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Background. Neuroblastoma (NB) is the most common extracranial solid tumor in infants
and children. Its variable location and complex pathogenesis make NB hard for early diagno-
sis and risk classification. Methodology. We analyzed the methylation data of 236 samples
from patients with NB in Therapeutically Applicable Research to Generate Effective Treat-
ments (TARGET) database. Kaplan–Meier survival analysis was used for comparing overall
survival of NB patients in different groups. Epigenome-wide association study (EWAS) was
conducted to screen CpGs significantly associated with NB patients’ Children’s Oncology
Group (COG). Logistic regression method was used for constructing a model to predict NB
patients’ COG. Results. NB patients in low COG showed significantly superior prognosis
than those in high COG. A total of seven CpG sites were found closely related to COG. Lo-
gistic regression model based on those CpGs showed superior performance in separating
NB patients in different COGs. Conclusions. The present study highlights the important
role of DNA methylation in NB development, which might provide evidence for treatment
decisions for children NB.

Introduction
Neuroblastoma (NB) is one of the most common malignant tumors in infants and children. The in-
cidence of NB in extracranial solid tumor in childhood. Approximately 7% of the malignant tumors
occur in children born to 14 years old, with a fatality rate of up to 15% [1]. NB usually originates
from the sympathetic nervous system in abdomen or chest, most commonly from adrenal gland. Pa-
tients with different origins and spread of tumor cells exhibit different symptoms, such as abdomi-
nal distension, constipation, dyspnea, skin mass, bone pain and anemia [2]. NB is a self-limiting dis-
ease, which is possible for spontaneously cured and recovery when the age of diagnosis is less than 18
months [3]. Children with NB are usually treated with surgical resection, chemotherapy, radiotherapy,
and autologous hematopoietic stem cell transplantation. Appropriate treatments based on risk classifi-
cation could reduce the treatment-related toxicities and improve the prognosis. Patients with low or in-
termediate risk have satisfactory prognosis, while the recurrence rate of patients with high risk is more
than 50%, with 5-year survival rate of 40–50% [4]. However, the occult primary site and diverse phe-
notypes make NB hard for early diagnosis and most of the patients were at high risk when diagnosed.
Advanced NB is highly invasive and rapidly progressing, leading to difficulty in treatment and poor
prognosis [5]. Staging and risk classification are two important prognostic factors of NB. The Interna-
tional Neuroblastoma staging system (INSS), which is the most widely used staging standard, classifies
NB tumors into stage I, II, III, IV and IV-S according to the tumor resectability [6]. The biological and
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Table 1 Clinicopathological characteristics of NBL patients from TARGET database

Characteristics NBL patients (n=169)
No. %

Sex Female 66 39.05%

Male 103 60.95%

Race White 123 72.78%

Black or African American 28 16.57%

Asian 1 0.59%

Native Hawaiian or other Pacific Islander 3 1.78%

Unknown 15 8.88%

Pathologic stage I 7 4.14%

II 1 0.59%

III 5 2.96%

IV 156 92.31%

Survival time Long (>5 years) 87 51.48%

Short (<5 years) 82 48.52%

Survival status Dead 79 46.75%

Alive 90 53.25%

clinical characteristics of NB are complex, which would be difficult to evaluate the development and risk before treat-
ment only by relying on INSS. Therefore, the International Neuroblastoma Risk Group (INRG) proposed a new stage
and risk classification system for pretreatment. According to INSS stage, age of diagnosis, MYCN amplification sta-
tus, DNA ploidy, and histopathology, patients with NB are classified into low-risk group, intermediate-risk group, and
high-risk group [7]. Children’s Oncology Group (COG) suggests that the therapy strategy should be made according
to the risk classification of NB [8,9]

Assessment of NB COG risk classification requires a lot of comprehensive information, and subjective factors of
medical staff are involved. To reduce the uncertain subjectivity and improve the accuracy of risk classification, we
performed epigenome-wide association study (EWAS) on methylation data of patients with NB to identify methyla-
tion variations that are related to NB COG risk classification. In addition, a logistic regression model was constructed
using these CpG sites for accurate prediction of patients’ COG.

Materials and methods
Methylation data of NB
The methylation data of NB were obtained from Therapeutically Applicable Research to Generate Effective Treat-
ments (TARGET) database (https://ocg.cancer.gov/programs/target), which contains information of common tumors
in children. We obtained the methylation data and corresponding clinical data of 236 NB patients from TARGET
database. All 236 samples were tumor samples, of which 169 samples contained complete survival information. De-
tailed epidemiological features of those 169 samples are provided in Table 1. The methylation data were detected by
Illumina Human Methylation 450 (HM450) arrays platform.

EWAS
Similar to genome-wide association study (GWAS), which finds genetic mutations in the whole-genome by compar-
ing case group and control group, EWAS is to identify methylation variations that are related to disease by comparing
different sample groups at epigenetic level. We used CpGassoc package (version 2.60, https://CRAN.R-project.org/
package=CpGassoc) of R language to study the relationship between methylation level and phenotype. In this pack-
age, the matrix of methylation β value and the sample phenotype information, here refers to COG risk group, were
used as input, and the P-value that represented the relationship between each CpG site and phenotype was calculated
by chi-square test. The smaller the P-value is, the closer the relationship between the CpG site and phenotype is.
P-value < 1e-8 was used as the threshold for the significant association between CpG site and COG risk group.

Construction of logistic regression model
As a common approach in classification, logistic regression is based on a set of variables to predict the classification
results. In the present study, the β value of methylation site is used to predict samples’ COG. The 236 samples were
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Figure 1. Correlation between different variables and prognosis

(A) Hazard ratio of sample groups based on MKI, Cog risk group, and percent tumor, respectively. (n, number of samples; *P-value

<0.05). (B) Kaplan–Meier survival curves of the correlation between MKI and survival probability. (C) Kaplan–Meier survival curves

of the correlation between COG risk group and survival probability.

randomly divided into training set and testing set with the same sample size. Based on the β value of CpG site that
screened in the previous analysis in the training set, the logistic regression model was constructed with R language.
Testing set was used to evaluate the accuracy of the regression model.

Statistical analysis
For the 169 samples with survival information, we used the survival package (version 2.42, https://www.
rdocumentation.org/packages/survival) of R language (version 3.5, https://www.r-project.org/) to perform
Kaplan–Meier survival analysis. Cox proportional hazards model, which introduced mitosis-karyorrhexis index
(MKI), risk groups (COG risk group), and tumor percentage (percent tumor) as variables, was used to calculate
the hazard rate (HR) between the sample groups based on each variable. Fisher’s exact test was used to determine the
significance of the overall survival between different sample groups.

Results
MKI and COG risk group significantly affect the prognosis and survival
Hazard ratio was calculated based on the Cox proportional hazards model. All 169 samples were divided into groups
according to MKI (high, intermediate, low, and unknown), COG risk group (high risk, intermediate risk, and low
risk), and tumor percentage (H: > 50%, L: < 50%), respectively. HR > 1 indicated that samples with the factor had a
higher risk of death than reference (high MKI, low COG risk group, or low tumor percentage), and HR < 1 indicated
samples with the factor had a lower risk of death than reference. Lower.95 and upper.95 are 95% confidence intervals,
and P-value<0.05 was considered as threshold. Figure 1A showed that NB patients with low and intermediate MKI
had lower risk of death compared with high MKI. Compared with high COG, low and intermediate COG samples
had lower risk of death. Tumor percentage showed no significant correlation with prognosis. Kaplan–Meier survival
analysis results also supported that low MKI (Figure 1B) and low COG (Figure 1C) correlated with superior NB
prognosis.

EWAS analysis
Samples within different groups based on COG showed significantly different survival time according to previous
analysis. To further study the relationship between DNA methylation and COG, we used CpGassoc package to per-
form EWAS. P-value was used to measure the relationship between the CpG sites methylation levels and tumor COG.
The smaller the P-value, the closer the relationship between them. We screened 81 CpG sites with P<1e-8 as the
threshold, and 13 CpG sites with P<1e-10 as the threshold. As shown in Figure 2A, the 13 CpG sites were distributed
on chromosomes 1, 2, 5, 10, 15, and 22. For details, Figure 2B–G were enlarged Manhattan plots of CpG positions on
chromosomes 1, 2, 5, 10, 15, and 22, respectively.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

3

D
ow

nloaded from
 http://portlandpress.com

/bioscirep/article-pdf/40/5/BSR
20200826/882342/bsr-2020-0826.pdf by guest on 24 April 2024

https://www.rdocumentation.org/packages/survival
https://www.r-project.org/


Bioscience Reports (2020) 40 BSR20200826
https://doi.org/10.1042/BSR20200826

Figure 2. Manhattan plots of CpG positons on chromosomes

(A) Manhattan plot of CpG sites on all chromosomes. The horizontal axis is positions of chromosome, and the vertical axis is −log10

of P-value. The blue line and the red line are thresholds of 1e-8 and 1e-10, respectively. (B–G) Manhattan plots of CpG sites on

chromosome 1, 2, 5, 10, 15, and 22, respectively.

Construction and evaluation of the logistic regression model in
predicting COG risk group
Six of the 13 CpG sites were not annotated to any gene, and seven of them were found with corresponding genes, which
were cg25241559 (SNED1), cg20989926 (RLBP1), cg22124648 (FGR), cg23109891 (SOX10), cg23049458 (L1TD1),
cg04044188 (PDSS1), and cg16157016 (PICK1). As shown in Figure 3A, we analyzed the methylation levels of these
seven sites between high COG and low COG sample group. P-values calculated by Wilcox method were all less than
0.05, indicating that the methylation levels of these seven CpG sites were significantly different between the high
and low COG groups, and the methylation level in the high COG group was significantly higher than that in the
low COG group. A logistic regression model based on the methylation levels of these seven CpG sites in a random
divided training set with half of all samples was constructed to determine the COG risk groups. To verify the accuracy
of this model, we used the other half of the samples for prediction. As shown in Figure 3B, the inflection points of
the curve were all close to the upper left and the area under curve (AUC) was greater than 0.8 (AUC = 0.8663),
indicating the high accuracy of the model. Using information-gain-based approach to sort the reliability of the seven
CpG sites in predicting COG risk group from high to low, we found that the prediction accuracy of cg25241559 +
cg20989926 reached 0.84, while the accuracy of the next points did not significantly increase, indicating that the
model constructed by these two CpG sites was accurate enough for COG group prediction (Figure 3C).

Discussion
The risk stratification based on clinical and biologic factors of patients with tumor has been used to determine the
appropriate treatment and is criteria for predicting prognosis for decades. Since 2006, the COG has been collecting
INRG data and revising the COG risk classification system to achieve better predictive performance [10]. However,
patients with same risk stratification may have different clinical courses after receiving same therapy [11]. On the
basis of the assumption that the occurrence and development of tumor are driven by genetic and biological charac-
teristics, researchers have identified a large number of potential prognostic markers and established classification for
improving treatment strategies [12–14]. Although several well-characterized genetic abnormalities, including DNA
content [15], gain of chromosome arm 17q, and deletion of chromosome arm 1p and 11q have been discovered to
be associated with outcome prediction in NB [16], features of these molecules are inadequate to explain the clinical
heterogeneity [17].

There is increasing evidence that abnormal DNA methylation is highly related to the development and progression
of many cancers including NB. Hypermethylation was found in aggressive tumors compared with low-grade ones [18],
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Figure 3. CpG-based model could well predict COG risk level in NB

(A) Methylation levels of the seven CpG sites in the high-risk group and low-risk group. Blue: high-risk group; Yellow: low-risk group;

Vertical axis: methylation level. (B) Prediction of the half of the 236 samples using the logistic regression model. (C) Evaluation of

the logistic regression model in predicting COG risk level. The horizontal axis represents the number of included points, and the

vertical axis represents the prediction accuracy.

and the tumorigenic properties of NB was inhibited by reversing epigenetic changes in CpG island with demethylating
agent [19]. Capper et al. reported that DNA methylation patterns might be useful for the accurate classification of
olfactory NB [20]. In this study, we analyzed the methylation data of NB in TARGET database, and found that the DNA
methylation in the whole-genome that was associated with MKI, an indicator of NB histological classification [7], was
significantly related to prognosis and survival. Meanwhile, COG risk group significantly affected the prognosis and
survival, also suggesting that the methylation characteristics showed good potential in NB prognosis prediction.

Furthermore, seven CpG sites with significantly different methylation levels in the high- and low-COG risk
groups were identified, including cg25241559, cg20989926, cg22124648, cg23109891, cg23049458, cg04044188 and
cg16157016, and logistic regression model with these CpG sites was constructed to accurately determine the COG
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risk of the samples. In addition, by analyzing the prediction reliability of these CpG sites, we found that the model
constructed using cg25241559 and cg20989926 was accurate enough for COG risk group prediction. cg25241559 is
a probe representing Sushi Nidogen and EGF-like domains 1 (SNED1), which encodes a secreted protein composed
of characteristic domains commonly found in ECM proteins [21]. The crucial role of SNED1 in the development of
several tumors has been discovered. Longati et al. identified SNED1 as a stromal marker that induces cisplatin re-
sistance in head and neck squamous carcinoma [22]. Naba et al. reported SNED1 as characteristic protein of highly
metastatic in mammary carcinoma, and the overexpression of SNED1 was associated with poor outcome for patients
with ER−/PR− breast cancer [23]. The homozygous deletions of SNED1 might be involved in tumor metastasis of
NB [24], while DNA methylation change of SNED1 was associated with the clinical course of NB [25]. However,
the mechanisms of SNED1 involved in invasive phenotype remains unclear. Cg20989926 is a probe representing
RLBP1, a retinaldehyde-binding protein gene that encodes human cellular retinaldehyde-binding protein [26]. Mu-
tation of RLBP1 is associated with several inherited retinal disorders, such as Bothnia dystrophy [27], newfoundland
rod-cone dystrophy [28], retinitis pigmentosa [29], and retinitis punctata albescens [30]. In oral cancer, the over ex-
pression of RLBP1 is associated with increased glucose uptake and aerobic glycolysis-mediated ATP synthesis [31].
The hypermethylation of RLBP1 is also recognized as one of the features of high-risk NB [25]. On the other hand,
5-hydroxymethylcytosine (5-hmC), a key component of DNA methylation, was proved to be related to hypoxic re-
sponse of NB cell lines [32]. In another study on prognostic factors of NB using COG cohorts, 5-hmC profiles could
be used as a biomarker for NB in children [33]. Perhaps the transcriptional network essential for promoting different
NB phenotypes is regulated by distinct pattern of DNA modification, which requires further research in the future.

Conclusion
With the discovery of key somatic and germline genomic alterations, new tumor classifications relying on molecular
profiles of tumor and host are emerging to provide evidences for treatment strategy of NB. In the present study, the
methylation data of NB from TARGET database were analyzed to investigate the relationship between DNA methy-
lation and COG risk groups. Seven CpG sites that significantly associated with risk classification were identified, and
the combination of SNED1 and RLBP1 were accurate enough for risk stratification. The present study provided a
basis for the refinements in risk classification, although additional research will be needed to clarify the biological
functions of these methylation variations to achieve higher accuracy.
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