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Palmitic acid (PA) is the most common saturated long-chain fatty acid that causes damage
to heart muscle cells. However, the molecular mechanism of PA toxicity in myocardial cells
is not fully understood. In the present study, we explored the effects of PA on proliferation
and apoptosis of H9c2 cardiomyocytes, and uncovered the signaling pathways involved
in PA toxicity. Our study revealed induction of both oxidative and endoplasmic reticulum
(ER) stresses and exacerbation of apoptosis in PA-treated H9c2 cells. Inhibition of oxidative
stress by N-acetylcysteine (NAC) reduced apoptosis and decreased ER stress in PA-treated
H9c2 cells. Moreover, inhibition of ER stress by 4-phenyl butyric acid decreased apoptosis
and attenuated oxidative stress. In summary, the present study demonstrated that oxidative
stress coordinates with ER stress to play important roles in PA-induced H9c2 cell apoptosis.

Introduction
Diets rich in high fat foods, especially saturated fats, cause obesity, leading to serious health problems,
such as type 2 diabetes and lipotoxic cardiomyopathy [1]. It has been confirmed that the degree of lipid
accumulation is linked to cardiac dysfunction of human diabetic hearts [2,3]. Palmitic acid (PA), the most
common saturated long-chain fatty acid, triggers apoptosis in many cell types including cardiomyocytes
[4]. Cardiomyocyte apoptosis leads to myocardial injury and ultimately results in heart dysfunction to
some extent [5]. Previous studies have revealed the mechanisms of lipotoxicity in diabetic cardiomyopathy,
including endoplasmic reticulum (ER) stress [6] and oxidative stress [7].

The ER is an indispensable and elaborate eukaryotic organelle that is primarily responsible for synthe-
sis, packaging, and assembly of secretory and membrane proteins [8]. Any physiological or pathological
perturbation can disrupt ER homeostasis and cause accumulation of unfolded or misfolded proteins in the
ER lumen, resulting in ER stress [9]. Glucose-regulated protein 78 (GRP78) and CCAAT/enhancer bind-
ing protein homologous protein (CHOP) are both activated by the ER stress response [8]. GRP78 interacts
with activating transcription factor 6 (ATF6), inositol requiring enzyme 1α (IRE1α), and pancreatic ER
kinase (PERK) in the ER membrane, which maintains these transmembrane proteins in their inactive
configuration. When the unfolded protein response fails to manage misfolded and unfolded proteins, the
stress ultimately triggers apoptosis [9].

Oxidative stress plays a critical role in the pathogenesis of diabetic cardiomyopathy, which might im-
pair antioxidant defense systems [10]. Reactive oxygen species (ROS), which are produced in all cellular
compartments as a result of exposure to toxic agents and natural byproducts of mitochondrial respira-
tion, are a particularly destructive aspect of oxidative stress [11]. NADPH oxidase 2 (NOX2) present in
cardiovascular tissues is a well-characterized superoxide-generating enzyme [12]. Numerous studies have
suggested that increased ROS activate various signaling pathways, resulting in DNA damage and apop-
tosis [13,14]. Previous studies have also shown that oxidative and ER stresses are closely related [15,16].
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Both oxidative stress [21] and ER stress [9] are involved in PA-induced apoptosis. However, there is little known about
the relationship between oxidative and ER stresses in PA-induced H9c2 cell apoptosis.

In the present study, PA-treated H9c2 cells were used as a model to examine the molecular mechanism of lipotoxic
cardiomyopathy. Here, we investigated whether oxidative and ER stress pathways are involved in H9c2 cell apoptosis
and explored the relationship between oxidative and ER stresses in PA-induced H9c2 cell apoptosis.

Materials and methods
Materials
N-acetylcysteine (NAC; antioxidant), PA, 4-phenylbutyrate (4-PBA; ER stress inhibitor), and bovine serum albumin
(BSA) were purchased from Sigma–Aldrich (St. Louis, MO, U.S.A.). Fetal bovine serum (FBS) was purchased from
Gibco (Grand Island, NY, U.S.A.). Dulbecco’s modified Eagle’s medium (DMEM) was obtained from HyClone (Lo-
gan, Utah, U.S.A.). H9c2 cardiomyocytes were purchased from the Chinese Academy of Sciences (Shanghai, China). A
caspase 3 Activity Assay Kit was purchased from the NanJing JianCheng Bioengineering Institute (Nanjing, Jiangsu,
China). NaOH, phosphate-buffered saline (PBS), penicillin, and gentamicin were obtained from Solarbio (Beijing,
China). A CCK8 Assay Kit, ROS Assay Kit, and Annexin V-PE/PI Apoptosis Analysis Kit were purchased from the
Beyotime Institute of Biotechnology (Shanghai, China). TRIzol and a PrimeScript® RT Reagent Kit were purchased
from Invitrogen (Carlsbad, CA, U.S.A.). PVDF membranes were obtained from Millipore (Bedford, MA).

PA preparation
PA was prepared by soaping palmitate with sodium hydroxide and mixing with BSA. PA (20 mM in 0.01 M NaOH)
was incubated at 70◦C for 30 min. Then, the fatty acid soaps were complexed with 5% fatty acid-free BSA in PBS in
a 1:3 volume ratio to produce a 5 mM PA stock solution, which was stored at −20◦C. Before application, the stock
solution was diluted in culture medium.

Cell culture and treatments
H9c2 cells were cultured in DMEM supplemented with 10% FBS, 50 μg/ml penicillin, and 50 μg/ml gentamicin in a
humidified incubator at 37◦C with 5% CO2. The growth medium was changed every 3 days. When the cells reached
70–80% confluence, they were treated with 100–800 μM PA for 24 h. In other experiments, H9c2 cells were exposed
to 400 μM PA in the presence or absence of 500 nM 4-PBA and 2 mM NAC. After incubation for 24 h, the cells were
collected to assess cell viability, apoptosis, caspase 3 activity, and B-cell lymphoma 2 (BCL-2)-associated X protein
(BAX), GRP78, CHOP, and NOX2 expression.

Measurement of cell viability
H9c2 cell proliferation was monitored by a CCK8 assay, in accordance with the manufacturer’s instructions. Cells were
plated at 2 × 104 per well in 96-well plates. After treatment, 10 μl CCK8 was added to each well, and the cells were
incubated for 2 h at 37◦C. The number of viable cells was measured by a microplate reader (Bio-Rad 680; Bio-Rad,
Hercules, CA, U.S.A.) at 450 nm.

Apoptosis measurement
Apoptosis was determined using the Annexin V-PE/PI Apoptosis Analysis Kit. After treatments, the cells were col-
lected and resuspended in 500 μl binding buffer. After incubation with 10 μl Annexin V-PE and 5 μl PI for 15 min at
25◦C in the dark, the apoptotic rates of the cells were detected by a flow cytometer (Becton, Dickinson and Company,
U.S.A.). Early apoptotic cells were Annexin V+/PI− cells, late apoptotic cells were Annexin V+/PI+ cells, necrotic
cells were Annexin V−/PI+ cells, and Annexin V−/PI− cells were considered as live cells.

ROS measurement
ROS measurement was carried out in accordance with the procedure of the ROS Assay Kit. After treatments, the cells
were incubated with 10 μM DCFH-DA at 37◦C for 20 min. Then, the cells were washed three times, and staining with
the ROS-sensitive dye was assessed under an inverted fluorescence microscope (Olympus, Japan) at an excitation
wavelength of 488 nm and emission wavelength of 525 nm. Fluorescence was examined by image analysis software
ImageJ (Version 1.49).
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Figure 1. Effect of PA on proliferation and oxidative stress of H9c2 cells

(A) Cells were treated with various concentrations (100–800 μM) of PA for 24 h and then processed for cell viability analysis. (B)

Cells were treated with various concentrations (100–800 μM) of PA for 24 h and then processed for the ROS assay. (C) Cells were

treated with various concentrations (100–800 μM) of PA for 24 h and then analyzed for NOX2 expression. NOX2 expression was

normalized to β-actin levels. Data are presented as the mean +− S.E.M. of three independent experiments, *P<0.05, **P<0.01

versus the control group.

Caspase 3 activity measurement
Caspase 3 activity was measured using a caspase 3 Activity Colorimetric Assay Kit. After treatments, cells were har-
vested by scraping, collected by centrifugation, and incubated in lysis buffer on ice for 15 min. Then, the lysate was
centrifuged at 15000 rpm for 15 min at 4◦C, and the protein content was determined, after which the caspase 3 sub-
strate was measured using the microplate reader at 405 nm.

RNA isolation and qRT-PCR
After treatments, cells were collected and lysed with TRIzol reagent. Total RNA was reverse transcribed using the
PrimeScript® RT Reagent Kit, in accordance with the manufacturer’s instructions. The qRT-PCR procedure was
carried out using a Bio-Rad IQ5 and Bio-Rad IQ5 Optical System Software (Bio-Rad). The PCR cycling conditions
were 1 cycle of 30 s at 95◦C, followed by 40 cycles of 5 s at 95◦C and 30 s at 60◦C. Primers are listed in Supplementary
Table S1. β-Actin served as a reference gene. mRNA expression of oxidative stress and ER stress markers after the
treatments is shown in Supplementary Figures S1 and S2.

Western blotting
After treatments, cells were collected, washed with ice-cold PBS, and lysed with RIPA buffer. The total protein con-
centration was then measured by the BCA assay. Total protein (50 μg) in each sample was loaded into each well of a
12% SDS/PAGE gel and separated by electrophoresis. Proteins were then transferred on to PVDF membranes. After
blocking in TBST with 10% dry nonfat milk for 2 h, the membranes were incubated with a primary antibody (Sup-
plementary Table S2) overnight at 4◦C. After washing, the membranes were incubated with a secondary antibody
conjugated to horseradish peroxidase at 37◦C for 30 min. Immunoreactive bands were visualized using a Super Sig-
nal West Pico kit, in accordance with the manufacturer’s instructions. Protein band densities were semi-quantitated
by densitometric analysis using ImageJ (Version 1.49).

Statistical analyses
All experiments were repeated at least three times for each group. Data are presented as the mean +− S.E.M. Results
were analyzed by ANOVA, followed by Fisher’s least significant difference test and the independent samples Student’s
t test with SPSS software, version 13.0 (SPSS, Chicago, IL, U.S.A.).

Results
Effects of PA on proliferation and oxidative stress in H9c2 cells
To analyze the effect of PA on the proliferation and ROS generation of H9c2 cells, the cells were treated with 100–800
μM PA for 24 h. The results showed that PA decreased cell viability in a dose-dependent manner from 200 to 800
μM concentrations compared with the control group, and the IC50 value was approximately 400 μM (Figure 1A,
P=0.0032). In addition, PA induced ROS generation (Figure 1B) and NOX2 expression (Figure 1C and Supplemen-
tary Figure S1a) in H9c2 cells in a dose-dependent manner from 200 to 800 μM concentrations compared with the
control group. These results showed that PA reduces cell viability and promotes oxidative stress in H9c2 cells.
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Figure 2. Effect of PA on apoptosis-related protein expression in H9c2 cells

(A) Caspase 3 activity in H9c2 cells after treatment with various doses of PA (100–800 μM) for 24 h. (B) Relative BAX expression in

H9c2 cells after treatment with various doses of PA (100–800 μM) for 24 h. BAX expression was normalized to β-actin levels. Data

are presented as the mean +− S.E.M. of three independent experiments, *P<0.05, **P<0.01 versus the control group.

Figure 3. Effect of PA on ER stress-related protein expression in H9c2 cells

(A) Relative expression of GRP78 in H9c2 cells after treatment with various doses of PA (100–800 μM) for 24 h. (B) Relative expres-

sion of CHOP after treatment with various doses of PA (100–800 μM) for 24 h. Protein expression was normalized to β-actin levels.

Data are presented as the mean +− S.E.M. of three independent experiments, 0.05<**P<0.01 versus the control group.

Effects of PA on apoptosis-related gene expression in H9c2 cells
To explore the mechanism of PA in apoptosis of H9c2 cells, apoptosis-related gene expression (caspase 3 and BAX)
was measured by a colorimetric assay and Western blotting. PA enhanced the levels of caspase 3 activity in a
dose-dependent manner from 200 to 800 μM concentrations compared with the control group at 24 h (Figure 2A).
In addition, PA induced BAX protein in expression in a dose-dependent manner from 100 to 800 μM concentrations
compared with the control group at 24 h (Figure 2B). These results indicated that PA-induced H9c2 cell apoptosis
was related to caspase 3 activity and BAX.

Effect of PA on ER stress in H9c2 cells
To investigate whether ER stress is involved in PA-induced apoptosis, we determined the expression of ER stress
marker proteins GRP78 and CHOP. Our results showed that ER stress was active and expression of CHOP and GRP78
was up-regulated at mRNA and proteins levels in a dose-dependent manner from 200 to 800 μM concentrations
compared with the control group at 24 h (Figures 3A,B and Supplementray Figure S1b,c). These results indicated that
PA induced ER stress during H9c2 cell apoptosis.
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Figure 4. Effect of NAC on PA-induced apoptosis and ER stress of H9c2 cells at 24 h

(A) ROS levels in H9c2 cells after treatments; (B) NOX2 expression levels in H9c2 cells after treatments. (C,D) Apoptosis analysis

by flow cytometry. d1: necrotic cells; d2: late apoptotic cells; d3: live cells; d4: early apoptotic cells. (E) Caspase 3 activity in

H9c2 cells after treatments; (F) BAX expression levels in H9c2 cells after treatments. (G) GRP78 expression levels in H9c2 cells

after treatments; (H) CHOP expression levels in H9c2 cells after treatments. Protein expression levels were normalized to β-actin

levels. PA: 400 μM palmitic acid; NAC: 2 mM N-acetylcysteine. Data are presented as the mean +− S.E.M. of three independent

experiments, *P<0.05, **P<0.01 versus the control group and #P<0.05, ##P<0.01 represent PA+NAC treated group versus the

PA-treated group.

Role of oxidative stress in PA-induced apoptosis and ER stress in H9c2
cells
To confirm the role of oxidative stress in apoptosis and ER stress of PA-treated H9c2 cells, we used NAC to inhibit ox-
idative stress during the treatments. NAC is a source of sulfhydryl groups in cells and acts as a free radical scavenger.
The results indicated that NAC treatment completely reversed the generation of ROS (Figure 4A, P=0.2678) and par-
tially reversed the expression of NOX2 caused by PA (Figure 4B and Supplementary Figure S2a). Furthermore, NAC
effectively suppressed apoptosis (Figure 4C,D) and expression of caspase 3 and BAX induced by PA (Figure 4E,F).
These results indicated that oxidative stress is involved in PA-induced cell apoptosis. Additionally, NAC treatment
significantly decreased the expression of GRP78 and CHOP induced by PA in H9c2 cells (Figure 4G,H and Sup-
plementary Figure S2b,c), suggesting that NAC treatment significantly alleviated PA-induced ER stress. These data
indicated that oxidative stress is involved in PA-induced ER stress and apoptosis.

Roles of ER stress in PA-induced apoptosis and oxidative stress of H9c2
cells
To further confirm the role of ER stress and its relationship with oxidative stress in PA-induced cell apoptosis, we
used 4-PBA to inhibit ER stress during the treatments. 4-PBA, an ER stress inhibitor, can be used to promote pro-
tein folding and prevent aggregation of misfolded proteins. The results showed that 4-PBA partially suppressed ER
stress-related protein expression (GRP78 and CHOP) induced by PA (Figure 5A,B and Supplementary Figure S2b,c).
Moreover, treatment with 4-PBA decreased the apoptosis rate (Figure 5C,D) and expression of proapoptotic factors
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Figure 5. Effect of 4-PBA on PA-induced apoptosis and oxidative stress of H9c2 cells at 24 h

(A) GRP78 expression levels in H9c2 cells after treatments. (B) CHOP expression levels in H9c2 cells after treatments. (C,D) Apop-

tosis analysis by flow cytometry. d1: necrotic cells; d2: late apoptotic cells; d3: live cells; d4: early apoptotic cells. (E) Caspase 3

activity in H9c2 cells after treatments. (F) BAX expression levels in H9c2 cells after treatments. (G) ROS levels in H9c2 cells after

treatments. (H) NOX2 expression levels in H9c2 cells after treatments. Protein expression levels were normalized to β-actin levels.

PA: 400 μM palmitic acid; 4-PBA: 500 nM 4-PBA. Data are presented as the mean +− S.E.M. of three independent experiments,

*P<0.05, **P<0.01 versus the control group and &P<0.05, &&P<0.01 represent PA+4-PBA treated group versus the PA-treated

group.

(caspase 3 and BAX; Figure 5E,F). These results indicated that ER stress is involved in PA-induced H9c2 cell apop-
tosis. Additionally, 4-PBA partially inhibited the ROS generation and NOX2 expression induced by PA (Figure 5G,H
and Supplementary Figure S2a). These data indicated that ER stress is related to oxidative stress in PA-induced H9c2
cell apoptosis.

Discussion
In the present study, we examined the mechanism of saturated fatty acid-induced cardiomyocyte injury. To this end,
we used PA to investigate the mechanisms of lipotoxicity in H9c2 cells. We first evaluated the effect of PA on the
proliferation of H9c2 cells. Our data showed that PA reduced cell viability, supporting previous studies showing that
PA inhibits cell proliferation and induces apoptosis in many cell types and cell lines, such as neuronal cells [17], stem
cells [18], and hepatocytes [19].

Oxidative stress plays a major role in the pathogenesis of diabetic cardiomyopathy [10]. Studies have also reported
that oxidative stress is involved in apoptosis [13,14]. In the current study, we found that treatment of H9c2 cells with
PA increased ROS generation and NOX2 expression in a dose-dependent manner. The up-regulated NOX2 enzyme
contributes to oxidative stress and cardiovascular disease [20]. Consistent with previous studies in other cell types
[21], we also found that PA promoted ROS generation in H9c2 cells, suggesting that oxidative stress may be one of
the reasons for PA-induced H9c2 cell apoptosis.

Next, we detected expression of apoptosis-related genes, including BAX and caspase 3, during PA-induced H9c2
cell apoptosis. Caspase 3 is processed into cleaved caspase 3 in the early steps of apoptosis, and expression of caspase 3
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positively correlates with the rate of apoptosis [9]. BCL-2 is an important protein that promotes cellular survival and
inhibits the actions of proapoptotic proteins. Moreover, BAX has a very important proapoptotic effects among BCL-2
family members [9]. Our study showed that PA induced high levels of BAX and caspase 3 as reported previously [22],
suggesting that PA regulates caspase 3 activation and the BCL-2/BAX pathway to induce apoptosis in H9c2 cells.

ER stress is a cellular rescue mechanism that is activated to ease stress during various pathophysiological insults.
However, continuous and excess ER stress pathway activation can result in apoptosis [8]. Previous studies have con-
firmed that GRP78 and CHOP are ER stress markers [9]. In our study, we found that PA induced GRP78 and CHOP
expression. These results were consistent with a recent study showing increased GRP78 and CHOP during PA-induced
myocardial apoptosis in vitro and in vivo [22]. Taken together, these data suggest that the ER stress pathway is active
in PA-treated H9c2 cells.

To understand the role of oxidative stress in PA-mediated H9c2 cell apoptosis, we suppressed oxidative stress by
NAC treatment. The results showed that NAC dramatically decreased the concentrations of ROS. Moreover, GRP78
and CHOP were significantly decreased after NAC treatment. In addition, NAC partially reversed PA-induced cell
apoptosis and the decrease in cell viability. These results were consistent with previous studies showing that PA induces
oxidative stress and apoptosis in pancreatic β-cells [23]. Our study revealed for the first time that oxidative stress is
involved in PA-induced H9c2 cell apoptosis. These results further support previous studies showing that oxidative
stress is related to H9c2 cell apoptosis during ischemia/reperfusion injury [24].

To analyze the role of ER stress in PA-mediated H9c2 cell apoptosis, we suppressed ER stress by 4-PBA treatment.
We found that inhibition of ER stress by 4-PBA obviously rescued PA-triggered cell apoptosis, the decrease in cell
viability, and expression of GRP78 and CHOP in H9c2 cells. Our data further support a previous study showing that
PA induces apoptosis in primary cardiomyocytes via ER stress [22]. This is the first report indicating that ER stress
is involved in PA-induced apoptosis of H9c2 cells and revealed the role of ER stress in apoptosis of another cell type.

Previous studies have shown the association of oxidative and ER stresses with apoptosis [15,16]. Our study demon-
strated that both ER and oxidative stresses were involved in PA-induced H9c2 cell apoptosis. Therefore, we further
analyzed the potential relationships of oxidative and ER stresses in PA-induced apoptosis. We found that inhibition of
oxidative stress by NAC partially blocked ER stress-related protein expression. In addition, NAC altered PA-induced
apoptosis and related protein expression. These findings indicated that oxidative stress was an inducer of ER stress in
PA-induced H9c2 cell apoptosis.

Next, we investigated the effects of ER stress on ROS generation. Inhibition of ER stress by 4-PBA significantly de-
creased ROS generation and NOX2 expression. These results suggested that ER stress is one of the causes of oxidative
stress in PA-induced H9c2 cell apoptosis. Moreover, blocking oxidative stress by NAC decreased ER stress, suggest-
ing that ROS generation was an upstream factor in PA-induced H9c2 cell apoptosis. Conversely, blocking ER stress
with 4-PBA significantly decreased oxidative stress. These results indicated that oxidative and ER stresses interact
with each other during PA-induced cell apoptosis. The possible mechanism may be that oxidative stress disrupts ER
homeostasis and causes ER stress. Therefore, inhibition of oxidative stress suppresses ER stress during PA treatment.
In addition, persistent ER stress may cause mitochondrial dysfunction that further induces oxidative stress. Thus,
inhibition of ER stress can also inhibit oxidative stress. However, the exact underlying mechanism requires further
investigation.

In summary, our study demonstrates that both oxidative and ER stresses are involved in PA-induced H9c2 cell
apoptosis, and there is a cross-talk between oxidative and ER stresses during this process. The present study offers
new insights into the molecular mechanisms of lipotoxicity in diabetic cardiomyopathy.
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Table S1. Primer sequences used for RT-qPCR.  

Gene Forward (5′-3′) Reverse (5′-3′) Tm(°C) 

NOX2 CGGGATAGTTGACTTCACCATCC ATTCTGGTGTTGGGGTGTTGACT 60 

GRP78 TGGGTCGACTCGAATTCCAAAG GTCAGGCGATTCTGGTCATTGG 60 

CHOP AATCAGAGCTGGAACCTGAGGA TGCTTTCAGGTGTGGTGATGTATG 60 

β-actin GTTTGAGACCTTCAACACCCCC GTGGCCATCTCTCTTGCTCGAAGTC 60 

 

 

 

  



Table S2 Antibody used in this study 

 

 

Target(diluted) Catalogue number Company 

NOX2(1:1000) 19013-1-AP Proteintech 

β-actin(1:2000)                      sc-47724 Santa Cruz 

BAX(1:500) sc-4239 Santa Cruz 

CHOP(1:1000) ab10444 Abcam 

GRP78(1:1000) ab32618 Abcam 


