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OPEN ACCESS Methylthioalkylmalate synthases catalyse the committing step of amino acid chain elonga-
tion in glucosinolate biosynthesis. As such, this group of enzymes plays an important role in
determining the glucosinolate composition of Brassicaceae species, including Arabidopsis
thaliana. Based on protein structure modelling of MAM1 from A. thaliana and analysis of 57
MAM sequences from Brassicaceae species, we identified four polymorphic residues likely
to interact with the 2-oxo acid substrate. Through site-directed mutagenesis, the natural
variation in these residues and the effect on product composition were investigated. Fifteen
MAM1 variants as well as the native MAM1 and MAMS3 from A. thaliana were characterised
by heterologous expression of the glucosinolate chain elongation pathway in Escherichia
coli. Detected products derived from leucine, methionine or phenylalanine were elongated
with up to six methylene groups. Product profile and accumulation were changed in 14 of the
variants, demonstrating the relevance of the identified residues. The majority of the single
amino acid substitutions decreased the length of methionine-derived products, while ap-
proximately half of the substitutions increased the phenylalanine-derived products. Com-
bining two substitutions enabled the MAM1 variant to increase the number of elongation
rounds of methionine from three to four. Notably, characterisation of the native MAMs indi-
cated that MAM1 and not MAMS is responsible for homophenylalanine production. This hy-
pothesis was confirmed by glucosinolate analysis in mam1 and mam3 mutants of A. thaliana.
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Figure 1. Schematic view of the chain elongation pathway in glucosinolate biosynthesis

The first step is deamination by a branched-chain aminotransferase (BCAT), followed by a three-step cycle: condensation by a
MAM, isomerisation by an isopropylmalate isomerase (IPMI) and oxidative decarboxylation by an isopropylmalate dehydrogenase
(IPMDH). At this point the intermediate will either go through another cycle or exit by transamination by a BCAT. The pathway
intermediates are (1) amino acid, (2) 2-oxo acid, (3) 2-alkylmalic acid, (4) 3-alkylmalic acid and (5) chain-elongated amino acid.

All enzymes of methionine chain elongation are known in Arabidopsis thaliana and the methylthioalkylmalate
synthases (MAMs) determine the number of elongation cycles [5,9-11]. Previous studies investigated the evo-
lutionary process from the isopropylmalate synthase (IPMS) to MAM through domain-scale modifications and
site-directed mutagenesis. They successfully changed substrate preference of IPMS2 to resemble that of MAMI,
thereby identifying a set of residues important for substrate specificity [12].

IPMSs and MAMs both condensate 2-oxo acids with acetyl-CoA, which places them in the Claisen-like condensa-
tion (CC-like) subgroup of the DRE-TIM metallolyase superfamily [13]. Two IPMS enzymes have been crystallised
from this subgroup: Mycobacterium tuberculosis (MtIPMS, [14] and Neisseria meningitidis (NmIPMS, [15]. The
crystal structures indicate that the IPMS enzymes form homo-dimers. Each monomer has two domains with a cat-
alytic site and the LeuA regulatory domain that inhibits activity in the presence of leucine [16-18]. This regulatory
domain is lost in MAM enzymes [12]. Previous studies have shown that the LeuA domain is critical for the quaternary
structure of IPMS enzymes. Removal of this domain from IPMS2 resulted in a complete loss of quaternary structure
and adding the domain to MAM1 and MAM3 caused the otherwise monomeric enzymes to form both dimers and
tetramers [12]. The authors hypothesised that losing the quaternary structure increased the active site of MAM syn-
thases and thereby allowed for bulkier substrates. Individual residues were identified as important for evolution of the
MAM synthases. Eleven residues that have been under positive selection during the iterative adaptation of the MAM
synthases are Glu96, Ser98, Ile138, Cys165, Thr173, Leul77, Val187, Thr257, 1le258, Gly259 and Val289 according to
the numbering in MAMI1 of A. thaliana [5]. Based on MAM homology models, five residues are proposed to bind
the substrate: Arg93, Asp94, Thr261, His292 and His292. Additional six residues are predicted to hydrophobically
interact with the substrate: Ile162, Leu186, Gly229, Glu231, Thr257 and Gly259 [12].

Sequencing of the MAM gene cluster of several Arabidopsis species reveal three distinct clades of MAMs: MAMa,
MAMb and MAMc [5]. In A. thaliana, MAM1 and MAM?2 are homologues of MAMa, while MAM3 is a homologue
of MAMD [10]. MAMc was lost in A. thaliana but is still found in e.g. A. Iyrata. MAM3 has a broader substrate
specificity than MAM1, which in turn is broader than MAM?2 [5,10,11]. MAM2 catalyses only the first round of
elongation and is found in accessions rich in glucosinolates derived from homomethionine (e.g. Ler-0) [5], while
MAMI catalyses C3-C5 and is found in accessions accumulating glucosinolates derived from dihomomethionine

(© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution

License 4.0 (CC BY).



Bioscience Reports (2019) 39 BSR20190446 °
https://doi.org/10.1042/BSR20190446 '. (] EROE%ELAND
°

(e.g. Col-0) [9]. MAM3 catalyses all lengths from C3-C8 and thus is present in — but not restricted to - all accessions
with glucosinolates derived from tetra-, penta- and hexahomomethionine [10].

Quantitative trait loci mapping has implicated the GS-ELONG locus in not only controlling chain elongation of
methionine but also phenylalanine, from which 2-phenylethyl glucosinolate is derived [19]. When characterising
MAMS3 in in vitro assays, chain elongation of methionine as well as leucine, isoleucine and phenylalanine were de-
tected [10]. Based on these findings, MAM3 was proposed to be responsible for elongation of phenylalanine in planta.
When the chain elongation pathway of A. thaliana, i.e. MAMI1, BCAT4, IPMI-LSU1, IPMI-SSU3 and IPMDH1,
was expressed in Escherichia coli, methionine- and leucine-derived products elongated by either one or two methy-
lene groups, were produced [20]. Similar results were obtained when the chain elongation pathway was expressed in
Nicotiana benthamiana [21,22]. As leucine-derived glucosinolates are not found in the native A. thaliana plant, the
results indicate that MAM synthases lose specificity when expressed in heterologous hosts.

The Brassicaceae is a large family with over 3700 species divided into 338 genera and 19 tribes [23]. Based on a
phylogenetic analysis of 114 sequences within the family, a division into three lineages was proposed [24]. Several
whole genome and local tandem duplications combined with subsequent deletions have resulted in a poor resolution
of the MAM family in Brassicaceae. Furthermore, predicting activity from sequence data alone can be difficult and
imprecise [25], as evident from IPMS enzymes, which show nearly identical substrate specificity despite having a rel-
atively moderate sequence identity [18]. Understanding how the substrate specificity of MAMs controls the iterative
chain elongation process is important from a basic science as well as a bioengineering perspective.

The present study investigates the impact of polymorphic residues specific to the MAM enzymes on substrate
specificity and number of iterations. A well-established method for this purpose is site-directed mutagenesis on evo-
lutionarily conserved residues [17]. We used this approach to create a library of MAM1 variants designed to have
changed substrate specificity. Based on a multiple alignment of MAM synthase sequences and IPMS crystal struc-
tures, evolutionary important residues were predicted and targeted for mutation. Since the chain elongation pathway
has been successfully expressed in E. coli previously [20], we chose to characterise the MAM1 variants in vivo using
this host. Four residues were mutated individually or in combinations, and a total of 15 variants were characterised.
Substrate specificity and number of elongations were compared with the native MAM1, MAM3 and IPMS?2 from A.
thaliana. Targeted proteomics was used to monitor expression of the proteins in E. coli and to eliminate changes in
product or titres caused by unequal expression of proteins between the different E. coli strains.

Materials and methods

Bioinformatics and structural modelling

Protein sequences of MAM1, MAM2, MAM3, IPMSI1 and IPMS2 from A. thaliana were collected from TAIR (Ara-
bidopsis.org). Additional MAM sequences were identified through BLASTp and tBLASTn searches on NCBI using
the MAM sequences. MAMs from Camelina sativa, Brassica rapa, Brassica oleracea, Brassica napus, Eutrema
salsugineum, Capsella rubella, Arabidopsis lyrata, Arabidopsis cebennensis, Boechera divaricarpa, Raphanus
sativus and Eruca vesicaria were collected and used in an alignment (Supplementary Figures S1 and S2). Sequences
with large deletions were removed. Alignments were made using the slow algorithm in CLC Main Workbench 8.0.1
(www.qiagenbioinformatics.com). A homology model of the MAMI1 protein structure was constructed based on the
N. meningitis IPMS crystal structure (PDB-ID 3RM]J) [15] using BLAST [26] to align the two sequences (40.7%
identity) and Modeller to create the model [27]. Structural analysis were done in PyMOL (the PyYMOL Molecular
Graphics System, version 1.5.0.4 Schrodinger, LLC).

Generation of expression constructs for MAM1 variants

All constructs were cloned by USER cloning [28]. As described in [21], the chain elongation pathway genes were
expressed from two plasmids; BCAT4 and MAMI on pET-52b (Novagen®, Merck, #71554) and IPMI-LSUI,
IPMI-SSU3 and IPMDH1 on pCDE-1b (Novagen®, Merck, #71330). Two changes were made to the T7 promot-
ers of IPMI and IPMDH 1 compared with previous construct [20]. An alternative start codon was removed between
the RBS and IPMDH 1 sequence, and the IPMI subunits were expressed from a separate promoter. Point mutations
were introduced into MA M1 by amplification with primers containing the desired mutation in the USER overhang
(Supplementary Table S1). The CDS was amplified in two halves and fused by USER fusion [29]. The native MAM1
sequence was replaced for the mutated MAM versions in the expression construct (Figure 2).
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Figure 2. Design of expression constructs containing the chain elongation pathway of A. thaliana

(A) The two constructs used in combination to express the biosynthetic genes. The MAM gene is replaced with native or mutated
variants of MAM1 and MAMS3 as well as IPMS2. Different T7 promoters were used as indicated in the arrows. Ribosomal binding
sites, genes and terminators are indicated as dark grey, light grey and black boxes, respectively. (B) Promoters used in this work.
Sequence differences are highlighted.

Bacterial strains and cultivation

The E. coli NEB10B strain (NEB, #C3019H) was used for plasmid amplification and cloning purposes. The BL21
(DE3) strain (NEB, #C2527I) was used for expression. All transformations were done by heat-shock followed by
one hour recovery in non-selective media before plating on LB agar plates (Luria-Bertani broth, Lennox, Duchefa,
#L1703) containing 10 g tryptone, 5 g yeast extract, 5 g sodium chloride and 15g bactoagar per litre with 50 pg/ml
spectinomycin and 100 pg/ml ampicillin. Expression experiments were performed in 24-well plates (ThermoFisher,
#CS15124) containing 4 ml culture. Single colonies containing both chain elongation constructs were inoculated into
LB media and grown overnight at 37°C, 220 rpm. Expression cultures were inoculated from the overnight culture into
LB media with 50 pg/ml spectinomycin and 50 pg/ml carbenicillin. The cultures were started at a D¢y (attenuance)
at 0.1 and grown at 37°C, 220 rpm until D¢y reached 0.6-0.8. Gene expression was then induced by addition of 1
mM IPTG (isopropyl p-3-1 thiogalactopyranoside) and the cultures were moved to 28°C, 220 rpm and harvested
after 24 h.

Metabolite extraction and LC-MS analysis

In E. coli cultures expressing the chain elongation pathway, only the medium was analysed for chain-elongated prod-
ucts, as the majority of the product were reported to be exported from the cells [20]. The samples were centrifuged at
13000 x g and supernatant diluted 25-fold in water, followed by 1:10 mixing with >N'*C-labelled amino acids (Algal
amino acids 13C, 15N, Isotec, Miamisburg, U.S.A.) at a concentration of 10 ug/ml. Immediately before analysis, the
samples were filtered through Durapore® 0.22 um PVDEF filter plates (Merck Millipore, Tullagreen, Ireland).

The LC-MS analysis was performed as previously described [20] with changes as detailed below. Chromatography
was performed using an Advance UHPLC system (Bruker, Bremen, Germany) and a Zorbax Eclipse XDB-C18 column
(100 x 3.0 mm, 1.8 pm, Agilent Technologies, Germany). The mobile phases A and B were formic acid (0.05% (v/v))
in water and acetonitrile (supplied with 0.05% (v/v) formic acid), respectively. The elution profile was: 0-1.2 min
3% B; 1.2-4.3 min 3-65% B; 4.3-4.4 min 65-100% B; 4.4-4.9 min 100% B, 4.9-5.0 min 100-3% B and 5.0-6.0 min
3% B. Mobile phase flow rate was 500 pl/min and column temperature was maintained at 40°C. An EVOQ Elite
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Table 1 Peptides of chain elongation enzymes and the E. coli housekeeping enzyme (ICD) monitored through targeted
proteomics analysis

Enzyme AGI code Peptide sequence Reference
BCAT4 At3g19710 TGEETLAAK This study
LYETLSDIQTGR* This study
SITNYZPVWIPLAEAK This study
GNWSTPTIAGTILPGVTR This study
MAM1 At5g23010 SGNASLEEVWMALK This study
STYEILSPEDIGIVK This study
DGEQSPGGSLTPPQK This study
SLGFNDIQFGZEDGGR* This study
MAM3 At5g23020 GESLMDGVYTK This study
ALVWNGAEISSEK This study
SGNAPLEEVWMALK This study
STYEILSPEDVGIVK* This study
DGEQSPGAALTPPQK This study
IPMS2 At1g74040 GTYEIMSPEEIGLER* This study
IPMI-LSU1 At4g13430 FILDGEMPSYLQAK* This study
VWMDVYALPVPGAGGK This study
IPMI-SSU3 At3g58990 LGSFALNGLPK This study
EDGSSLLINHTTR This study
NCVATGEIFPLESEVR* This study
IPMDH1 At5g14200 LSDAILLGAIGGYK* This study
AGSLEGLEFDFK This study
IEDAVVDALNK This study
ICD JW1122 GPLTTPVGGGIR* [40]

Peptides marked with asterisk were used for relative quantification.

TripleQuad mass spectrometer with an electrospray ionisation source (ESI) (Bruker, Bremen, Germany) was coupled
to the liquid chromatography. Pure standards were used to optimise the instrument parameters. The ion spray voltage
was maintained at 3000 V in positive ionisation mode. Cone temperature was set to 350°C and cone gas flow to 20
psi. Heated probe temperature was set to 400°C and probe gas flow set to 50 psi. Nebulising gas was set to 60 psi and
collision gas to 1.6 mTorr. Nitrogen was used as both cone gas and nebulising gas and argon as collision gas.

Multiple reaction monitoring (MRM) was used to monitor analyte parent ion to product ion transitions: MRM
transitions for amino acids were chosen as previously described [30]. MRM transitions for chain-elongated amino
acids were chosen as described in [20], and comparison to pure standards were used to verify the identification (Sup-
plementary Figures S3 and S4). Both Q1 and Q3 quadrupoles were maintained at unit resolution. Bruker MS Work-
station software (Version 8.2.1, Bruker, Bremen, Germany) was used for data acquisition and processing. A mixture
of "'N!3C-labelled amino acids was used as internal standard for quantification of protein amino acids. Details on
transitions and collision energies can be found in Supplementary Table S2. Visualisation and statistical analyses were
performed in R studio v1.0.153 [31] using [32-35].

Protein extraction and targeted proteomics

Design of reference peptides

Proteotypic peptides were designed for each of the chain elongation enzymes to use as internal reference and a rel-
ative quantification of protein expression. Gene sequences were digested in silico using the SkyLine software [36].
The resulting list of peptides was then subjected to the following sorting criteria; (1) m/z < 1250, (2) cleavage site
with only one arginine or lysine residue and (3) avoiding peptides with methionine or cysteine. All peptides fulfill-
ing these requirements were ordered as synthetic isotopically labelled peptides (JPT, SpikeTides™). Peptides were
resuspended by adding 100 pl 100 mM ammonium bicarbonate solution (pH 8.5) with 20% (v/v) acetonitrile and
incubated gently shaking for 30 min at room temperature. Preferentially, each enzyme was covered by a minimum of
two non-neighbouring peptides (Table 1).

(© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution 5
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Protein extraction and tryptic digest

Pellet from 1.5 ml culture was harvested by centrifugation and kept at —20°C until extraction. Total protein extraction
was performed as previously described [37] and the tryptic digest as described in [38] with the modifications detailed
in [39]. Briefly, total protein was obtained by methanol:chloroform extraction, dried in Speed-Vac and dissolved in
100 mM ammonium bicarbonate buffer. Protein concentration was determined by Pierce™ BCA Protein Assay Kit
(ThermoFisher, #23225). For tryptic digest, 25-50 pg protein was incubated with 1 pg trypsin/Lys-C mix (Promega,
#V5073) over night at 37°C. Digest stopped by acidification with trifluoroacetic acid (TFA) and samples were diluted
up to 1.5 ml in buffer containing 2% (v/v) acetonitrile and 0.1% (v/v) formic acid. Peptides were purified over Sep-Pak
C-18 columns (Waters, Sep-Pak® Vac 1cc 100 mg, #WAT023590) and eluted in 1 ml buffer containing 65% (v/v)
acetonitrile and 0.1% (v/v) formic acid. Purified peptides were dried in Speed-Vac (2-4 h, 1000 rpm, max 35°C). Dried
peptides were stored at —20°C until analysis. The dried peptides were resuspended just prior to LC-MS/MS analysis in
25 ul buffer containing 2% (v/v) acetonitrile, 0.5% (v/v) formic acid and 0.1% (v/v) TFA spiked with 20 nM isotopically
labelled peptide standards (JPT, SpikeTides™) and filtered through 0.22 pm centrifugal filter (#{UFC30GV00, Merck,
Darmstadt, Germany).

LC-MS analysis
The gradient was adopted from [40,41] with modifications detailed in [39]. Formic acid (0.1% (v/v)) in water and
acetonitrile (supplied with 0.1% (v/v) formic acid) were employed as mobile phases A and B, respectively. The elution
profile was: 0-1.0 min 5-10% B; 1.0-3.0 min 10-11% B; 3.0-13.0 min 11-19% B; 13.0-21.0 min 19-27.5% B, 21.0-21.7
min 27.5-24% B; 21.7-22.5 min 34-42% B; 22.5-23.5 min 42-90% B, 23.5-26.9 min 90% B, 26.9-30.0 min 90-5% B
and 30.0-34.0 min 5% B. Mobile phase flow rate was 500 pl/min and column temperature was maintained at 55°C.
Peptide separation was achieved on an Aeris PEPTIDE, XB-C18 column (1.7 pm, 2.1 x 150 mm, Phenomenex, Palo
Alto, US.A.) on an Advance UHPLC-OLE (Bruker Daltonics, Bremen, Germany). The injection volume was 10 pl.
The following source settings were used for heated electrospray ionisation: spray voltage 3200 V (positive ionisa-
tion mode); cone temperature 300°C; cone gas flow 20 psi; heated probe temperature 350°C; probe gas flow 40 and
nebuliser gas flow 50. Nitrogen was used as cone and probe gas and argon as collision gas. An EVOQ Elite TripleQuad
mass spectrometer (Bruker Daltonics, Bremen, Germany) was scanning for parent ion to fragment ion transitions for
individual peptides within scheduled 3 min windows. Resolution of the first and third quadrupole was set to +1 Da.
Detailed information on peptides including retention times, transitions selected for detection and quantification and
collision energies can be found in Supplementary Table S3. Skyline 4.2 were used to manually inspect the acquired
chromatograms and calculate ratios between endogenous light and synthetic heavy peptides [36]. Relative quantifica-
tion was obtained by normalising the ratios to the housekeeping protein isocitrate dehydrogenase (ICD). Results were
plotted relative to the MAMI containing strain. Undetected peptides (N/A) were treated as zero values for analysis.
Statistical analyses and visualisation were performed in R studio v1.0.153 (R version 3.4.1) [31] using [32,34,35,42].

Glucosinolate analysis of A. thaliana mutants

Plant growth and glucosinolate extraction

Seeds of A. thaliana ecotype Col-0 (NASC ID N1092), mam1 [43] and mam3 (SALK_007222) mutants were culti-
vated in growth champers with long day light conditions (16 h light, 22°C, 19°C at night, 100-120 uE, 75% relative
humidity). Leaf samples were harvested from 3-week-old plants. Material from three plants (approximately 100 mg)
were pooled in each sample and three to seven biological replicates were harvested from each genotype. Glucosinolates
were extracted and analysed as desulfo-glucosinolates as previously described in [44] with the 96-well optimisation
described in [45] and modifications as outlined in [46]. Briefly, one 3 mm chrome ball was added to a microelution
tube (Deltalab, cat. no. 408002) with 300 pl 85% methanol containing 10 uM p-hydroxybenzyl glucosinolate as inter-
nal standard. Immediately after harvest, the leaf tissue was submerged in the extraction solution and the sample was
grinded using a mixer mill (3x 30 s at 30 Hz). Samples were spun 10 min at 2500 rpm and the supernatant was loaded
on to a 96-well filter plate (MultiScreenHTS, pore size 0.45 pm, EMD Millipore, cat. no. MSHVN 4550) containing
45 pl DEAE-Sephadex A-25 (GE Healthcare, cat. no. 17-0170-02)that had been equilibrated with 300 pl milliQ wa-
ter. The DEAE-Sephadex columns were washed twice with 70% methanol followed by two washes with milliQ water.
The desulfo-glucosinolates were released from the column by over-night incubation with a sulfatase solution. On the
following day, the desulfo-glucosinolates were eluted in 100 pl milliQ water and diluted 1:10 in milliQ water prior to
LC-MS analysis.
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Figure 3. Homology model of MAM1 from A. thaliana

(A) The model of MAM1 was based on the crystal structure of N. meningitis IPMS (PDB-ID 3RMJ). 3 sheets (purple) and « helixes
(turquoise) comprise the (3/x)g catalytic barrel characteristic of IPMS/MAM family. The binding of IPMS substrate is shown in yellow.
Green residues represent the five residues in MAM1 predicted to be within 8 A of the substrate. Grey residues represent two His
residues conserved in the IPMS/MAM family. (B) Simplified presentation of the residues in MAM1, which is predicted to be in close
proximity of the substrate. Colours as in (A).

LC-MS analysis of glucosinolates

The LC-MS analysis was performed using an Advance UHPLC system (Bruker, Bremen, Germany) with a Kine-
tex XB-C18 column (100 x 2.1 mm, 1.7 pm, Phenomenex, Palo Alto, U.S.A.) coupled to an EVOQ Elite Triple-
Quad mass spectrometer equipped with an electrospray ionisation source (ESI) (Bruker, Bremen, Germany).
The method was performed as previously described [46,47] using formic acid (0.05%) in water and formic acid
(0.05%) in acetonitrile as mobile phase A and B, respectively. Ionisation was obtained by electrospray ionisa-
tion in positive ionisation mode with spray voltage of 3500 V and probe and cone temperatures at 400 and
350°C, respectively. Parent ion to product ion transitions were monitored for one aromatic (2-phenylethyl),
three indolic (indol-3-ylmethyl, N-methoxy-indol-3-ylmethyl, 4-methoxy-indol-3-ylmethyl) and nine aliphatic
(3-methylthiopropyl, 3-methylsulfinylpropyl, 4-methylthiobutyl, 4-methylsulfinylbutyl, 5-methylsulfinylpentyl,
7-methylthioheptyl, 7-methylsulfinylheptyl, 8-methylthiooctyl, 8-methylsulfinyloctyl) glucosinolates. Quantification
of individual glucosinolates was done using p-hydroxybenzyl glucosinolate as internal reference. Further details and
transitions can be found in [46,47].

Results

Protein structure modelling and phylogeny analysis of MAM sequences
From a protein sequence alignment of MAM1, MAM3, IPMS1 and IPMS2 from A. thaliana ecotype Col-0 and
MAM? from ecotype Ler-0 polymorphic residues specific to MAMs were identified. To date, no MAM enzyme has
been crystallised. Since IPMS and MAM enzymes essentially perform the same reaction, we chose to homology model
the structure of MAMI1 based on a crystallised IPMS (PDB-ID 3RM]J) (Figure 3A). Homocitrate synthases (HCS) are
also of the DRE-TIM metallolyase superfamily. Assuming the MAM substrate binds in a similar fashion as in HCS,
we retrieved a crystallised HCS (PDB-ID 2ZT] [48] from Thermus thermophilus (TtHCS) with o-ketoglutarate
bound in the catalytic pocket. We superimposed the MAM1 homology model on to 2ZTJ (RMSD of 1.3 A over 202
residues) and selected MAMI residues within 8 A distance of a-ketoglutarate (Supplementary Figure S5). This subset
of residues was used to predict four polymorphic residues (Figure 3B). Three of these sites were previously described
as interacting with the substrate (Leu186, Thr257 and Gly259). The remaining residue (Ala290) was included as it ful-
filled the criteria of distance to substrate and polymorphism. A fifth residue (Gly229) was within 8 A of the substrate,
but remained constant for all MAM synthases and was thus not targeted for mutation.

A phylogenetic analysis including 57 MAM synthase protein sequences representing 12 species from lineages I and
II in the Brassicaceae family was performed. Lineage III is not represented, as to the best of our knowledge no species
has been sequenced. This analysis was used to design the substitution mutations so that the mutants represented
the natural variation observed at these positions (Table 2 and Supplementary Figure S1). Fifteen substitutions were
chosen and residues were mutated in the A. thaliana MAML. In addition, three mutants were constructed, which
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Table 2 Polymorphic residues in selected MAM synthases (humbering according to A. thaliana MAM1)

Natural MAM variant 186 257 259 290
AtIPMS H N P S
AtMAMA L T G A
AtMAM2 L N A S
AtMAM3 M G A A
AtbMAMA L S G A
Al/AcMAMb /L G A T
Cs/CrMAM3 T G A A
Al/AcCMAM3/c C C A S
Cs/CrMAM3 G/l G A G
NA - Vv - -
NA - D - -

Selected examples of natural variance in the residues targeted for mutation is shown. Species are abbreviated as follows: Ac, A. cebennensis; Al, A.
lyrata; At, A. thaliana; Atb: A. thaliana Br-o; Cr, C. rubella; Cs, C. sativa; NA, not found in our analysis but chosen for structural characteristics.

carried two or three mutations in combination. These were inspired from the MAMb clade, which includes MAM3
variants. In this clade, the T257G and G259A mutations are common, and these were therefore combined into the
double mutant, GA. Two triple mutants were constructed to mimic specifically MAM3s of A. thaliana and C. sativa,
which are both able to elongate methionine with more than three methylene groups. The mutants were named GAM
(T257G/G259A/L186M) and GAG (T257G/G259A/A290G), respectively.

Metabolite analysis of E. coli expressing the chain elongation pathway

with MAM variants

Protein amino acid pools in E. coli expressing the chain elongation pathway

Amino acids used as precursors for the chain elongation pathway based on previous data from mutant plants [49]
and heterologous host organisms [10,20] are leucine, methionine, phenylalanine and valine. In the E. coli strains
expressing the chain elongation pathway with different variants of the MAM synthases, protein amino acid levels were
monitored and compared with the levels of E. coli strain transformed with empty vector (Figure 4 and Supplementary
Figure S6). Generally, the cultures contained approximately three times more phenylalanine than methionine and
seven times more leucine than methionine. The levels of leucine, phenylalanine and valine did not statistically differ
from the overall mean of all cultures. Methionine levels showed small, but statistically significant differences between
cultures (Supplementary Table S4). Slightly reduced levels were seen in the E. coli strains producing high levels of
methionine-derived products (Figures 4 and 5). However, this did not affect cell density, and thus is likely an effect
of the methionine pool being smaller than those of phenylalanine and leucine.

Levels of chain-elongated amino acids produced by E. coli

By LC-MS analysis of the medium in cultures of E. coli expressing the chain elongation pathway with dif-
ferent MAM variants, we detected nine elongated amino acids derived from one to six elongation cycles:
L-homomethionine (HM), L-dihomomethionine (DHM), L-trihomomethionine (TriHM), L-tetrahomomethionine
(TetraHM), vL-pentahomomethionine (PentaHM), 1-hexahomomethionine (HexaHM), r-homoleucine (HL),
L-dihomoleucine (DHL), and L-homophenylalanine (HPhe). Additionally two were monitored but not detected:
L-trihomoleucine (TriHL) and r-heptahomomethionine (HeptaHM). Strains harbouring the constructs containing
the native MAM1 enzyme produced nearly 5-fold more elongated products than those containing MAM3. In strains
expressing the G259P variant, we observed an increase in leucine-derived products to 80% of the total products. This
was accompanied with a decrease in methionine-derived products and an elimination of HPhe production. In 7 out
of 13 strains expressing functional MAMI variants, the percentage of leucine-derived products increased, while the
level of methionine-derived products decreased compared with MAM1. However, only in two of these seven strains
did HPhe production decrease, while an increase was seen in the remaining five strains. Similarly, HPhe level was in-
creased in all strains expressing MAMI1 variants with lowered levels of leucine-derived products. Two strains - A290S
and GAG - showed unchanged composition of chain-elongated amino acids, although the production in GAG was
dramatically reduced. Strains harbouring constructs with IPMS2 or the two MAM1 variants (G259A and A290T) did
not produce any of the chain-elongated amino acid products (Figure 5). The composition of chain-elongated amino
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Figure 4. Levels of protein amino acid substrates in E. coli expressing the chain elongation pathway with different MAM
variants

GA, GAG and GAM represent MAM variants with multiple mutations; GA, T257G/G259A; GAG, T257G/G259A/A290G; GAM,
T257G/G259A/L186M. Levels of leucine, phenylalanine and valine are statistically unchanged between the constructs when com-
paring to the average mean of all cultures. Methionine levels vary between cultures, although the differences are small. Data rep-
resent average and standard deviation of three biological replicates each grown in three technical replicates.
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Figure 5. Production of chain-elongated products in all MAM variants

Products are grouped according to precursor amino acid: methionine (purple), phenylalanine (grey) and leucine (green). Methion-
ine-derived products include methionine elongated from one to six cycles, leucine-derived products include leucine elongated once
or twice and phenylalanine-derived product is only elongated once. Table shows the percentage of total production within each
group of compounds. Data represent average and standard deviation of three biological replicates each grown in three technical
replicates.

acids produced by the MAM1 variants indicates that the targeted substitutions have changed the substrate specificity
of almost all of them. Overall, MAMa homologues and MAM1 variants mimicking MAMa produced higher levels
than either MAMb homologues, MAMI1 variants mimicking MAMb or IPMS enzymes (Figure 5).

The number of recursive cycles is affected by the mutations in MAM1 (Figure 6 and Supplementary Figure S7). The
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Figure 6. Production of amino acids elongated with more than two methylene groups

MAMS3 is the only MAM variant that produces five and six times elongated products. HexaHM levels are below the limit of quantifi-
cation and thus not included in the graph. Data represent average and standard deviation of three biological replicates each grown
in three technical replicates.

native MAM1 enzyme produces predominantly methionine- and leucine-derived products that have been elongated
once or twice and low levels of the thrice-elongated methionine (TriHM). This is consistent with previously published
results [20]. MAM3 produces a larger variety of products — mostly of once-elongated products (HM and HL), almost
no thrice-elongated products (TriHM and TriHL), and substantial amounts of both four and five times elongated
methionine (Tetra- and PentaHM). In addition, the six times elongated methionine (HexaHM) was detected below
the limits of quantification. Four single mutation MAMI1 variants (T257D/C, A290S/G) produced more TriHM than
the native MAM1. The GA, GAG and GAM variants produced TetraHM. These were the only variants besides MAM3
that were able to generate products elongated more than three times. Interestingly, MAM1 variants carrying the single
mutation (either T257G or G259A) - that are combined in the GA double variant - did not produce amino acids
elongated more than twice. Thus, reducing size of the residue Thr257 alone does not allow for bigger substrate — on
the contrary, it reduces the number of cycles. When the T257G substitution was combined with a larger residue on
Gly259, the ability to elongate methionine three times was restored and even increased to four rounds. This suggests
that the binding or interaction with the substrate might have been compromised in the single mutations, but restored
when combining them.

Analysis of Arabidopsis mam1 and mam3 mutants for HPhe-derived

glucosinolate
Noticeably, both MAMI1 and MAM3 were able to produce HPhe, with MAM1 having nearly 20-fold higher levels
than MAM3 (Figure 7A). The HPhe levels were affected by mutations in the residues Thr257 and Gly259. Dependent
on the substitution, mutations in residue Thr257 can either decrease or increase specificity towards phenylalanine,
with T257S showing nearly 3-fold higher HPhe production than the native MAM1. Additionally, mutating Gly259
eliminates production of HPhe. HPhe production in functional variants with mutations in Leu186 and Ala290 were
similar to that of MAMI.

The results were contradicting with the previously proposed role of MAM3 [10], but could potentially be an effect
of expressing the enzymes in a heterologous system. To investigate this further and determine the role of MAM1
and MAMS3 in production of the HPhe-derived 2-phenylethyl glucosinolate in planta, we performed glucosinolate
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Figure 7. Production of HPhe in E. coli by MAM1 variants and the effect of MAM mutants on HPhe-derived glucosinolates
in A. thaliana

(A) Production of HPhe in MAM variants with changed specificity toward phenylalanine. Data represent average and standard
deviation of three biological replicates each grown in three technical replicates. Tukey’s HSD (Honestly Significant Difference)
was used for statistical analysis. Variants marked with asterisk denotes significant changes: P-values: 0.01-0.05 = *; P-values:
0.001-0.01 = **; P-values: 0-0.001 = ***. (B) Glucosinolate analysis in A. thaliana ecotype Col-0 and knockout mutants mam1 and
mam3. Data represent average and standard deviation of 3-7 biological replicates.

analysis on leaves of mam1 (TU1 [43] and mam3 (SALK_007222) mutants. 2-Phenylethyl glucosinolate was absent
from the mam1 and present in the mam3 mutant, thus demonstrating that MAM1 is responsible for production of
this glucosinolate in A. thaliana (Figure 7B and Supplementary Figure S8).

Protein expression assessed by targeted proteomics

Protein levels of the chain elongation enzymes expressed in E. coli were monitored by targeted proteomics of proteo-
typic peptides representing the individual proteins. Seven proteins were monitored: MAM1, MAM3, IPMS2, BCAT4,
LSU1, SSU3 and IPMDH1 (Figure 8 and Supplementary Figure S9). LSU1 and IPMDHI1 were present at similar levels
in all strains (Figure 8C,D), while both BCAT4 and SSU3 had altered expression in some strains. In strains harbouring
MAMS3 or the MAM1 variants T257G, GA and GAM, BCAT4 was lower than in the MAM1-containing strain (Figure
8A). In strains harbouring the MAM1 variants T257N, T257D, G259A and A290T, SSU3 protein levels were higher
than in the strain harbouring MAM1 (Figure 8E). No chain-elongated amino acid products were found in strains
expressing G259A and A290T and only low levels in T257N (Figure 5). However, the T257D had good production
levels. Thus, higher SSU3 levels do not block chain elongation, and not all constructs resulting in low levels or no
chain-elongated products have elevated SSU3 levels, as evident from the analysis of IPMS2 and T257G.

Regarding the protein levels of MAMI variants, only one construct resulted in changed levels compared to the
native MAMI1 (Figure 8A). T257S showed higher MAM1 levels, although this did not result in correspondingly higher
levels of chain-elongated products (Figure 5). As these results represent a relative quantification of protein levels,
MAMS3 (Figure 8D) and IPMS2 (Figure 8F) cannot be directly compared with the MAMI1 variants. The approach,
however, allows us to confirm expression of all biosynthetic enzymes.

Discussion

We set out to obtain a better understanding of MAM1 substrate specificity and product profile, and thereby the num-
ber of recursive cycles of the chain elongation pathway in glucosinolate biosynthesis. Amino acid residues in MAM1
were selected for mutagenesis based on MAM-specific polymorphic residues identified in a phylogenetic analysis of
57 MAM protein sequences from 12 Brassicaceae species as well as the distance of these to the substrate. The latter was
estimated from a MAM1 homology model and a TtHCS structure co-crystallised with a substrate [48]. The natural
variation seen in MAM-specific polymorphic residues were mimicked in the MAMI1 variants generated in the present
study. Three of the residues mutated in MAM1 based on our selection criteria were predicted previously to be inter-
acting with the substrate: two in the active site (Thr257 and Gly259) and one in the substrate pocket (Leul86) [12].
This validated our approach and selection criteria for identification of potentially important residues. We identified
a fourth residue (Ala290) that was included in the analysis.
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Figure 8. Protein levels in E. coli strains expressing the chain elongation pathway genes
(A) BCAT4, (B) MAM1, (C) LSU1, (D) MAMS, (E) SSU3, (F) IPMS2 and (G) IPMDH1. A representative peptide for each protein was
used for relative quantification. Data represent average and standard deviation of three biological replicates.

We monitored the effect of protein engineering MAM1 by analysing the level and profile of chain-elongated amino
acid products in medium of E. coli strains expressing the chain elongation pathway. As the Thr257 residue was highly
polymorphic, it is represented by more substitution mutations than the other targeted residues in the library of MAM1
variants. The lowest producing strain harboured the T257N MAM1 variant, which suggests that introducing an amide
group at the bottom of the active site may result in sterical hindrance, thereby lowering activity of the enzyme. The
T257G variant produced severely reduced levels of elongated products compared with other MAM1 variants as well as
MAM3. When the T257G substitution was performed in MtIPMS it caused loss of activity in E. coli [12], which is in
agreement with our results. MAM1 variants with substitutions T257V, T257D, 257C and T257S all produced a similar
range of total products, but with different profiles of chain-elongated amino acids (Figure 5). T257S had an almost
3-fold increase in HPhe production compared with MAM1 (Figure 7A) and produced more phenylalanine-derived
products than leucine- and methionine-derived products combined. The T257C substitution mimics MAMc, which
is found in e.g. C. sativa, which produces glucosinolates derived from methionine derivatives from nine cycles of
chain elongation [50]. Together with T257D, A290G and A290S, T257C had the highest TriHM production amongst
the tested MAMI1 variants including native MAM synthases. The production of TriHM as well as DHM in the T257C
MAMI variant confirms that homologues of MAMc have evolved to be iterative enzymes.

The IPMS2 mimicking G259P variant produced more chain-elongated leucine than methionine products. The
increase in leucine-derived products was almost 2-fold. It was also the only MAM variant unable to elongate pheny-
lalanine. The substitution has replaced glycine with the much bulkier proline. Such a substitution would normally be
expected to reduce activity of an enzyme. However, proline can also introduce a bend in the (3-sheet, which in this
case could make room for the methylene branch on the leucine side chain [51].

The MAMI1 variants G259A and A290T and IPMS2 did not generate chain-elongated amino acid products in E.
coli, but the presence of the proteins was confirmed by targeted proteomics. The IPMS2 enzyme only elongated valine,
and thus was not expected to produce other products. When the A290T mutation is introduced into MAM1 of A.
thaliana, it generates a mam 1 knockout phenotype [9], which is in agreement with our data.
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In A. thaliana, glucosinolates derived from chain-elongated leucine products are only seen in mutants that are al-
tered in their branched chain amino acid metabolism [49,52]. However, when MAMI1 variants are expressed together
with the chain elongation enzymes in E. coli, chain-elongated leucine products were produced by all the E. coli strains.
This could be explained by a loss of specificity when moving enzymes to heterologous hosts, but it could also suggests
that leucine biosynthesis and methionine chain elongation are physical separated at the cellular level in the native host
A. thaliana. Such model was previously proposed [53] and would allow for a localised high methionine-to-leucine
ratio and thus hinder by-product formation. Indeed, feeding MAM1 with methionine reduced the proportion of
leucine-derived by-products [20]. However, such physical separation into distinct localisations of the respective en-
zymes at the cellular level has yet to be proven.

We provide conclusive in planta evidence that MAM1 and not MAM3 as hitherto proposed is responsible for pro-
duction of the HPhe-derived 2-phenylethyl glucosinolate (Figure 7A). The data are in agreement with the observation
that the only MAM present in Barbarea vulgaris that produces high levels of 2-phenylethyl glucosinolate is a MAM1
homologue [54].
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Supplementary Figure legends

Supplementary Figure S1. Alignment of 57 MAM and 2 IPMS full protein sequences. According
to A. thaliana MAM1 numbering, only Leul86, Thr257, 11e258, Gly259 and Ala290 residues are

shown.

Supplementary Figure S2. Matrix from the alignment of MAM and IPMS enzyme sequences.
Upper part indicates sequence similarity in percentage and the lower part shows differences
between the protein sequences. Two MAM sequences have been removed from the matrix, as the

comparison indicated low sequence similarity due to poor quality of the sequence data.

Supplementary Figure S3. LC-MS traces of homomethionine (HM), dihomomethionine (DHM),
trihomomethionine (TriHM), tetrahomomethionine (TetraHM), pentahomomethionine (PentaHM)
and hexahomomethionine (HexaHM). A representative sample of MAM1 and MAM3 containing
strains as well as an empty vector control are shown. For each compound, the pure sample is shown

in the top panel.

Supplementary Figure S4. LC-MS traces of heptahomomethionine (HeptaHM), homoleucine
(HL) and homophenylalanine (HPhe). A representative sample of MAM1 and MAM3 containing
strains as well as an empty vector control are shown. For each compound, the pure sample is shown

in the top panel.



Supplementary Figure S5. Homology model of MAML1 from A. thaliana. (yellow) superimposed
on the crystal structure of N. meningitis IPMS (green). Only the (B/a)g catalytic barrel is shown. The

RMSD value is 0.26 A.

Supplementary Figure S6. Protein amino acids monitored in this study. Each graph shows levels
of one amino acid in the media of E. coli strains expressing MAM variants and an empty vector
control. The mean of all cultures is indicated by the red line. ANOVA was used to investigate
changes in the individual amino acids between the cultures. p-values are shown in upper right
corner of each graph. Data represents average and standard deviation of three biological replicates

each grown in three technical replicates.

Supplementary Figure S7. Produced chain elongated amino acids were grouped according to how
many methylene groups were added to the methionine, phenylalanine or leucine structures (one,
two or three and above). Bars represents the percentage of each group of products relative to the
total production within each culture. Data represents average and standard deviation of three

biological replicates each grown in three technical replicates.

Supplementary Figure S8. Glucosinolate analysis in A. thaliana ecotype Col-0 and knockout
mutants mam1 and mama3. Glucosinolates (GLS) were grouped into aromatic (2PE) GLSs, indole
GLSs and short chain (SC — one to three elongation rounds) and long chain (LC — four elongation
rounds and above) aliphatic GLSs. Data represents average and standard deviation of 3-7 biological

replicates.



Supplementary Figure S9. Protein levels in E. coli strains expressing the chain elongation
pathway genes, A) BCAT4, B) MAM1, C) LSU1, D) MAM3, E) SSU3, F) IPMS2 and G) IPMDH1
and H) E. coli housekeeping gene ICD. A-G are normalized the ICD, while the ICD is not
normalized. Different colours indicate individual peptides within each protein. Data represents

average and standard deviation of three biological replicates.



Supplementary Tables

Supplementary Table S1. List of primers used in this study. Lower case letters denotes the USER

tail used for cloning. Uracils are marked in blue. Mutated nucleotides are marked in red.

Name Sequence Description

MAM1_fwd ggcttaauATGCATCACCACCACCATCACAACTATGTGCGTGTATTC MAM1 forward primer
BCAT4_rev gotttaau TCAGCCCTGGCGGTCAAT BCAT4 reverse primer
MAM3_fwd ggcttaauATGCATCACCACCACCATCACGCTGAGTCCAAAAAGGTGGC  MAMS forward primer
MAM3_rev acaaaattauUTTCTAGAGGGGTTATACAACAGCGGAAATC MAM3 reverse primer
IPMS2_fwd ggcttaauATGCATCACCACCACCATCACATGGAGTCTTCGATTCTCA IPMS2 forward primer
IPMS2_rev acaaaattauUTTCTAGAGGGGTCAGGCAGGGACTTCGTTG IPMS2 reverse primer

L186_fwd acatctactaguGACATTCACATGAAATATAAG Fusion primer for L186-mutant
L186M_rev actagtagatguGAATACCATTATCCTTGGCCTC Fusion primer for L186M-mutant
T257/G259_fwd acggtagggauCAACATGCCACATGAATACGG Fusion primer for T257-mutant
T257N_rev atccctaccgUATCACCGATGTTCACCACCGTAA Fusion primer for T257N-mutant
T257G_rev atccctaccguUATCACCGATGCCCACCACCGTAA Fusion primer for T257G-mutant
T257V_rev atccctaccgUATCACCGATGACCACCACCGTAA Fusion primer for T257V-mutant
T257D_rev atccctaccgUATCACCGATGTCCACCACCGTAA Fusion primer for T257D-mutant
T257C_rev atccctaccgUATCACCGATGCACACCACCGTAA Fusion primer for T257C-mutant
T257S_rev atccctaccguUATCACCGATGCTCACCACCGTAA Fusion primer for T257S-mutant
G259P_rev atccctaccgUATCTGGGATGGTCACCACCGTAA Fusion primer for G259P-mutant
G259A_rev atccctaccgUATCGGCGATGGTCACCACCGTAA Fusion primer for G259A-mutant
A290S_fwd acgatgttgtcguCAGCGTTCATTGTCACAACGAC Fusion primer for A290S-mutant
A290T_fwd acgatgttgtcguCACCGTTCATTGTCACAACGAC Fusion primer for A290T-mutant
A290G_fwd acgatgttgtcguCGGCGTTCATTGTCACAACGAC Fusion primer for A290G-mutant
A290_rev acgacaacatcguCAATTCCAGGGGTGTTTGCTTTG Fusion primer for A290-mutant
GA_rev atccctaccguUATCGGCGATGCCCACCACCGTAA Fusion primer for T257G/G259A-mutant




Supplementary Table S2. Transitions and response factors used to quantify levels of chain

elongated amino acids. Response factors of methionine- and leucine-derived products were reported

in (20).
Amino acid | Q1 Q3 | CE | Internal standard | Q1 Q3 | Response factor
180.1 91_1Qt -22113C,15N-Phe 176.2| 129.2 1.61
HPhe 180.1| 134.1 -8
180.1] 117.1] -13
HM 164.2 70,3Qt -16[13C,15N-Val 124.11 77.2 0.35
1782 84.2%| -14[13C,15N-Phe 176.2] 129.2 1.05
DHM
1782 132.1{ -10
192.2 93,2Q[ -14113C,15N-Phe 176.2] 129.2 1.25
TriHM
192.2] 146.1] -9
206.2 112,2Qt -13|13C,15N-Phe 176.2| 129.2 0.91
TetraHM
206.21 160.1] -10
220.3 126,2Q[ -16[13C,15N-Phe 176.2] 129.2 0.41
PentaHM
220.3|1 174.1] -10
234.4 140,2Q[ -16|13C,15N-Phe 176.2| 129.2 0.36
HexaHM
23441 188.1] -11
248.2 188.1%[ -10|13C,15N-Phe 176.2] 129.2 n.d.
HeptaHM
1482 154.1{ -16
HL 146.2] 100.1| 10]|13C,15N-Phe 176.2| 129.2 0.88
DHL 160.2 114.1| -10/13C,15N-Phe 176.2| 129.2 1.00*
TriHL 174.2] 128.1| -10|13C,15N-Phe 176.2| 129.2 1.00%*

*Response factors for DHL and TriHL were assumed to be 1.00. CE = collision energy. Q = quadrupole. Qt = quantifier
transition



Supplemental Table S3: Transitions used for Selected Reaction Monitoring (SRM) for targeted
proteomics on peptides of methionine chain elongation pathway proteins. Retention times and
parent ion to fragment ion transitions are given. All peptides were selected in Q1 as the double-
charged ions [M+H]?* and fragment ions in Q3 as single-charged ions [M+H]". Collision energies

(CE) for natural non-labelled (light) and isotopically labelled (heavy) peptides were identical.

Light peptide Heavy peptide

Ql Q3 Q1 Q3 CE
Protein name AGI code Peptide RT  [M+H]" [M+H]" [M+H]" [M+H]" [eV]

BCAT4 At3919710 TGEETLAAK 1.60 460.25 76142 464.25 769.42 -13
1.60 460.25 818.44 464.25 826.44 -15

1.60 460.25 632.38 464.25 640.38 -14

LYETLSDIQTGR* 830 698.36 7764 703.36 786.4 -19
8.30 698.36 990.53 703.36 1000.53 -26

8.30 698.36 1119.57 703.36 1129.57 -23

SITNYCPVWIPLAEAK 18.70 93149 92754 93549 93554 -3
18.70 931.49 1123.67 93549 1131.67 -29

18.70 93149 628.38 93549 636.38 -41

GNVVSTPTIAGTILPGVTR 16.50 927.03 529.32 932.03 539.32 -29
16.50 927.03 6424 932.03 6524 -28

MAM1 At5923010 SLGFNDIQFGCEDGGR* 13.60 886.39 897.36 891.39 907.36 -31
13.60 886.39 1025.42 891.39 103542 -33

13.60 886.39 404.2 89139 4142 -41

DGEQSPGGSLTPPQK 250 749.37 98155 753.37 989.55 -23
250 749.37 1068.58 753.37 1076.58 -25

250 749.37 469.29 753.37 477.29 -30

STYEILSPEDIGIVK 17.00 832.45 957.54 836.45 96554 -22
17.00 83245 870.51 836.45 87851 -25

17.00 832.45 1070.62 836.45 1078.62 -24

SGNASLEEVVMALK 1750 72438 91851 728.38 1126.63 -24
1750 724.38 1118.63 728.38 1039.59 -24

1750 724.38 1031.59 728.38 926.51 -23

MAM3 At5923020 GESLMDGVYTK 6.70 600.29 8134 604.29 8214 -19
6.70 600.29 1013.51 604.29 1021.51 -16

6.70 600.29 682.35 60429 690.35 -19

ALVVNGAEISSEK 570 658.86 93446 662.86 94246 -20
570 658.86 1033.53 662.86 1041.53 -20

570 658.86 820.42 662.86 828.42 -21

SGNAPLEEVVMALK 18.70 729.39 1128.65 733.39 1136.65 -21
18.70 729.39 91851 733.39 926.51 -25

18.70 729.39 5884 73339 596.4 -23

STYEILSPEDVGIVK* 1550 825.44 94352 829.44 95152 -23
1550 825.44 856.49 829.44 864.49 -23

1550 825.44 1056.61 829.44 1064.61 -25

DGEQSPGAALTPPQK 3.40 748.38 469.29 75238 477.29 -32
340 748.38 372.24 752.38 380.24 -41



IPMS2 Atlg74040 GTYEIMSPEEIGLER*

IPMI-LSU1 At4913430 FILDGEMPSYLQAK™*

VWMDVYALPVPGAGGK

IPMI-SSU3  At3g58990 LGSFALNGLPK

EDGSSLLINHTTR

NCVATGEIFPLESEVR*

IPMDH1 At5914200 LSDAILLGAIGGYK*

AGSLEGLEFDFK

IEDAVVDALNK

ICD JW1122  GPLTTPVGGGIR*

3.40
15.40
15.40
16.90
16.90
16.90
18.50
18.50
18.50
12.60
12.60
12.60

3.90

3.90

3.90
15.10
15.10
15.10
17.00
17.00
17.00
14.20
14.20
14.20

6.05

6.05

6.05

6.37

6.37

6.37

748.38
889.94
889.94
806.42
806.42
806.42
830.44
830.44
830.44
558.83
558.83
558.83
721.87
721.87
721.87
910.95
910.95
910.95
695.91
695.91
695.91
656.83
656.83
656.83
593.83
593.83
593.83
562.83
562.83
562.83

979.57
1102.53
942.5
806.45
937.5
1123.56
682.4
486.28
261.17
712.45
1003.57
641.41
854.49
967.58
741.41
829.45
976.52
490.27
891.54
778.46
1004.63
855.44
984.48
685.33
944.52
659.39
758.45
655.40
857.49
756.44

752.38
894.94
894.94
810.42
810.42
810.42
834.44
834.44
834.44
562.83
562.83
562.83
726.87
726.87
726.87
915.95
915.95
915.95
699.91
699.91
699.91
660.83
660.83
660.83
597.83
597.83
597.83
567.83
567.83
567.83

987.57
1112.53
952.5
814.45
945.5
1131.56
690.4
494.28
269.17
720.45
1011.57
649.41
864.49
977.58
751.41
839.45
986.52
500.27
899.54
786.46
1012.63
863.44
992.48
693.33
952.52
667.39
766.45
665.40
867.49
766.44

*= peptides represented in Figure 8.



Supplemental Table S4: Pairwise t-test of the methionine levels from media of E. coli strains

expression the chain elongation pathway with 18 different MAM variants and an empty vector

control. p-values shown.

Empty
vector

MAM1

MAM3

IPMS2

T257V T257D T257C T257S G259P G259A A290S A290T A290G GA  GAG

MAM1
MAM3
IPMS2
L186M
T257N
T257G
T257V
T257D
T257C
T257S
G259P
G259A
A290S
A290T
A290G
GA
GAG
GAM

0.1316
0.7101
0.0254
0.3535
0.2301
0.8806
0.9379
0.3792
0.6634
0.5230
0.1362
0.0043
0.4230
0.1735
0.0920
0.8826
0.7299

0.3673

0.2507
0.0004
0.0103
0.0088
0.1727
0.1136
0.0199
0.2773
0.3757
0.0040
4.9e-05
0.4693
0.0057
0.8519
0.0993
0.0666
0.0189

0.5510
0.5755
0.1192
0.8245
0.6532
0.2139
0.9491
0.7885
0.0655
0.0016
0.6657
0.0862
0.1836
0.6039
0.4745
0.2059

0.0023
0.2755
0.0178
0.0305
0.1591
0.0087
0.0051
0.4266
0.4823
0.0033
0.3536
0.0002
0.0357
0.0552
0.1656

0.1784
0.2609
0.7432
0.1055
0.0700
0.7637
0.0773
0.0494
0.8680
0.0054
0.2909
0.3888
0.7602

0.8196
0.3045
0.7753
0.6245
0.1024
0.0029
0.5140
0.1323
0.1229
0.7659
0.6206
0.2943

0.4223
0.6080
0.4740
0.1569
0.0053
0.3799
0.1985
0.0786
0.9444
0.7891
0.4096

0.1920
0.1332
0.5307
0.0383
0.0974
0.6218
0.0126
0.4632
0.5911
0.9821

0.8379
0.0572
0.0013
0.7125
0.0758
0.2048
0.5604
0.4364
0.1847

0.1385
0.0251
0.8930
0.0024
0.1776
0.2475
0.5454

0.0005 - - - - -
0.1075 0.0342 - - - -
2.8e-05 0.3639 0.0035
0.0064 0.3438 0.2232 0.0681 - -
0.0106 0.2541 0.3053 0.0446 0.8432 -
0.0403 0.0931 0.6377 0.0119 0.4498 0.5758




