algorithm. Figure 2 summarizes the results obtained from 22 pairs of the matched patients. Obviously, the
proportion of immune cells in GC tumor tissues was significantly different from that in normal tissues. Therefore,
changes in TIICs proportions might be intrinsic to individual differences. In Figure 3, the fractions of total T cells, to-
tal macrophages and total B cells were higher in GC tumor tissues than in adjacent tumor tissues. Plasma cells, resting
CD4 memory T cells, activated CD4 memory T cells, M0 macrophages and M1 macrophages significantly changed
between adjacent tumor and tumor groups. The fractions of activated CD4 memory T cells, Tregs, M0 macrophages,
M1 macrophages and neutrophils were higher in the tumor samples than in the adjacent tumor samples. The frac-
tions of plasma cells and resting CD4 memory T cells were higher in the adjacent samples than in the tumor samples
(Figure 4, Table 1).

The proportions of different TIICs were moderately to strongly correlated in the GC-paired adjacent tumor sam-
ples. The mutual relationship in LM22 immune cells reduced in the tumor samples. For examples, follicular helper
T cells were highly and positively associated with memory B cells in the immune phenotype profiles in the TMC
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Figure 3. The distribution of 22 immune cell infilteration between GC adjacent tissues and tumor tissues

The stacked histogram shows the distribution of 22 immune cell infiltration between GC adjacent tissues and tumor tissues, in-

cluding total immune cells (A), total T cells (B), total B cells (C) and total macrophages (D).

Figure 4. The violin plot exhibits the difference between CIBERSORT immune cell fractions between GC adjacent tissues

and tumor tissues

from the GC-paired adjacent tumor samples, whereas CD8 T cells were highly and negatively related to resting CD4
memory T cells in the GC-paired adjacent tumor group (Supplementary Figure S1). Therefore, we hypothesized that
alterations in the TME cell infiltration rate directly reflected differences in immunity between the two groups.

In terms of clinical features, several LM22 immune cells were associated with clinical characteristics (Figure 5).
Pathological stage was associated with M1 macrophages and eosinophils. As the TNM stage increased, the degree of
M1 macrophages also enhanced except for Stage IV. The eosinophils were mainly enriched in the Stage IV (Supple-
mentary Figure S2A,B). Follicular helper T cells were activated at the late stage (G3/G4) (Supplementary Figure S2C).
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Table 1 Comparison of CIBERSORT immune cell fractions between normal tissues and tumor tissues in GC

Immune cell type CIBERSORT fraction in % of all infiltrating immune cells
P-value Normal means Tumor means logFC

Naive B cells 0.237 0.033 0.055 0.742

Memory B cells 0.634 0.027 0.018 −0.590

Plasma cells <0.001 0.297 0.052 −2.523

CD8 T cells 0.562 0.146 0.172 0.230

Naive CD4 T cells NA NA NA NA

Resting CD4 memory T cells 0.047 0.185 0.114 −0.700

Activated CD4 memory T cells 0.033 0.009 0.053 2.484

Follicular helper T cells 0.100 0.021 0.036 0.814

Tregs 0.019 0.047 0.075 0.674

γδ T cells 1 0.003 0.002 −0.153

Resting NK cells 0.089 0.005 0.020 1.896

Activated NK cells 0.426 0.016 0.012 −0.393

Monocytes 0.205 0.014 0.008 −0.769

M0 macrophages <0.001 0.012 0.133 3.472

M1 macrophages 0.001 0.022 0.074 1.769

M2 macrophages 0.116 0.065 0.085 0.387

Resting dendritic cells 1 0.019 0.022 0.200

Activated dendritic cells 0.528 0.008 0.014 0.793

Resting mast cells 0.509 0.040 0.026 −0.596

Activated mast cells 0.390 0.013 0.017 0.327

Eosinophils 0.591 0.005 0.004 −0.308

NA: not available.

Figure 5. Clinical characteristics of several LM22 immune cells in GC

Monocytes were associated with radiation therapy. The fraction of total B cells was higher in the samples without ra-
diation therapy than in the samples with radiation therapy, whereas the fraction of total macrophages was higher in
the latter than in the former (Supplementary Figure S3, Table 2).

Identification of prognostic LM22 immune cell subtypes
Univariate Cox regression was performed to identify the prognostic LM22 immune cell subsets in all the tumor
samples, and the results showed that two immune cell subsets (γδT cells and neutrophils) were significantly correlated
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Table 2 Comparison of immune cell fractions between with radiation and without radiation in GC

Immune cell type The fraction in % of all infiltrating immune cells
P-value Normal means Tumor means logFC

Naive B cells 0.060 0.052 0.073 0.494

Memory B cells 0.674 0.026 0.036 0.441

Plasma cells 0.229 0.055 0.042 −0.403

CD8 T cells 0.590 0.123 0.120 −0.044

Naive CD4 T cells 0.623 0.001 0.000 NA

Resting CD4 memory T cells 0.155 0.166 0.192 0.209

Activated CD4 memory T cells 0.486 0.046 0.032 −0.545

Follicular helper T cells 0.229 0.029 0.023 −0.352

Tregs 0.847 0.063 0.060 −0.062

γδ T cells 0.417 0.001 0.002 1.159

Resting NK cells 0.505 0.012 0.014 0.220

Activated NK cells 0.697 0.022 0.018 −0.300

Monocytes 0.005 0.003 0.009 1.759

M0 macrophages 0.978 0.126 0.118 −0.101

M1 macrophages 0.568 0.071 0.063 −0.183

M2 macrophages 0.601 0.097 0.093 −0.065

Resting dendritic cells 0.447 0.018 0.020 0.132

Activated dendritic cells 0.152 0.019 0.009 −1.116

Resting mast cells 0.579 0.032 0.036 0.153

Activated mast cells 0.796 0.025 0.024 −0.078

Eosinophils 0.918 0.002 0.001 −0.624

Neutrophils 0.770 0.009 0.017 0.891

Figure 6. The prognostic associations of subsets of immune cells in univariate Cox regresion and multivariate Cox

regression

A) Univariate Cox regression and (B) Multivariate Cox regression.

with OS (P<0.05) (Figure 6A, Table 3). In multivariate Cox regression, activated CD4 memory T cells, resting mast
cells and CD8 T cells were significantly correlated with OS (Figure 6B, Table 3).

The ROC curves were used to evaluate the prognostic power of prognostic LM22 immune cell subsets. The AUC
of prognostic LM22 immune cell subset biomarker model is shown in Supplementary Figure S4. In GC, resting mast
cells, näıve B cells, monocytes, neutrophils, activated CD4 memory T cellsnd follicular helper T cells had an AUC of
more than 0.550. Monocytes had the highest performance in the risk prediction of patients with GC.

Immune cell infiltration patterns in molecular GC subtypes
The molecular classification of GC was identified by performing an unsupervised consensus clustering of 221 tumor
samples to explore the infiltration of different immune cell populations in a TME in GC. The optimal number of
clusters was determined with K. After the relative altercations in the area under the cumulative distribution function
(CDF) curve and the consensus heatmap were evaluated, a three-cluster solution (K = 3) was selected, but it did not
remarkably increase in the area under the CDF curve (Supplementary Figure S5). This finding classified 48 patients
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Table 3 The prognostic associations of subsets of immune cells in univariate and multivariate Cox regression

The prognostic associations of subsets of immune cells in univariate Cox regression
Gene HR z P-value Lower Upper

γδ T cells 43477699 2.226 0.026 8.154 2.32E+14

Neutrophils 526.096 2.059 0.039 1.352 204721

Resting CD4 memory T
cells

11.844 1.955 0.051 0.994 141.090

CD8 T cells 0.079 −1.890 0.059 0.006 1.099

Activated CD4 memory T
cells

0.017 −1.794 0.073 0.000 1.456

Monocytes 600712. 1.519 0.129 0.021 1.72E+13

Naive B cells 13.344 1.306 0.191 0.274 650.914

Naive CD4 T cells 30726951 0.978 0.328 3.03E-08 3.12E+22

M2 macrophages 4.998 0.928 0.353 0.167 149.236

Tregs 0.113 −0.753 0.452 0.000 33.128

M0 macrophages 0.521 −0.615 0.539 0.065 4.165

Activated dendritic cells 0.117 −0.431 0.666 6.67E-06 2040.

Activated NK cells 7.244 0.426 0.670 0.001 65314

Activated mast cells 2.434 0.424 0.671 0.040 148.105

M1 macrophages 0.346 −0.409 0.683 0.002 56.079

Follicular helper T cells 0.129 −0.409 0.683 6.84E-06 2416

Resting dendritic cells 3.075 0.248 0.804 4.30E-04 22001

Resting NK cells 0.303 −0.220 0.826 7.37E-06 12490

Plasma cells 0.770 −0.172 0.863 0.039 15.235

Eosinophils 0.330 −0.120 0.905 4.43E-09 24566051

Resting mast cells 1.269 0.080 0.936 0.004 432.197

Memory B cells 1.007 0.003 0.997 0.015 65.694

The prognostic associations of subsets of immune cells in multivariate Cox regression
Immune cells COEF HR HR .95L HR .95H P-value

Naive B cells −5.733 0.003 2.15E-07 48.874 0.243

Memory B cells −7.924 0.000 1.33E-08 9.875 0.128

Plasma cells −7.491 0.001 3.82E-08 8.152 0.126

CD8 T cells −9.032 0.000 1.82E-08 0.787 0.044

Naive CD4 T cells 10.776 47852 5.68E-13 4.03E+21 0.588

Resting CD4 memory T
cells

−6.388 0.002 2.09E-07 13.506 0.164

Activated CD4 memory T
cells

−12.797 0.000 3.58E-11 0.214 0.026

Follicular helper T cells −2.673 0.069 4.34E-08 109916.931 0.714

Tregs −9.872 0.000 2.34E-10 11.350 0.116

γδ T cells 17.979 64306589 0.043 9.73E+16 0.095

Resting NK cells −8.258 0.000 2.81E-12 23880 0.377

Activated NK cells −2.187 0.112 5.39E-08 233695 0.768

Monocytes −2.879 0.056 2.77E-13 1.14E+10 0.828

M0 macrophages −8.731 0.000 1.69E-08 1.543 0.062

M1 macrophages −5.998 0.002 4.391E-08 140.539 0.283

M2 macrophages −6.357 0.002 9.36E-08 32.178 0.205

Resting dendritic cells −5.789 0.003 3.48E-09 2695 0.407

Activated dendritic cells −7.651 0.000 1.16E-10 1948 0.325

Resting mast cells −12.238 0.000 3.99E-11 0.588 0.040

Activated mast cells −9.893 0.000 6.94E-11 36.799 0.151

Eosinophils −15.905 0.000 5.24E-18 2923 0.192

Neutrophils NA NA NA NA NA

8 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Table 4 The GSVA analysis for three GC clusters

logFC AveExpr t P-value
adj.
P-value B

HALLMARK ESTROGEN RESPONSE LATE 0.421 −0.008 2.661 0.010 0.232 −2.710

HALLMARK XENOBIOTIC METABOLISM −0.378 0.019 −2.452 0.017 0.232 −3.093

HALLMARK HEME METABOLISM −0.228 −0.004 −2.169 0.034 0.307 −3.573

HALLMARK ANGIOGENESIS −0.234 0.043 −1.595 0.116 0.696 −4.392

HALLMARK EPITHELIAL MESENCHYMAL TRANSITION −0.231 0.032 −1.470 0.147 0.696 −4.541

HALLMARK PEROXISOME −0.211 0.018 −1.394 0.169 0.696 −4.626

HALLMARK FATTY ACID METABOLISM −0.221 0.008 −1.348 0.183 0.696 −4.676

HALLMARK APICAL JUNCTION 0.161 −0.022 1.153 0.253 0.696 −4.868

HALLMARK UV RESPONSE DN −0.191 0.022 −1.123 0.266 0.696 −4.895

HALLMARK SPERMATOGENESIS 0.132 0.001 1.072 0.288 0.696 −4.939

HALLMARK KRAS SIGNALING DN −0.102 0.020 −1.046 0.300 0.696 −4.961

HALLMARK P53 PATHWAY 0.141 −0.020 0.985 0.329 0.696 −5.011

HALLMARK IL2 STAT5 SIGNALING −0.101 0.013 −0.966 0.338 0.696 −5.026

HALLMARK MYOGENESIS 0.158 −0.005 0.899 0.372 0.696 −5.076

HALLMARK INTERFERON GAMMA RESPONSE 0.104 −0.019 0.848 0.400 0.696 −5.111

HALLMARK ANDROGEN RESPONSE 0.116 −0.018 0.825 0.412 0.696 −5.126

HALLMARK NOTCH SIGNALING 0.108 −0.021 0.661 0.511 0.788 −5.225

HALLMARK ESTROGEN RESPONSE EARLY 0.113 0.029 0.639 0.525 0.788 −5.236

HALLMARK COMPLEMENT 0.052 0.005 0.505 0.615 0.813 −5.298

HALLMARK INFLAMMATORY RESPONSE 0.031 −0.007 0.370 0.713 0.813 −5.346

HALLMARK TNFA SIGNALING VIA NFKB −0.042 −0.031 −0.362 0.718 0.813 −5.349

HALLMARK REACTIVE OXIGEN SPECIES PATHWAY 0.050 −0.003 0.360 0.720 0.813 −5.349

HALLMARK KRAS SIGNALING UP −0.039 0.014 −0.356 0.723 0.813 −5.350

HALLMARK WNT BETA CATENIN SIGNALING 0.055 −0.016 0.325 0.746 0.813 −5.359

HALLMARK APICAL SURFACE −0.047 0.003 −0.317 0.752 0.813 −5.361

HALLMARK GLYCOLYSIS 0.043 −0.019 0.263 0.794 0.824 −5.374

HALLMARK ALLOGRAFT REJECTION 0.008 0.002 0.066 0.947 0.947 −5.400

(21%) in cluster I, 103 patients (45%) in cluster II and 78 patients (34%) in cluster III for the GC cohort. The consensus
matrix heatmap revealed cluster I, II and III with individualized clusters. The sample of each cluster is shown in
Figure 7. The clusters were associated with distinct survival patterns. The patients classified under cluster II had a
good prognosis compared with those in clusters I and III.

Differentially expressed analysis of genes/LM22 immune cell fractions in
each GC subgroup
The Kruskal–Wallis test was conducted to identify the quantitative genes/LM22 immune cells significantly associated
with each subclass. For differential LM22 immune cell in GC, cluster I was defined with a high level of eosinophils,
M0 macrophages, activated mast cells, neutrophils and resting NK cells. Cluster II was enriched with näıve B cells,
resting mast cells, monocytes, resting CD4 memory T cells, Tregs and activated NK cells. Cluster III was defined with
a high level of activated CD4 memory T cells, CD8 T cells, follicular helper T cells and M1 macrophages (Figure 8).
The heatmap is also illustrated in Supplementary Figure S6.

An unpaired Student’s t test was conducted to identify the quantitative genes significantly associated with each sub-
type and examine the molecular differences between GC molecular subtypes and derived subtype-specific biomark-
ers. The unmatched subgroups were subjected to DEG analysis with a threshold of absolute log-fold change cut-off
>0.1 and false discovery rate (FDR) = 0.05. Figure 9 shows DEGs in concentric circles radiating among the three
clusters. A total of 158 mRNAs (192 up-regulated and 77 down-regulated genes) in subgroup I were differentially ex-
pressed compared with those in subgroups . In subgroup I compared with subgroups III, 216 differentially expressed
mRNAs (28 up-regulated and 187 down-regulated genes) were detected. In subgroup compared with subgroup III,
313 differentially expressed mRNAs (26 up-regulated and 287 down-regulated genes) were observed.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. The cancer subtypes using SNFCC+ algorithm

(A) Log-rank test P-value for Kaplan–Meier survival analysis. (B) Clustering heatmap visualizing the degree of the partitioning of the

sample clusters. (C) Average silhouette width representing the coherence of clusters.
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Figure 8. Box plot depicting the association between immune cell subsets and three clusters, depicted P-values are from

the Kruskal–Wallis tests

(A–O) are for eosinophils, M0 macrophages, activated mast cells, neutrophils, resting NK cells, naı̈ve B cells, resting mast cells,

monocytes, resting CD4 memory T cells, Tregs, activated NK cells, activated CD4 memory T cells, CD8 T cells, follicular helper T

cells and M1 macrophages, respectively.

GO, KEGG and GSVA of DEGs for molecular subtypes identification
A total of 639 GO terms of biological processes, 17 GO terms of cellular components and 54 GO terms of molecu-
lar functions in subgroup I were significantly compared with those in subgroup (adjusted P<0.05). In subgroup I
compared with subgroup III, 526 GO terms of biological processes, 31 GO terms of cellular components and 37 GO
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Figure 9. DEGs in concentric circles radiating among three GC subgroups

(A–C) are for subgroup I vs subgroups II, subgroup 1 vs subgroups III, subgroup II vs subgroups III.

terms of molecular functions were significant. In subgroup compared with subgroup III, 605 GO terms of biological
processes, 14 GO terms of cellular components and 31 GO terms of molecular functions were significant. The top
GO terms included cytokine activity, immune/inflammatory response and chemokine activity. All the pathways ob-
tained through KEGG analysis were associated with immune responses (Figure 10). The unpaired Student’s t test was
conducted to identify quantitative genes and examine the molecular differences between GC subtypes and derived
subtype-specific biomarkers.

Three clusters were subjected to GSVA by using the GSVA package of R software. The number of enriched pathways
progressively increased from subtype I to subtype III. The most significantly enriched gene sets were ordered on the
basis of significance (P and adjusted P-values of FDR) and listed in Table 4. In Figure 11, several hallmark gene sets,
including estrogen response late, apical junction, epithelial–mesenchymal transition (EMT), KRAS signaling and
angiogenesis were observed.

12 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2020) 40 BSR20193308
https://doi.org/10.1042/BSR20193308

Figure 10. The GO and KEGG analysis for three GC clusters

(A,B) Are for cluster I vs cluster II, (C,D) are for cluster I vs cluster III and (E,F) are for cluster II vs cluster III.

Discussion
The majority of patients with GC have been actively treated using a multimodality strategy [20], but their 5-year
survival rates have not increased [21]. Although new immunotherapies have provided a new basis for treating pa-
tients with GC, their potential mechanism is still unclear, and further studies should be performed to develop the
corresponding targeted therapy. Immune cells, which have multiple types and different functions, are the main TME
components and major host cells recruited and activated by a TME. The immune system can promote and inhibit
tumor growth, so this system is important for prognosis. Studies have suggested that TIICs have great potential for
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Figure 11. The GSVA analysis for three GC clusters

14 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2020) 40 BSR20193308
https://doi.org/10.1042/BSR20193308

application in clinical outcome and therapeutic response prediction among individual patients. Jiang et al. [22] found
that the density and distribution of TIICs may be useful in predicting the survival of patients with GC. Previous
studies revealed that TIICs, such as mature T cells, dendritic cells and memory T cells with increased infiltration, are
associated with good prognosis, whereas immunosuppressive Tregs are opposite [23,24]. Previous studies also ap-
plied immunohistochemical methods to evaluate TIICs and identify the TIIC subgroup with a single surface marker
because of technical limitations. However, these methods are poorly effective in identifying closely related cell types.
As such, inconsistent results have been presented in clinical studies.

A combination of CIBERSOFT algorithms can overcome the shortcomings of traditional immunohistochemical
methods and accurately address the relative proportions of different TIICs [12,25]. Therefore, in the current study,
CIBERSORT was used to infer the proportion of 22 immune cell subsets from the GC transcriptome. To our knowl-
edge, this study was the first to comprehensively analyze the clinical effect of immune responses on GC.

In our study, the CIBERSOFT method was conducted to evaluate the infiltration of different immune cells in paired
GC and adjacent normal tissues, and the results showed that the scores of immune cells significantly differed within
and between groups. Our work also revealed the details of the infiltration of various subsets of LM22 immune cells in
GC. The profiles of immune infiltration in the TCGA GC cohort varied significantly between 22 paired GC tissues.
Plasma cells and resting CD4 memory T cells increased in the paired paracancerous tissues, whereas activated CD4
memory T cells and M0 macrophages decreased in the GC samples. In terms of clinical characteristics, the correlation
between 22 immune cell subtypes and clinical characteristics was also analyzed. M1 macrophages and eosinophils
were related to TNM stage. Follicular helper T cells were activated at the late stage (G3/G4), and monocytes were
associated with radiotherapy. Among LM22 immune cells, Tregs were significantly associated with the OS of patients
with GC. Therefore, these results demonstrated that aberrant immune infiltration and heterogeneity in GC as a tightly
regulated process might play important roles in tumor development and this process had clinical importance.

Recent studies have found that the interaction of cytokines showed an important role in the development and pro-
gression of malignant tumors. Previous studies have revealed that IL-17 was involved in tumor occurrence, metasta-
sis, angiogenesis, immune-resistance and other processes [26–28], and confirmed that IL-17 signaling pathway also
played an important role in the occurrence and progression of GC [29], breast cancer [30] and pancreatic cancer
[31]. Meanwhile, Liu et al. [32] obtained the data of Helicobacter pylori GC samples from TCGA and revealed that
cytokine–cytokine receptor interaction was enriched in H. pylori (+) GC through GO and KEGG analysis. Wu et
al. [33] used Human gene chip Affymetrix HTA 2.0, obtained 1312 DEGs in GES-1 cell lines with H. pylori and
TMAO co-treatment compared with the control, and Toll-like receptor signaling pathway was showed to be the most
important biological processes. Yu et al. [34] used multimarker analysis of genomic annotation to analyze pathways,
and identified that chemokine signaling pathway was associated with GC risk. In our study, DEGs were conducted
through GO and KEGG analysis. The top GO terms included cytokine activity, immune/inflammatory response and
chemokine activity. All the pathways obtained through KEGG analysis were associated with immune responses. And
we also found that cytokine–cytokine receptor interaction, the Toll-like receptor signaling pathway, IL-17 signal-
ing pathway and chemokine signaling pathway were significantly enriched, which was predicted that these signaling
pathways might play an important role in future immunotherapy research.

In summary, the CIBERSORT algorithm was used to analyze the LM22 immune cell subsets in GC and provided
information about the immune cell landscape of GC. Our findings also revealed the important correlation of clin-
ical outcome with the LM22 immune cell infiltration model in a TME. The present study helped clarify the tumor
responses to immunotherapy and might be used as a basis for discovering highly possible targets of new drugs.
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Supplementary Figure 1 Correlation matrix of all 22 immune proportions and 
immune cytolytic activity in the TCGA GC cohort, including total samples (A), 
normal samples (B) and tumor samples (C). 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 2 Box plot depicting the correlation between several LM22 
immune cells and GC classification based the distribution of CIBERSORT P-value. 
A-B. M1 macrophages and eosinophils in the pathological stage. C. follicular helper 
T cells at the late stage (G3/G4). 
 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 3 The difference of immune infiltration between GC with 
radiation therapy and without radiation therapy samples. A. Box plot of the 
distribution of CIBERSORT P value for monocytes. B-C. The total difference in total 
B cells and total macrophages, respectively. 
 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 4 AUC curves of biomarkers prognostic model built by 
LM22 immune cell subsets. 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 5 The cluster counts evaluated. (A) consensus heatmap (B) 
CDF curve of K=2-5. (C) The relative change in area under the CDF curve of K= 2-5. 
 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 6 Heatmap of 22 immune cells and clusters. A-C is for the 
correlation matrix of the 22 immune cells proportions in cluster Ⅰ - Ⅲ, respectively. 
D. Heatmap of the 22 immune cells proportions. 


